1
|
Yin F, Yan Z, Li Y, Ding S, Wang X, Shi Z, Feng J, Du S, Tan Z, Zeng C. Multimodal Investigation of Deep Gray Matter Nucleus in Patients with Multiple Sclerosis and Their Clinical Correlations: A Multivariate Pattern Analysis Study. J Pers Med 2023; 13:1488. [PMID: 37888099 PMCID: PMC10608176 DOI: 10.3390/jpm13101488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Deep gray matter (DGM) nucleus are involved in patients with multiple sclerosis (MS) and are strongly associated with clinical symptoms. We used machine learning approach to further explore microstructural alterations in DGM of MS patients. One hundred and fifteen MS patients and seventy-one healthy controls (HC) underwent brain MRI. The fractional anisotropy (FA), mean diffusivity (MD), quantitative susceptibility value (QSV) and volumes of the caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were measured. Multivariate pattern analysis, based on a machine-learning algorithm, was applied to investigate the most damaged regions. Partial correlation analysis was used to investigate the correlation between MRI quantitative metrics and clinical neurological scores. The area under the curve of FA-based classification model was 0.83, while they were 0.93 for MD and 0.81 for QSV. The Montreal cognitive assessment scores were correlated with the volume of the DGM and the expanded disability status scale scores were correlated with the MD of the GP and PT. The study results indicated that MS patients had involvement of DGM with the CN being the most affected. The atrophy of DGM in MS patients mainly affected cognitive function and the microstructural damage of DGM was mainly correlated with clinical disability.
Collapse
Affiliation(s)
- Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Shuang Ding
- Department of Radiology, The Childrens’ Hospital of Chongqing Medical University, Chongqing 400015, China;
| | - Xiaohua Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Silin Du
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Zeyun Tan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| | - Chun Zeng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (F.Y.); (Z.Y.); (Y.L.); (X.W.); (Z.S.); (S.D.); (Z.T.)
| |
Collapse
|
2
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
3
|
Chandler HL, Stickland RC, Patitucci E, Germuska M, Chiarelli AM, Foster C, Bhome-Dhaliwal S, Lancaster TM, Saxena N, Khot S, Tomassini V, Wise RG. Reduced brain oxygen metabolism in patients with multiple sclerosis: Evidence from dual-calibrated functional MRI. J Cereb Blood Flow Metab 2023; 43:115-128. [PMID: 36071645 PMCID: PMC9875355 DOI: 10.1177/0271678x221121849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Cerebral energy deficiency is increasingly recognised as an important feature of multiple sclerosis (MS). Until now, we have lacked non-invasive imaging methods to quantify energy utilisation and mitochondrial function in the human brain. Here, we used novel dual-calibrated functional magnetic resonance imaging (dc-fMRI) to map grey-matter (GM) deoxy-haemoglobin sensitive cerebral blood volume (CBVdHb), cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen consumption (CMRO2) in patients with MS (PwMS) and age/sex matched controls. By integrating a flow-diffusion model of oxygen transport, we evaluated the effective oxygen diffusivity of the capillary network (DC) and the partial pressure of oxygen at the mitochondria (PmO2). Significant between-group differences were observed as decreased CBF (p = 0.010), CMRO2 (p < 0.001) and DC (p = 0.002), and increased PmO2 (p = 0.043) in patients compared to controls. No significant differences were observed for CBVdHb (p = 0.389), OEF (p = 0.358), or GM volume (p = 0.302). Regional analysis showed widespread reductions in CMRO2 and DC for PwMS. Our findings may be indicative of reduced oxygen demand or utilisation in the MS brain and mitochondrial dysfunction. Our results suggest changes in brain physiology may precede MRI-detectable GM loss and may contribute to disease progression and neurodegeneration.
Collapse
Affiliation(s)
| | - Rachael C Stickland
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Physical Therapy and Human Movement Sciences,
Northwestern University, Chicago, IL, USA
| | | | | | - Antonio M Chiarelli
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Catherine Foster
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Wales Institute of Social and Economic Research and Data,
Cardiff University, Cardiff, UK
| | | | - Thomas M Lancaster
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Psychology, University of Bath, Bath, UK
| | - Neeraj Saxena
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Anaesthetics, Intensive Care and Pain Medicine,
Cwm Taf Morgannwg University Health Board, Abercynon, UK
| | - Sharmila Khot
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Cardiff University School of Medicine, Cardiff, UK
| | - Valentina Tomassini
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- MS Centre, Neurology Unit, “SS. Annunziata” University Hospital,
Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences,
School of Medicine, Cardiff University, Cardiff, UK
- Helen Durham Centre for Neuroinflammation, University Hospital
of Wales, Cardiff, UK
| | - Richard G Wise
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Baldini S, Morelli ME, Sartori A, Pasquin F, Dinoto A, Bratina A, Bosco A, Manganotti P. Microstates in multiple sclerosis: an electrophysiological signature of altered large-scale networks functioning? Brain Commun 2022; 5:fcac255. [PMID: 36601622 PMCID: PMC9806850 DOI: 10.1093/braincomms/fcac255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis has a highly variable course and disabling symptoms even in absence of associated imaging data. This clinical-radiological paradox has motivated functional studies with particular attention to the resting-state networks by functional MRI. The EEG microstates analysis might offer advantages to study the spontaneous fluctuations of brain activity. This analysis investigates configurations of voltage maps that remain stable for 80-120 ms, termed microstates. The aim of our study was to investigate the temporal dynamic of microstates in patients with multiple sclerosis, without reported cognitive difficulties, and their possible correlations with clinical and neuropsychological parameters. We enrolled fifty relapsing-remitting multiple sclerosis patients and 24 healthy subjects, matched for age and sex. Demographic and clinical data were collected. All participants underwent to high-density EEG in resting-state and analyzed 15 min free artefact segments. Microstates analysis consisted in two processes: segmentation, to identify specific templates, and back-fitting, to quantify their temporal dynamic. A neuropsychological assessment was performed by the Brief International Cognitive Assessment for Multiple Sclerosis. Repeated measures two-way ANOVA was run to compare microstates parameters of patients versus controls. To evaluate association between clinical, neuropsychological and microstates data, we performed Pearsons' correlation and stepwise multiple linear regression to estimate possible predictions. The alpha value was set to 0.05. We found six templates computed across all subjects. Significant differences were found in most of the parameters (global explained variance, time coverage, occurrence) for the microstate Class A (P < 0.001), B (P < 0.001), D (P < 0.001), E (P < 0.001) and F (P < 0.001). In particular, an increase of temporal dynamic of Class A, B and E and a decrease of Class D and F were observed. A significant positive association of disease duration with the mean duration of Class A was found. Eight percent of patients with multiple sclerosis were found cognitive impaired, and the multiple linear regression analysis showed a strong prediction of Symbol Digit Modalities Test score by global explained variance of Class A. The EEG microstate analysis in patients with multiple sclerosis, without overt cognitive impairment, showed an increased temporal dynamic of the sensory-related microstates (Class A and B), a reduced presence of the cognitive-related microstates (Class D and F), and a higher activation of a microstate (Class E) associated to the default mode network. These findings might represent an electrophysiological signature of brain reorganization in multiple sclerosis. Moreover, the association between Symbol Digit Modalities Test and Class A may suggest a possible marker of overt cognitive dysfunctions.
Collapse
Affiliation(s)
- Sara Baldini
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Maria Elisa Morelli
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Arianna Sartori
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Fulvio Pasquin
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Alessandro Dinoto
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Alessio Bratina
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Antonio Bosco
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| | - Paolo Manganotti
- Neurology Unit, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
5
|
Thomas AM, Barkhof F, Bulte JWM. Opportunities for Molecular Imaging in Multiple Sclerosis Management: Linking Probe to Treatment. Radiology 2022; 303:486-497. [PMID: 35471110 PMCID: PMC9131169 DOI: 10.1148/radiol.211252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Imaging has been a critical component of multiple sclerosis (MS) management for nearly 40 years. The visual information derived from structural MRI, that is, signs of blood-brain barrier disruption, inflammation and demyelination, and brain and spinal cord atrophy, are the primary metrics used to evaluate therapeutic efficacy in MS. The development of targeted imaging probes has expanded our ability to evaluate and monitor MS and its therapies at the molecular level. Most molecular imaging probes evaluated for MS applications are small molecules initially developed for PET, nearly half of which are derived from U.S. Food and Drug Administration-approved drugs and those currently undergoing clinical trials. Superparamagnetic and fluorinated particles have been used for tracking circulating immune cells (in situ labeling) and immunosuppressive or remyelinating therapeutic stem cells (ex vivo labeling) clinically using proton (hydrogen 1 [1H]) and preclinically using fluorine 19 MRI. Translocator protein PET and 1H MR spectroscopy have been demonstrated to complement imaging metrics from structural (gadolinium-enhanced) MRI in nine and six trials for MS disease-modifying therapies, respectively. Still, despite multiple demonstrations of the utility of molecular imaging probes to evaluate the target location and to elucidate the mechanisms of disease-modifying therapies for MS applications, their use has been sparse in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Aline M Thomas
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Frederik Barkhof
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| | - Jeff W M Bulte
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, and the Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine, 733 N Broadway, Room 659, Baltimore, MD 21205 (A.M.T., J.W.M.B.); and Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands (F.B.)
| |
Collapse
|
6
|
Petracca M, Pontillo G, Moccia M, Carotenuto A, Cocozza S, Lanzillo R, Brunetti A, Brescia Morra V. Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sci 2021; 11:346. [PMID: 33803287 PMCID: PMC8000635 DOI: 10.3390/brainsci11030346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a frequent and meaningful symptom in multiple sclerosis (MS), caused by the accrual of brain structural damage only partially counteracted by effective functional reorganization. As both these aspects can be successfully investigated through the application of advanced neuroimaging, here, we offer an up-to-date overview of the latest findings on structural, functional and metabolic correlates of cognitive impairment in adults with MS, focusing on the mechanisms sustaining damage accrual and on the identification of useful imaging markers of cognitive decline.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| |
Collapse
|
7
|
Monti DA, Zabrecky G, Leist TP, Wintering N, Bazzan AJ, Zhan T, Newberg AB. N-acetyl Cysteine Administration Is Associated With Increased Cerebral Glucose Metabolism in Patients With Multiple Sclerosis: An Exploratory Study. Front Neurol 2020; 11:88. [PMID: 32117038 PMCID: PMC7033492 DOI: 10.3389/fneur.2020.00088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Multiple Sclerosis (MS) is an autoimmune disease marked by progressive neurocognitive injury. Treatment options affording neuroprotective effects remain largely experimental. The purpose of this proof of concept study was to explore the effects of N-acetyl-cysteine (NAC) on cerebral glucose metabolism (CMRGlu) and symptoms in patients with multiple sclerosis (MS). Methods: Twenty-four patients with MS were randomized to either NAC plus standard of care, or standard of care only (waitlist control). The experimental group received NAC intravenously once per week and orally the other 6 days. Patients in both groups were evaluated at baseline and after 2 months (of receiving the NAC or waitlist control period) with an integrated Position Emission Tomography (PET)/ Magnetic Resonance Imaging (MRI) scanner, using 18F Fluorodeoxyglucose (FDG) to measure cerebral glucose metabolism. Following imaging evaluation at 2 months, subjects initially attributed to the standard of care arm were eligible for treatment with NAC. Clinical and symptom questionnaires were also completed initially and after 2 months. Results: The FDG PET data showed significantly increased cerebral glucose metabolism in several brain regions including the caudate, inferior frontal gyrus, lateral temporal gyrus, and middle temporal gyrus (p < 0.05) in the MS group treated with NAC, as compared to the control group. Self-reported scores related to cognition and attention were also significantly improved in the NAC group as compared to the control group. Conclusions: The results of this study suggest that NAC positively affects cerebral glucose metabolism in MS patients, which is associated with qualitative, patient reported improvements in cognition and attention. Larger scale studies may help to determine the clinical impact of NAC on measures of functioning over the course of illness, as well as the most effective dosage and dosage regimen.
Collapse
Affiliation(s)
- Daniel A Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas P Leist
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anthony J Bazzan
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B Newberg
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative Health, Thomas Jefferson University, Philadelphia, PA, United States.,Division of Nuclear Medicine, Department of Radiology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Karavasilis E, Christidi F, Velonakis G, Tzanetakos D, Zalonis I, Potagas C, Andreadou E, Efstathopoulos E, Kilidireas C, Kelekis N, Evdokimidis I. Hippocampal structural and functional integrity in multiple sclerosis patients with or without memory impairment: a multimodal neuroimaging study. Brain Imaging Behav 2020; 13:1049-1059. [PMID: 29971687 DOI: 10.1007/s11682-018-9924-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing evidence for a pure amnestic-like profile in multiple sclerosis (MS) introduces the role of hippocampal formation in MS episodic memory function. The aim of the present study was to investigate structural and functional hippocampal changes in mildly-disabled MS patients with and without memory impairment. Thirty-one MS patients with or without memory impairment and 16 healthy controls (HC) underwent MRI in a 3.0 T MRI scanner. Patients were categorized as memory preserved (MP) and memory impaired (MI) based on verbal and visual memory scores extracted from the Brief Repeatable Neuropsychological Battery. The acquisition protocol included high-resolution 3D-T1-weighted, diffusion weighted imaging and echo-planar imaging sequences for the analysis of hippocampal gray matter (GM) density, perforant pathway area (PPA) tractography, and hippocampal functional connectivity (FC), respectively. Compared to HC, we found decreased left and bilateral hippocampal GM density in MP and MI patients, respectively, decreased fractional anisotropy and increased radial diffusivity on left PPA in MI patients, and reduced FC in MI between left hippocampus and left superior frontal gyrus, precuneus/posterior cingulated cortex and lateral occipital gyrus/angular gyrus. The only differences between MP and MI were found in FC. Specifically, MP patients showed FC changes between left hippocampus and right temporo-occipital fusiform/lingual gyrus (increased FC) as well as supramarginal gyrus (decreased FC). In conclusion, we highlight the early detection of structural hippocampal changes in MS without neuropsychologically-detected memory deficits and decreased hippocampal FC in MS patients with impaired memory performance, when both GM density and PPA integrity are affected.
Collapse
Affiliation(s)
- Efstratios Karavasilis
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 19 Papadiamantopoulou Street, 11528, Athens, Greece.
| | - Foteini Christidi
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 19 Papadiamantopoulou Street, 11528, Athens, Greece
| | - Dimitrios Tzanetakos
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Zalonis
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantin Potagas
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Andreadou
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 19 Papadiamantopoulou Street, 11528, Athens, Greece
| | - Constantinos Kilidireas
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 19 Papadiamantopoulou Street, 11528, Athens, Greece
| | - Ioannis Evdokimidis
- 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
9
|
Azarmi F, Miri Ashtiani SN, Shalbaf A, Behnam H, Daliri MR. Granger causality analysis in combination with directed network measures for classification of MS patients and healthy controls using task-related fMRI. Comput Biol Med 2019; 115:103495. [PMID: 31698238 DOI: 10.1016/j.compbiomed.2019.103495] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Several studies have already assessed brain network variations in multiple sclerosis (MS) patients and healthy controls (HCs). The underlying neural system's functioning is apparently too complicated, however. Therefore, the neural time series' analysis through new methods is the aim of any recent research. Functional magnetic resonance imaging (fMRI) is a prominent modality for investigating the human brain's neural substrate, especially when cognitive impairment occurs. The present study was an attempt to investigate the brain network's differences between MS patients and HCs using graph-theoretic measures constructed by an effective connectivity measure through statistical tests. The results of the significant measures were then evaluated through machine learning methods. To this end, we gathered blood-oxygen level dependent (BOLD) fMRI data of the participants during the execution of paced auditory serial addition test (PASAT). Granger causality analysis (GCA) was then employed between brain regions' time series on each subject in order to construct a brain network. Afterward, the Wilcoxon rank-sum test was implemented to find the alteration of brain networks between the mentioned groups. According to the results, Global flow coefficient was significantly different between HCs and patients. Moreover, MS disease impacted several areas of the brain including Hippocampus, Para Hippocampal, Thalamus, Cuneus, Superior temporal gyrus, Heschl, Caudate, Medial Frontal Superior Gyrus, Fusiform, Pallidum, and several parts of Cerebellum in centrality measures and local flow coefficient. Most of the obtained regions were related to the cognitive impacts of the disease. We also found the best subset of graph features by means of Fisher score, and classified them to evaluate the features strength for the discrimination of MS patients from HCs via several machine learning methods. Having used the combination of Wilcoxon rank-sum test and Fisher score, we were able to classify MS patients from HCs using linear support vector machine (SVM) with an accuracy of 95%. With regard to the few existing studies on brain network of MS patients, especially during a cognitive task execution, our findings showed that the selected graph measures by Wilcoxon rank-sum test and Fisher score from the GCA-based brain networks resulted in a promising classification accuracy.
Collapse
Affiliation(s)
- Farzad Azarmi
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Naghmeh Miri Ashtiani
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Behnam
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Mohammad Reza Daliri
- Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science & Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
10
|
Pietracupa S, Bologna M, Bharti K, Pasqua G, Tommasin S, Elifani F, Paparella G, Petsas N, Grillea G, Berardelli A, Pantano P. White matter rather than gray matter damage characterizes essential tremor. Eur Radiol 2019; 29:6634-6642. [PMID: 31139970 DOI: 10.1007/s00330-019-06267-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We investigated changes in gray matter (GM) and white matter (WM) in the whole brain, including both cortical and subcortical structures, and their relationship with tremor severity, psychiatric symptoms, and cognitive impairment in patients affected by essential tremor (ET). METHODS We studied 19 ET patients and 15 healthy subjects (HS). All the subjects underwent a 3-T MRI study based on 3D-T1 and diffusion tensor images. For the GM analysis, cortical thickness was assessed by using the Computational Anatomy Tool, basal ganglia and thalamus volumes by using the FMRIB software library, and cerebellum lobular volumes by using the spatial unbiased atlas template. For the WM assessment, we performed a voxel-wise analysis by means of tract-based spatial statistics. Patients' tremor severity and psychiatric and cognitive disorders were evaluated by means of standard clinical scales. Neuroimaging data were correlated with clinical scores. RESULTS We found significantly smaller right and left thalamic volumes in ET patients than in HS, which correlated with cognitive scores. We did not observe any significant differences either in cortical thickness or in cerebellar lobular volumes between patients and HS. WM abnormalities were detected in most hemisphere bundles, particularly in the corticospinal tract, cerebellar peduncles, and corpus callosum. The WM abnormalities significantly correlated with tremor severity, cognitive profile, and depression. CONCLUSION Our study indicates that ET is characterized by several GM and WM changes of both infra- and supratentorial brain structures. The results may help to better understand mechanisms underlying tremor severity and psychiatric and cognitive impairment in ET. KEY POINTS • We performed a comprehensive evaluation of gray and white matter in the same sample of patients with essential tremor using recently developed data analysis methods. • Essential tremor is characterized by widespread gray and white matter changes in both infra- and supratentorial brain structures. The results may help to better understand motor and non-motor symptoms in patients with essential tremor.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Komal Bharti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Gabriele Pasqua
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Medicine and Health Science, University of Molise, Campobasso, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | | | | | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli (IS), Italy.,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy
| | - Patrizia Pantano
- IRCCS Neuromed, Pozzilli (IS), Italy. .,Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185, Rome, Italy.
| |
Collapse
|
11
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. RESULTS We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. CONCLUSION While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy
- Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
12
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
13
|
Sandry J, Zuppichini M, Rothberg J, Valdespino-Hayden Z, DeLuca J. Poor Encoding and Weak Early Consolidation Underlie Memory Acquisition Deficits in Multiple Sclerosis: Retroactive Interference, Processing Speed, or Working Memory? Arch Clin Neuropsychol 2018; 34:162-182. [DOI: 10.1093/arclin/acy029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/13/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Joshua Sandry
- Psychology Department, Montclair State University, 1 Normal Ave Montclair, NJ, USA
| | - Mark Zuppichini
- School of Behavioral & Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Jessica Rothberg
- Psychology Department, Montclair State University, 1 Normal Ave Montclair, NJ, USA
| | | | | |
Collapse
|
14
|
Koenig KA, Rao SM, Lowe MJ, Lin J, Sakaie KE, Stone L, Bermel RA, Trapp BD, Phillips MD. The role of the thalamus and hippocampus in episodic memory performance in patients with multiple sclerosis. Mult Scler 2018; 25:574-584. [PMID: 29512427 DOI: 10.1177/1352458518760716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Episodic memory loss is one of the most common cognitive symptoms in patients with multiple sclerosis (MS), but the pathophysiology of this symptom remains unclear. Both the hippocampus and thalamus have been implicated in episodic memory and show regional atrophy in patients with MS. OBJECTIVE In this work, we used functional magnetic resonance imaging (fMRI) during a verbal episodic memory task, lesion load, and volumetric measures of the hippocampus and thalamus to assess the relative contributions to verbal and visual-spatial episodic memory. METHODS Functional activation, lesion load, and volumetric measures from 32 patients with MS and 16 healthy controls were used in a predictive analysis of episodic memory function. RESULTS After adjusting for disease duration, immediate recall performance on a visual-spatial episodic memory task was significantly predicted by hippocampal volume ( p < 0.003). Delayed recall on the same task was significantly predicted by volume of the left thalamus ( p < 0.003). For both memory measures, functional activation of the thalamus during encoding was more predictive than that of volume measures ( p < 0.002). CONCLUSION Our results suggest that functional activation may be useful as a predictive measure of episodic memory loss in patients with MS.
Collapse
Affiliation(s)
| | - Stephen M Rao
- Schey Center for Cognitive Neuroimaging, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Lowe
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jian Lin
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken E Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lael Stone
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert A Bermel
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
15
|
Mahajan KR, Ontaneda D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017; 14:905-923. [PMID: 28770481 PMCID: PMC5722766 DOI: 10.1007/s13311-017-0561-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnetic resonance imaging has been crucial in the development of anti-inflammatory disease-modifying treatments. The current landscape of multiple sclerosis clinical trials is currently expanding to include testing not only of anti-inflammatory agents, but also neuroprotective, remyelinating, neuromodulating, and restorative therapies. This is especially true of therapies targeting progressive forms of the disease where neurodegeneration is a prominent feature. Imaging techniques of the brain and spinal cord have rapidly evolved in the last decade to permit in vivo characterization of tissue microstructural changes, connectivity, metabolic changes, neuronal loss, glial activity, and demyelination. Advanced magnetic resonance imaging techniques hold significant promise for accelerating the development of different treatment modalities targeting a variety of pathways in MS.
Collapse
Affiliation(s)
- Kedar R Mahajan
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, 9500 Euclid Avenue, U-10, Cleveland, OH, 44195, USA.
| |
Collapse
|
16
|
|
17
|
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system. Magnetic resonance imaging (MRI) is sensitive to lesion formation both in the brain and spinal cord. Imaging plays a prominent role in the diagnosis and monitoring of MS. Over a dozen anti-inflammatory therapies are approved for MS and the development of many of these medications was made possible through the use of contrast-enhancing lesions on MRI as a phase II outcome. A similar phase II outcome method for the neurodegeneration that underlies progressive courses of the disease is still unavailable. Although magnetic resonance is an invaluable tool for the diagnosis and monitoring of treatment effects in MS, several imaging barriers still exist. In general, MRI is less sensitive to gray matter lesions, lacks pathological specificity, and does not provide quantitative data easily. Several advanced imaging methods including diffusion tensor imaging, magnetization transfer, functional MRI, myelin water fraction imaging, ultra-high field MRI, positron emission tomography, and optical coherence tomography of the retina study promising ways of overcoming the difficulties in MS imaging.
Collapse
Affiliation(s)
- Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA.
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. PLoS One 2016; 11:e0167196. [PMID: 27907119 PMCID: PMC5131950 DOI: 10.1371/journal.pone.0167196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
Background Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS. Objective Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course. Methods C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls. Results There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits. Conclusions A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS.
Collapse
|
19
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
20
|
Nejad-Davarani SP, Chopp M, Peltier S, Li L, Davoodi-Bojd E, Lu M, Bagher-Ebadian H, Budaj J, Gallagher D, Ding Y, Hearshen D, Jiang Q, Cerghet M. Resting state fMRI connectivity analysis as a tool for detection of abnormalities in five different cognitive networks of the brain in Multiple Sclerosis patients. ACTA ACUST UNITED AC 2016; 2:464-471. [PMID: 29170718 PMCID: PMC5697978 DOI: 10.15761/ccrr.1000s1001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objectives Cognitive dysfunction is present in at least half of patients with Multiple Sclerosis. The purpose of this study was to examine functional connectivity abnormalities in patients with multiple sclerosis (MS) using resting state fMRI (rsfMRI). Methods Conventional MRI, rsfMRI and diffusion tensor imaging (DTI) data was acquired from 10 patients with relapsing-remitting multiple sclerosis (RRMS) and 20 healthy controls. Cross-correlation of the resting state average signal among the voxels in each brain region of the five cognitive networks: default mode network (DMN), attention, verbal memory, memory, and visuospatial working memory network, was calculated. Voxelwise analyses were used to investigate fractional anisotropy (FA) of white matter tracts. The normalized gray matter (GM), white matter and thalamus volumes were calculated. Results Compared to controls, significant deficit in MS patients at each of five networks, attention (p=0.026), DMN (p=0.004), verbal memory (p<0.001), memory (p=0.001), visuospatial working memory (p=0.003) was found. Significant reduction (p=0.034) in the normalized GM volume and asymmetry in thalamus volume (p=0.041) was detected in MS patients compared to controls. Conclusion Wide spread of functional abnormalities are present within different cognitive networks in patients with RRMS, suggesting that DMN may not be sufficient for measurement of MS cognitive impairment. Larger and longitudinal studies should ascertain whether rsfMRI of cognitive networks and changes in GM and thalamus volume can be used as tools for assessment of cognition in clinical trials in MS.
Collapse
Affiliation(s)
- Siamak P Nejad-Davarani
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Biomedical engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Scott Peltier
- Department of Biomedical engineering, University of Michigan, Ann Arbor, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Mei Lu
- Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, USA
| | | | - John Budaj
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - David Gallagher
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yue Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - David Hearshen
- Department of Radiology, Henry Ford Hospital, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Mirela Cerghet
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
21
|
Lazeron RHC, Rombouts SARB, Scheltens P, Polman CH, Barkhof F. An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Mult Scler 2016; 10:549-55. [PMID: 15471372 DOI: 10.1191/1352458504ms1072oa] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Introduction: Cognitive impairment occurs in a substantial number of multiple sclerosis (MS) patients and often includes frontal lobe dysfunction. We used functional magnetic resonance imaging (fMRI) to study planning, an executive function, in moderately impaired MS patients. Methods: An fMRI version of the Tower of London (ToL) test was used to study patterns of brain activation in 23 MS patients and 18 healthy controls. The median score on the Expanded Disability Status Scale (EDSS) for the MS patients was 4. fMRI data were analysed using whole brain random effects analysis as well as region of interest (ROI)-based methods to assess group effects. Within the MS group, associations with behavioural data and measures of disease severity (lesion load from structural MRI) were examined. Results: Test performance in MS patients was significantly worse than in controls. Group analysis for the MS patients and the controls showed for both groups globally the same areas of activation, located in the frontal and parietal lobes bilaterally and the cerebellum. Although visual inspection suggested a larger extent of activation in the MS group, no statistically significant differences between groups were found. In the ROI analysis, statistically significant larger extent of activation was only found in the cerebellum. No association between disease severity and brain activity could be determined in the MS group. Conclusion: In MS patients with moderate disability and structural damage, the pattern and extent of brain activation during planning were maintained despite poorer performance. In contrast to other studies showing increased activity, the failure to do so in our group may reflect exhaustion of adaptive mechanisms.
Collapse
Affiliation(s)
- Richard H C Lazeron
- Department of Radiology and the MS-MRI Centre, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Azin M, Mirnajafi-Zadeh J, Javan M. Fibroblast Growth Factor-2 Enhanced The Recruitment of Progenitor Cells and Myelin Repair in Experimental Demyelination of Rat Hippocampal Formations. CELL JOURNAL 2015; 17:540-456. [PMID: 26464826 PMCID: PMC4601875 DOI: 10.22074/cellj.2015.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/20/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Hippocampal insults have been observed in multiple sclerosis (MS) patients. Fibroblast growth factor-2 (FGF2) induces neurogenesis in the hippocampus and en- hances the proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs). In the current study, we have investigated the effect of FGF2 on the processes of gliotoxin induced demyelination and subsequent remyelination in the hippocampus. MATERIALS AND METHODS In this experimental study adult male Sprague-Dawley rats re- ceived either saline or lysolecithin (LPC) injections to the right hippocampi. Animals re- ceived intraperitoneal (i.p.) injections of FGF2 (5 ng/g) on days 0, 5, 12 and 26 post-LPC. Expressions of myelin basic protein (Mbp) as a marker of myelination, Olig2 as a marker of OPC proliferation, Nestin as a marker of neural progenitor cells, and glial fibrillary acidic protein (Gfap) as a marker of reactive astrocytes were investigated in the right hippocampi by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS There was reduced Mbp expression at seven days after LPC injection, in- creased expressions of Olig2 and Nestin, and the level of Gfap did not change. FGF2 treatment reversed the expression level of Mbp to the control, significantly enhanced the levels of Olig2 and Nestin, but did not change the level of Gfap. At day-28 post- LPC, the expression level of Mbp was higher than the control in LPC-treated animals that received FGF2. The levels of Olig2, Nestin and Gfap were at the control level in the non-treated LPC group but significantly higher in the FGF2-treated LPC group. CONCLUSION FGF2 enhanced hippocampal myelination and potentiated the recruitment of OPCs and neural stem cells (NSCs) to the lesion area. Long-term application of FGF2 might also enhance astrogliosis in the lesion site.
Collapse
Affiliation(s)
- Mahdieh Azin
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Resting-State fMRI in MS: General Concepts and Brief Overview of Its Application. BIOMED RESEARCH INTERNATIONAL 2015; 2015:212693. [PMID: 26413509 PMCID: PMC4564590 DOI: 10.1155/2015/212693] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/15/2015] [Accepted: 01/28/2015] [Indexed: 01/30/2023]
Abstract
Brain functional connectivity (FC) is defined as the coherence in the activity between cerebral areas under a task or in the resting-state (RS). By applying functional magnetic resonance imaging (fMRI), RS FC shows several patterns which define RS brain networks (RSNs) involved in specific functions, because brain function is known to depend not only on the activity within individual regions, but also on the functional interaction of different areas across the whole brain. Region-of-interest analysis and independent component analysis are the two most commonly applied methods for RS investigation. Multiple sclerosis (MS) is characterized by multiple lesions mainly affecting the white matter, determining both structural and functional disconnection between various areas of the central nervous system. The study of RS FC in MS is mainly aimed at understanding alterations in the intrinsic functional architecture of the brain and their role in disease progression and clinical impairment. In this paper, we will examine the results obtained by the application of RS fMRI in different multiple sclerosis (MS) phenotypes and the correlations of FC changes with clinical features in this pathology. The knowledge of RS FC changes may represent a substantial step forward in the MS research field, both for clinical and therapeutic purposes.
Collapse
|
24
|
Hulst HE, Schoonheim MM, Van Geest Q, Uitdehaag BMJ, Barkhof F, Geurts JJG. Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity. Mult Scler 2015; 21:1705-12. [DOI: 10.1177/1352458514567727] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Background: Memory impairment is frequent in multiple sclerosis (MS), but it is unclear what functional brain changes underlie this cognitive deterioration. Objective: To investigate functional hippocampal activation and connectivity, in relation to memory performance in MS. Methods: Structural and functional magnetic resonance imaging data were acquired for 57 MS patients and 28 healthy controls (HCs), yielding hippocampal measures of volume, lesions, functional activation during a memory task and functional connectivity at rest. Memory function was based on two subtests of a larger neuropsychological test battery and related to hippocampal neuroimaging measures, using linear regression. Results: Hippocampal volume was lower in MS patients, as compared to HCs. In MS, hippocampal activation during the task was increased in cognitively preserved, but decreased in cognitively impaired, patients. Increased hippocampal connectivity was detected in MS patients, as compared to HCs, between the left hippocampus and the right posterior cingulate. Memory impairment in MS was explained (adjusted R2 = 0.27) by male gender, decreased hippocampal activation and increased hippocampal connectivity ( p = 0.001). Conclusions: Decreased activation of the hippocampus, increased connectivity and male gender were associated with worse memory performance in MS. These results indicate that increased activation and increased connectivity do not always coincide, and relate differently to cognitive dysfunction in MS.
Collapse
Affiliation(s)
- Hanneke E Hulst
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Quinten Van Geest
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Bernard MJ Uitdehaag
- Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen JG Geurts
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
|
26
|
Faria DDP, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol 2014; 9:468-82. [PMID: 24809810 DOI: 10.1007/s11481-014-9544-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Tona F, Petsas N, Sbardella E, Prosperini L, Carmellini M, Pozzilli C, Pantano P. Multiple sclerosis: altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology 2014; 271:814-21. [PMID: 24484065 DOI: 10.1148/radiol.14131688] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate, by using resting-state (RS) functional magnetic resonance (MR) imaging, thalamocortical functional connectivity (FC) and its correlations with cognitive impairment in multiple sclerosis (MS). MATERIALS AND METHODS All subjects provided written informed consent; the study protocol was approved by the university institutional review board for this HIPAA-compliant study. Forty-eight patients with relapsing-remitting MS and 24 control subjects underwent multimodal MR imaging, including diffusion-tensor imaging, three-dimensional (3D) T1-weighted imaging, and functional MR imaging at rest and a neuropsychological examination with the Paced Auditory Serial Addition Test (PASAT). Functional MR imaging data were analyzed with tools from FMRIB Software Library, by using the seed-based method to identify the thalamic RS network (RSN). RESULTS When compared with control subjects, patients showed gray matter and white matter atrophy, as well as diffusion-tensor imaging abnormalities (P < .01). Patients displayed significantly greater synchronization than control subjects in the cerebellum; basal ganglia; hippocampus; cingulum; and temporo-occipital, insular, frontal, and parietal cortices. They also exhibited significantly lower synchronization in the thalamus; cerebellum; cingulum; and insular, prefrontal, and parieto-occipital cortices (cluster level, P < .05, corrected for familywise error [FWE]). In patients, the PASAT score at 3 seconds significantly inversely correlated with the thalamus, cerebellum, and some cortical areas in all cerebral lobes; the PASAT score at 2 seconds significantly correlated, even more strongly, with all the aforementioned regions and, in addition, with the cingulum and the left hippocampus (cluster level, P < .05, corrected for FWE). CONCLUSION Thalamic RSN is disrupted in MS, and decreased performance in cognitive testing is associated with increased thalamocortical FC, thus suggesting that neuroplasticity changes are unable to compensate for tissue damage and to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Francesca Tona
- From the Department of Neurology and Psychiatry, Sapienza University of Rome, Viale dell'Università 30, 00185 Rome, Italy; and IRCCS Neuromed, Pozzilli, Italy (P.P.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
He D, Zhang Y, Dong S, Wang D, Gao X, Zhou H. Pharmacological treatment for memory disorder in multiple sclerosis. Cochrane Database Syst Rev 2013; 2013:CD008876. [PMID: 24343792 PMCID: PMC11930394 DOI: 10.1002/14651858.cd008876.pub3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND This is an update of the Cochrane review "Pharmacologic treatment for memory disorder in multiple sclerosis" (first published in The Cochrane Library 2011, Issue 10).Multiple sclerosis (MS) is a chronic immune-mediated, inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS) and can cause both neurological and neuropsychological disability. Both demyelination and axonal and neuronal loss are believed to contribute to MS-related cognitive impairment. Memory disorder is one of the most frequent cognitive dysfunctions and presents a considerable burden to people with MS and to society due to the negative impact on function. A number of pharmacological agents have been evaluated in many existing randomised controlled trials for their efficacy on memory disorder in people with MS but the results were not consistent. OBJECTIVES To assess the absolute and comparative efficacy, tolerability and safety of pharmacological treatments for memory disorder in adults with MS. SEARCH METHODS We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Register (24 July 2013), PsycINFO (January 1980 to 26 June 2013) and CBMdisc (1978 to 24 June 2013), and checked reference lists of identified articles, searched some relevant journals manually, registers of clinical trials and published abstracts of conference proceedings. SELECTION CRITERIA All double-blind, randomised controlled parallel trials on pharmacological treatment versus placebo or one or more pharmacological treatments in adults with MS who had at least mild memory impairment (at 0.5 standard deviations below age- and sex-based normative data on a validated memory scale). We placed no restrictions regarding dose, route of administration and frequency; however, we only included trials with an administration duration of 12 weeks or greater. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. We discussed disagreements and resolved them by consensus among review authors. We contacted principal investigators of included studies for additional data or confirmation. MAIN RESULTS We included seven randomised controlled trials (RCTs) involving 625 people mostly with relapsing-remitting, secondary-progressive and primary-progressive MS, evaluating the absolute efficacy of donepezil, ginkgo biloba, memantine and rivastigmine versus placebo in improving memory performance with diverse assessment scales. Overall, clinical and methodological heterogeneities existed across these studies. Moreover, most of them had methodological limitations on non-specific selections of targeted sample, non-matched variables at baseline or incomplete outcome data (high attrition bias). Only the two studies on donepezil had clinical and methodological homogeneity and relatively low risks for bias. One RCT evaluating estriol versus placebo is currently ongoing.We could not carry out a meta-analysis due to the heterogeneities across studies and the high attrition bias. A subgroup analysis for donepezil versus placebo showed no treatment effects on total recall on the Selective Reminding Test (mean difference (MD) 1.68; 95% confidence interval (CI) -2.21 to 5.58), total correct scores on the 10/36 Spatial Recall Test (MD -0.93; 95% CI -3.18 to 1.32), the Symbol Digit Modalities Test (MD -1.27; 95% CI -3.15 to 0.61) and the Paced Auditory Serial Addition Test (2+3 sec) (MD 2.23; 95% CI -1.87 to 6.33). Concerning safety, the main adverse events were: diarrhoea (risk ratio (RR) 3.88; 95% CI 1.66 to 9.05), nausea (RR 1.71; 95% CI 0.93 to 3.18) and abnormal dreams (RR 2.91; 95% CI 1.38 to 6.14). However, the results in both studies were subjected to a serious imprecision resulting from the small sample sizes and the low power of test (lower than 80%), which contributed to a moderate quality of the evidence. No serious adverse events were attributed to the treatments in all experimental groups. AUTHORS' CONCLUSIONS We found no convincing evidence to support the efficacy of pharmacological symptomatic treatment for MS-associated memory disorder because most of available RCTs had a limited quality. Whether pharmacological treatment is effective for memory disorder in patients with MS remains inconclusive. However, there is moderate-quality evidence that donepezil 10 mg daily was not effective in improving memory in MS patients with mild memory impairment, but had a good tolerability. Adverse events such as nausea, diarrhoea and abnormal dreams were not frequent but were associated with treatment. Ginkgo biloba, memantine and rivastigmine were safe and well tolerated and no serious adverse effects were reported. Future large-scale RCTs with higher methodological quality are needed.
Collapse
Affiliation(s)
- Dian He
- Affiliated Hospital of Guiyang Medical CollegeDepartment of NeurologyNo. 28, Gui Yi StreetGuiyangGuizhou ProvinceChina550004
| | - Yun Zhang
- Jinan No. 6 People's HospitalClinical LaboratoryNo. 38, Hui Quan RoadJinanShandong ProvinceChina250200
| | - Shuai Dong
- Jinan No. 6 People's HospitalDepartment of NeurologyNo. 38, Hui Quan RoadJinanShandong ProvinceChina250200
| | - Dongfeng Wang
- Jinan No. 6 People's HospitalDepartment of NeurologyNo. 38, Hui Quan RoadJinanShandong ProvinceChina250200
| | - Xiangdong Gao
- Jinan No. 6 People's HospitalDepartment of NeurologyNo. 38, Hui Quan RoadJinanShandong ProvinceChina250200
| | - Hongyu Zhou
- West China Hospital, Sichuan UniversityDepartment of NeurologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | | |
Collapse
|
30
|
Blinkenberg M, Mathiesen HK, Tscherning T, Jønsson A, Svarer C, Holm S, Sellebjerg F, Paulson OB, Hanson LG, Sorensen PS. Cerebral metabolism, magnetic resonance spectroscopy and cognitive dysfunction in early multiple sclerosis: an exploratory study. Neurol Res 2013; 34:52-8. [DOI: 10.1179/1743132811y.0000000059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Morten Blinkenberg
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik K Mathiesen
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Hvidovre, Denmark
| | - Thomas Tscherning
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Agnete Jønsson
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and Center for Integrated Molecular Brain ImagingCopenhagen University Hospital, Copenhagen, Denmark
| | - Søren Holm
- PET and Cyclotron UnitCopenhagen University Hospital, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Olaf B Paulson
- Danish Research Centre for Magnetic Resonance and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Hvidovre, Denmark
- Neurobiology Research Unit and Center for Integrated Molecular Brain ImagingCopenhagen University Hospital, Copenhagen, Denmark
| | - Lars G Hanson
- Danish Research Centre for Magnetic Resonance and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Electrical EngineeringTechnical University of Denmark, Lyngby, Denmark
| | - Per S Sorensen
- Danish Multiple Sclerosis CenterDepartment of Neurology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
31
|
Morris G, Maes M. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 2013; 11:205. [PMID: 24229326 PMCID: PMC3847236 DOI: 10.1186/1741-7015-11-205] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 08/15/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND 'Encephalomyelitis disseminata' (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization. This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS. DISCUSSION There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and postural hypotension are experienced by patients with both illnesses. Both disorders show a relapsing-remitting or progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms. Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost identical array of autoantibodies formed against damaged epitopes seen in both illnesses. Mitochondrial dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered acetyl-aspartate levels. SUMMARY This review shows that there are neuroimmune similarities between MS and ME/CFS. This further substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically primed to develop symptoms of ME/CFS.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Pembrey, Llanelli, UK
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
32
|
Abstract
Neurodegenerative disorders leading to dementia are common diseases that affect many older and some young adults. Neuroimaging methods are important tools for assessing and monitoring pathological brain changes associated with progressive neurodegenerative conditions. In this review, the authors describe key findings from neuroimaging studies (magnetic resonance imaging and radionucleotide imaging) in neurodegenerative disorders, including Alzheimer's disease (AD) and prodromal stages, familial and atypical AD syndromes, frontotemporal dementia, amyotrophic lateral sclerosis with and without dementia, Parkinson's disease with and without dementia, dementia with Lewy bodies, Huntington's disease, multiple sclerosis, HIV-associated neurocognitive disorder, and prion protein associated diseases (i.e., Creutzfeldt-Jakob disease). The authors focus on neuroimaging findings of in vivo pathology in these disorders, as well as the potential for neuroimaging to provide useful information for differential diagnosis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, and Indiana Alzheimer Disease Center Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
33
|
Shkil’nyuk GG, Il’ves AG, Kataeva GV, Prakhova LN, Reznikova TN, Seliverstova NA, Stolyarov ID. The Role of Changes in Glucose Metabolism in the Brain in the Formation of Cognitive Impairments in Patients with Remitting and Secondary-Progressive Multiple Sclerosis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9772-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Abnormalities of cerebral blood flow in multiple sclerosis: a pseudocontinuous arterial spin labeling MRI study. Magn Reson Imaging 2013; 31:990-5. [PMID: 23582984 DOI: 10.1016/j.mri.2013.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/30/2013] [Accepted: 03/09/2013] [Indexed: 11/22/2022]
Abstract
Arterial spin labeling (ASL) is a noninvasive technique that can measure cerebral blood flow (CBF). To our knowledge, there is no study that examined regional CBF of multiple sclerosis (MS) patients by using this technique. The present study assessed the relationship between clinical presentations and functional imaging data in MS using pseudocontinuous arterial spin labeling (pCASL). Twenty-seven patients with MS and 24 healthy volunteers underwent magnetic resonance imaging and pCASL to assess CBF. Differences in CBF between the two groups and the relationships of CBF values with the T2-hyperintense volume were evaluated. Compared to the healthy volunteers, reduced CBF was found in the bilateral thalami and right frontal region of the MS patients. The volume of the T2-hyperintense lesion was negatively correlated with regional CBF in some areas, such as both thalami. Our results suggest that demyelinated lesions in MS mainly have a remote effect on the thalamus and that the measurement of CBF using ASL could be an objective marker for monitoring disease activity in MS.
Collapse
|
35
|
Positron emission tomography imaging in neurological disorders. J Neurol 2013; 259:1769-80. [PMID: 22297461 DOI: 10.1007/s00415-012-6428-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 01/28/2023]
Abstract
Positron emission tomography (PET) is a powerful tool for in vivo imaging investigations of human brain function. It provides non-invasive quantification of brain metabolism, receptor binding of various neurotransmitter systems, and alterations in regional blood flow. The use of PET in a clinical setting is still limited due to the high costs of cyclotrons and radiochemical laboratories. However, once these limitations can be bypassed, PET could aid clinical practice by providing a useful imaging technique for the diagnosis, the planning of treatment, and the prediction outcome in various neurological diseases.This review aims to explain the PET imaging technique and its applications in neurological disorders such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and dementias.
Collapse
|
36
|
Blinkenberg M, Åkeson P, Sillesen H, Lövgaard S, Sellebjerg F, Paulson OB, Siebner HR, Sørensen PS. Chronic cerebrospinal venous insufficiency and venous stenoses in multiple sclerosis. Acta Neurol Scand 2012; 126:421-7. [PMID: 22530753 DOI: 10.1111/j.1600-0404.2012.01671.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The traditional view that multiple sclerosis (MS) is an autoimmune disease has recently been challenged by the claim that MS is caused by chronic cerebrospinal venous insufficiency (CCSVI). Although several studies have questioned this vascular theory, the CCSVI controversy is still ongoing. Our aim was to assess the prevalence of CCSVI in Danish MS patients using sonography and compare these findings with MRI measures of venous flow and morphology. METHODS We investigated cervical and cerebral veins in 24 patients with relapsing-remitting MS (RRMS) and 15 healthy controls, using extracranial high-resolution ultrasound colour Doppler (US-CD) and transcranial colour Doppler sonography (TCDS), as well as magnetic resonance imaging (MRI) and phase-contrast MR blood flow measurements (PC-MR) of the cervical veins. RESULTS US-CD could not identify the left internal jugular vein (IJV) in one MS patient, other ultrasound examinations were normal in patients with MS. There was no difference in mean cross-sectional area of the IJV in MS patients compared with controls. Only one patient with MS and two healthy controls fulfilled one CCSVI criterion, and none fulfilled more than one CCSVI criterion. MR venography showed insignificant IJV stenosis (1-49%) in two patients with MS, whereas 50-69% IJV stenosis was detected in two healthy controls. There was no difference in PC-MR measurements of mean IJV blood flow between patients with MS and controls. CONCLUSION Our results do not corroborate the presence of vascular pathology in RRMS and we found no evidence supporting the CCSVI hypothesis.
Collapse
Affiliation(s)
- M. Blinkenberg
- Department of Neurology; Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet; Copenhagen; Denmark
| | - P. Åkeson
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital; Hvidovre; Denmark
| | - H. Sillesen
- Department of Vascular Surgery; Copenhagen University Hospital, Rigshospitalet; Copenhagen; Denmark
| | - S. Lövgaard
- Department of Vascular Surgery; Copenhagen University Hospital, Rigshospitalet; Copenhagen; Denmark
| | - F. Sellebjerg
- Department of Neurology; Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet; Copenhagen; Denmark
| | | | - H. R. Siebner
- Danish Research Centre for Magnetic Resonance; Copenhagen University Hospital; Hvidovre; Denmark
| | - P. S. Sørensen
- Department of Neurology; Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet; Copenhagen; Denmark
| |
Collapse
|
37
|
Reitz LY, Inglese M, Fiehler J, Finsterbusch J, Holst B, Heesen C, Martin R, Schippling S. Quantitative T2' imaging in patients with clinically isolated syndrome. Acta Neurol Scand 2012; 126:357-63. [PMID: 22211987 DOI: 10.1111/j.1600-0404.2011.01635.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2011] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The T2' imaging has been shown to be sensitive to oxygen saturation changes in normal appearing white and grey matter (NAWM, NAGM) in patients with relapsing-remitting multiple sclerosis (RRMS). We aimed to explore the presence and extent of T2' changes in patients with a clinically isolated syndrome (CIS) and a possible association of T2' with conventional magnetic resonance imaging and clinical outcomes. MATERIAL AND METHODS Quantitative T2- and T2*-weighted images were acquired in 32 treatment-naive patients with a CIS within 3 months of presentation and 15 age-matched healthy controls (HC). Quantitative T2' values were determined in six regions of interest (ROIs). RESULTS The T2' values in CIS did not differ significantly from those in HC. Among patients, T2' values correlated positively with the T2 lesion volume (T2LV, r = 0.34, P < 0.05). T2' values of the frontal NAWM correlated with the T2LV (r = 0.35, P < 0.05) and T2 lesion count (r = 0.4, P = 0.02). CONCLUSION As opposed to RRMS, patients with CIS did not show T2' alterations compared to HC. However, the association between the T2LV and higher T2' values suggests that T2' reflects disease evolution. In CIS metabolic changes might be masked by compensatory mechanisms and become overt when disease progresses as has been shown for RRMS patients.
Collapse
Affiliation(s)
- L. Y. Reitz
- Department of Neurology; Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims); University Medical Center; Hamburg; DE; Germany
| | - M. Inglese
- Department of Neurology; Mount Sinai School of Medicine; New York; NY; Germany
| | - J. Fiehler
- Department of Neuroradiology; University Medical Center; Hamburg; DE; Germany
| | - J. Finsterbusch
- Department of Systems Neuroscience; University Medical Center; Hamburg; DE; Germany
| | - B. Holst
- Department of Neuroradiology; University Medical Center; Hamburg; DE; Germany
| | - C. Heesen
- Department of Neurology; Institute for Neuroimmunology and Clinical Multiple Sclerosis Research (inims); University Medical Center; Hamburg; DE; Germany
| | | | | |
Collapse
|
38
|
Memory performance and normalized regional brain volumes in patients with pediatric-onset multiple sclerosis. J Int Neuropsychol Soc 2012; 18:471-80. [PMID: 22321690 DOI: 10.1017/s1355617711001913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Studies in adults with multiple sclerosis (MS) have associated regional brain abnormalities with memory impairment. While memory problems in children with MS are often reported, little is known about the neural correlates that may contribute to these difficulties. We measured verbal and nonverbal memory using the Test of Memory and Learning (TOMAL-2) in 32 children and adolescents with MS and 26 age- and sex-matched healthy controls. Memory performance was correlated with volumetric measures of the whole brain, hippocampus, amygdala, and thalamus. Brain volumes were normalized for age and sex using magnetic resonance imaging (MRI) data from the National Institutes of Health MRI Study of Normal Brain development. With the exception of story recall, performance on memory tests was similar to that of the control group. Relative to controls, patient with MS showed reduced volume in the whole brain (p < .001), amygdala (p < .005), and thalamus (p < .001), but not the hippocampus. In the patient group, word-list learning correlated with whole brain volume (r = .53) and hippocampal volume (r = .43), whereas visual recognition memory correlated with thalamic volume (r = .48). Findings are consistent with the well-established role of the hippocampus in learning and consolidation and also highlight the importance of diffuse brain pathology on memory function.
Collapse
|
39
|
Aviv RI, Francis PL, Tenenbein R, O'Connor P, Zhang L, Eilaghi A, Lee L, Carroll TJ, Mouannes-Srour J, Feinstein A. Decreased frontal lobe gray matter perfusion in cognitively impaired patients with secondary-progressive multiple sclerosis detected by the bookend technique. AJNR Am J Neuroradiol 2012; 33:1779-85. [PMID: 22538071 DOI: 10.3174/ajnr.a3060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There is increasing evidence implicating microvascular impairment in MS pathogenesis. Perfusion imaging offers a unique opportunity to investigate the functional impact of GM pathology. We sought to quantify differences in MR imaging-based bookend-derived cerebral perfusion between cognitively impaired and nonimpaired patients with SPMS. MATERIALS AND METHODS Patients were prospectively recruited and assessed using MR imaging and the standard cognitive battery called the Minimal Assessment of Cognitive Function in MS. Patients exhibiting impairment on ≥ 2 individual tests were classified as cognitively impaired. Healthy controls were prospectively recruited and assessed using MR imaging to validate bookend assumptions. Structural and perfusion scans were coregistered and partitioned into anatomic brain regions and tissue compartments. Clinical and radiologic characteristics were compared between patients with and without impairment to identify potential confounders. A Bonferroni adjusted P value threshold (P < .005) was used for lobar and sublobar level analyses to correct for multiple comparisons. RESULTS Thirty-seven patients with SPMS (age 56 ± 9 years; 23 women, 14 men) and 10 age- and sex-matched healthy controls were recruited. Bookend assumptions were found to be valid in MS. GM and WM qCBV were all globally reduced in impaired patients. After adjusting for potential confounders while examining sublobar level perfusion, only GM qCBV was significantly different between cognitive groups, and this hypoperfusion localized to the bilateral medial superior frontal regions and left inferior, middle, and superior frontal regions (P < .005) of impaired patients compared with nonimpaired patients. GM qCBV accounted for 22.5% of the model variance compared with a model including only confounders (P = .0007). CONCLUSIONS Bookend-derived GM qCBV was significantly reduced in cognitively impaired patients with SPMS in functionally relevant brain regions.
Collapse
Affiliation(s)
- R I Aviv
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kern KC, Ekstrom AD, Suthana NA, Giesser BS, Montag M, Arshanapalli A, Bookheimer SY, Sicotte NL. Fornix damage limits verbal memory functional compensation in multiple sclerosis. Neuroimage 2011; 59:2932-40. [PMID: 22001266 DOI: 10.1016/j.neuroimage.2011.09.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 08/30/2011] [Accepted: 09/24/2011] [Indexed: 11/29/2022] Open
Abstract
Selective atrophy of the hippocampus, in particular the left CA1 subregion, is detectable in relapsing-remitting MS (RRMS) and is correlated with verbal memory performance. We used novel high-resolution imaging techniques to assess the role that functional compensation and/or white matter integrity of mesial temporal lobe (MTL) structures may play in mediating verbal memory performance in RRMS. High-resolution cortical unfolding of structural MRI in conjunction with functional magnetic resonance imaging (fMRI) was used to localize MTL activity in 18 early RRMS patients and 16 healthy controls during an unrelated word-pairs memory task. Diffusion tensor imaging (DTI) and Tract-Based Spatial Statistics (TBSS) were used to assess the integrity of the fornix and the parahippocampal white matter (PHWM), the major efferents and afferents of the hippocampus. RRMS patients showed greater activity in hippocampal and extra-hippocampal areas during unrelated word-pair learning and recall. Increased hippocampal activity, particularly in the right anterior hippocampus and left anterior CA1 was associated with higher verbal memory scores. Furthermore, increased fractional anisotropy (FA) in the fornix was correlated with both greater fMRI activity in this region and better memory performance. Altered hippocampal fMRI activity in RRMS patients during verbal learning may result from both structural damage and compensatory mechanisms. Successful functional compensation for hippocampal involvement in RRMS may be limited in part by white matter damage to the fornix, consistent with the critical role of this pathway in the clinical expression of memory impairment in MS.
Collapse
Affiliation(s)
- Kyle C Kern
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND Memory disorder is one of the most frequent cognitive impairment and has a great negative impact on the quality of life in patients with multiple sclerosis (MS). A few pharmacologic agents appear to be effective to memory disorder in patients with MS in some existing randomised controlled trials. OBJECTIVES To assess the absolute and comparative efficacy, tolerability and safety of pharmacologic treatments for memory disorder in adult patients with MS. SEARCH STRATEGY We searched the Cochrane Multiple Sclerosis Group's Trials Register (17 January 2011), PsycINFO (January 1980 - April Week 4 2011) and CBMdisc (January 1978 - 6 April 2011), and checked reference lists of identified articles, searched some relevant journals manually, registers of clinical trials and published abstracts of conference proceedings. SELECTION CRITERIA All double-blind, randomized controlled parallel trials on pharmacologic treatment versus placebo treatment or no treatment or one or more pharmacologic treatments, without restrictions regarding dose, route of administration and frequency, administration duration≥12 weeks for memory disorder in adult patients with MS who display at least mild memory impairment at 0.5 standard deviations below age -and-sex-based normative data on a validated memory scale. Adequately randomized or quasi-randomized trials were included. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. Disagreements were discussed and resolved by consensus among review authors. Principal investigators of included studies were contacted for additional data or confirmation. MAIN RESULTS Four RCTs involving adult patients with all the types of MS and at least mild memory impairment were included, evaluating donepezil, Ginkgo biloba (GB), memantine and rivastigmine respectively vs placebo in treating memory disorder in MS.There were no serious adverse events in intervention groups.The quality of the included studies was overall low, some of important variables were not matched between groups at baseline, the samples of subjects were relatively small and the follow-up was short. Three RCTs which evaluate GB, memantine, rivastigmine respectively vs placebo are currently ongoing. AUTHORS' CONCLUSIONS Until the results of ongoing studies are available, there is no convincing evidence to support pharmacologic intervention as an effective treatment for memory disorder in MS patients. However, donepezil, Ginkgo biloba, memantine and rivastigmine resulted to be safe and well tolerated as adverse events such as nausea, diarrhea, somnolence, and constipation were not frequent, while no serious adverse effects were reported. Future high quality randomised controlled trials are needed.
Collapse
Affiliation(s)
- Dian He
- Department of Neurology, Affiliated Hospital of Guiyang Medical College, No. 28, Gui Yi Street, Guiyang, Guizhou Province, China, 550004
| | | | | | | | | |
Collapse
|
42
|
Duff K, Patton DE, Schoenberg MR, Mold J, Scott JG, Adams RL. Intersubtest Discrepancies on the RBANS: Results from the OKLAHOMA Study. ACTA ACUST UNITED AC 2011; 18:79-85. [PMID: 21660759 DOI: 10.1080/09084282.2010.523359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Abstract
Magnetic resonance imaging (MRI) has had a profound impact on both research and clinical management of multiple sclerosis (MS), but signal changes reflect underlying neuropathology only indirectly and often non-specifically. Positron emission tomography (PET) offers the potential to complement MRI with quantitative measures of molecularly specific markers of cellular and metabolic processes. PET radiotracers already available promise new insights into the dynamics of the innate immune response, neuronal function, neurodegeneration and remyelination. Because PET is an exquisitely sensitive technique (able to image even picomolar concentrations), only microdoses of radioligand (<10 µg) are needed for imaging. This facilitates rapid implementation of novel radioligands because extensive toxicology data is not required. In the future, molecular imaging could assist clinical decision-making with patient stratification for optimization of treatment selection.
Collapse
Affiliation(s)
- David RJ Owen
- Division of Experimental Medicine, Imperial College, Hammersmith Hospital, London UK
- GSK Clinical Imaging Centre, Hammersmith Hospital, London, UK
| | - Paola Piccini
- Centre for Neuroscience, Imperial College, London, UK
| | - Paul M Matthews
- GSK Clinical Imaging Centre, Hammersmith Hospital, London, UK
- Centre for Neuroscience, Imperial College, London, UK
| |
Collapse
|
44
|
Roosendaal SD, Hulst HE, Vrenken H, Feenstra HEM, Castelijns JA, Pouwels PJW, Barkhof F, Geurts JJG. Structural and Functional Hippocampal Changes in Multiple Sclerosis Patients with Intact Memory Function. Radiology 2010; 255:595-604. [DOI: 10.1148/radiol.10091433] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. J Transl Med 2010; 90:774-86. [PMID: 20157291 PMCID: PMC3033772 DOI: 10.1038/labinvest.2010.6] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Over half of multiple sclerosis (MS) patients experience cognitive deficits, including learning and memory dysfunction, and the mechanisms underlying these deficits remain poorly understood. Neuronal injury and synaptic loss have been shown to occur within the hippocampus in other neurodegenerative disease models, and these pathologies have been correlated with cognitive impairment. Whether hippocampal abnormalities occur in MS models is unknown. Using experimental autoimmune encephalomyelitis (EAE), we evaluated hippocampal neurodegeneration and inflammation during disease. Hippocampal pathology began early in EAE disease course, and included decreases in CA1 pyramidal layer volume, loss of inhibitory interneurons and increased cell death of neurons and glia. It is interesting to note that these effects occurred in the presence of chronic microglial activation, with a relative paucity of infiltrating blood-borne immune cells. Widespread diffuse demyelination occurred in the hippocampus, but there was no significant decrease in axonal density. Furthermore, there was a significant reduction in pre-synaptic puncta and synaptic protein expression within the hippocampus, as well as impaired performance on a hippocampal-dependent spatial learning task. Our results demonstrate that neurodegenerative changes occur in the hippocampus during autoimmune-mediated demyelinating disease. This work establishes a preclinical model for assessing treatments targeted toward preventing hippocampal neuropathology and dysfunction in MS.
Collapse
Affiliation(s)
- Marina O Ziehn
- Interdepartmental Program of Neuroscience, University of California, Los Angeles, CA, USA,Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Andrea A Avedisian
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Seema Tiwari-Woodruff
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- Multiple Sclerosis Program, Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Ceccarelli A, Rocca MA, Valsasina P, Rodegher M, Pagani E, Falini A, Comi G, Filippi M. A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis. Hum Brain Mapp 2009; 30:3009-19. [PMID: 19172642 DOI: 10.1002/hbm.20725] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology.
Collapse
Affiliation(s)
- Antonia Ceccarelli
- Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Holst B, Siemonsen S, Finsterbusch J, Bester M, Schippling S, Martin R, Fiehler J. T2' imaging indicates decreased tissue metabolism in frontal white matter of MS patients. Mult Scler 2009; 15:701-7. [PMID: 19482862 DOI: 10.1177/1352458509103713] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE T2'-Magnetic resonance imaging (MRI) allows estimation of oxygen metabolism in normal appearing white and gray matter (NAWM and NAGM) and is sensitive to local iron deposition. We hypothesized that T2' imaging is feasible in routine use and reveals differences between MS patients and healthy subjects. METHODS T2- and T2*-weighted images were acquired in 23 MS patients (Mean age: 36.8, range: 23-58 years) and 23 age-matched healthy subjects. Quantitative T2- and T2*-values were determined in six regions of interest (ROIs). RESULTS The T2' values in thalamus and caudate nucleus were significantly lower in MS patients than in healthy subjects (139 ms vs 157 ms, P < 0.001 and 97 ms vs 115 ms, P < 0.01). The NAWM in the frontal lobe revealed significant higher T2' values than in healthy subjects (217 ms vs 170 ms, P < 0.001). The subcortical NAWM revealed significant lower T2' values than in healthy subjects (174 ms vs 187 ms, P < 0.028). CONCLUSION T2' values differed significantly between MS patients and healthy subjects. The reduced T2' values in the basal ganglia are presumably related to higher iron concentration whereas the increased T2' in frontal NAWM most probably reflects reduced tissue metabolism. T2' imaging is feasible for routine-use and promising for monitoring therapy effects.
Collapse
Affiliation(s)
- B Holst
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Valentino P, Cerasa A, Chiriaco C, Nisticò R, Pirritano D, Gioia MC, Lanza P, Canino M, Del Giudice F, Gallo O, Condino F, Torchia G, Quattrone A. Cognitive deficits in multiple sclerosis patients with cerebellar symptoms. Mult Scler 2009; 15:854-9. [DOI: 10.1177/1352458509104589] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Cerebellar dysfunction is common in patients with multiple sclerosis (MS). However, neuropsychological studies of this clinical feature are lacking. Objective We investigate the neuropsychological features in relapsing-remitting MS (RR-MS) patients with and without cerebellar dysfunction. Methods Twenty-one RR-MS patients with cerebellar dysfunction (RR-MSc), characterized by prevalent ataxic gait and nystagmus, and 21 RR-MS patients without any cerebellar manifestation (RR-MSnc) pair-matched for demographical and clinical variables were studied. All patients from each group underwent an extensive battery of neuropsychological tests. Magnetic resonance imaging analysis included hyperintense fast fluid-attenuated inversion-recovery lesion load in the whole brain as well as in the four lobes separately. Results Any significant differences were detected in total and regional lesion load measurements between the two groups. RR-MSc group performed equally as well as the RR-MSnc group on many of the cognitive exploration measures. Nevertheless, the RR-MSc group performed more poorly than the RR-MSnc group on attention tests (Symbol Digit Modalities Test) and verbal fluency tests (Controlled Oral Word Association Test); neither of the test results proved to be affected by regional lesion loads. Conclusion These results highlight the importance of considering cognitive deficits associated with the presence of cerebellar symptoms in RR-MS.
Collapse
Affiliation(s)
- P Valentino
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - A Cerasa
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - C Chiriaco
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - R Nisticò
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - D Pirritano
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - MC Gioia
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - P Lanza
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - M Canino
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - F Del Giudice
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - O Gallo
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - F Condino
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - G Torchia
- Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| | - A Quattrone
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy; Institute of Neurological Sciences, National Research Council, Piano Lago di Mangone, Cosenza, Italy
| |
Collapse
|
49
|
Ramasamy DP, Benedict RHB, Cox JL, Fritz D, Abdelrahman N, Hussein S, Minagar A, Dwyer MG, Zivadinov R. Extent of cerebellum, subcortical and cortical atrophy in patients with MS: a case-control study. J Neurol Sci 2009; 282:47-54. [PMID: 19201003 DOI: 10.1016/j.jns.2008.12.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 12/23/2008] [Accepted: 12/26/2008] [Indexed: 12/29/2022]
Abstract
Cortical and subcortical atrophy occurs in multiple sclerosis (MS) and relates to clinical outcomes. FreeSurfer, a voxel-based automated software for brain reconstruction was used to investigate the extent of subcortical and cortical atrophy in 71 MS and 17 clinically isolated syndrome (CIS) patients, and 38 normal controls (NC), and to relate group differences to disease type and severity. Segmentation was performed on 3D SPGR T1-weighted MRI 1.5T images. Region-specific subcortical tissue volumes were calculated in mm(3) and cortical thickness in mm. Logistic regression and general linear model analyses, adjusted for age and intracranial volume, examined differences between NC, MS and CIS patients and disease subtypes. The MS group was characterized by significantly lower volumes of thalamus (left and right p<0.0001), left inferior lateral ventricle, third ventricle (p<0.0001), ventral diencephalon, pallidum and putamen bilaterally, as well as of right accumbens and brainstem with corresponding bilateral increase in volumes of lateral ventricles (p<0.01). Focal cortical atrophy areas in the thalamus, inferior parietal lobule of left hemisphere and in right precuneus were also significant in the MS sample. Versus CIS patients, RR or progressive MS patients showed significantly lower volumes of subcortical regions and cortical thinning. Hippocampal atrophy appeared only in advanced disease stages. Cerebellum WM volumes were significantly lower in MS and CIS patients vs. NC. Subcortical and cortical atrophy correlated with higher disability as measured by EDSS. This study confirmed selective deep gray matter atrophy (mostly thalamic), revealed cerebellum WM atrophy from the earliest clinical stages, and showed that cortical thinning advances with disease progression.
Collapse
Affiliation(s)
- Deepa Preeti Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, State University of New York at Buffalo, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Multiple sclerosis (MS) is a progressive disease of the CNS that is characterised by widespread lesions in the brain and spinal cord. MS results in motor, cognitive, and neuropsychiatric symptoms, all of which can occur independently of one another. The common cognitive symptoms include deficits in complex attention, efficiency of information processing, executive functioning, processing speed, and long-term memory. These deficits detrimentally affect many aspects of daily life, such as the ability to run a household, participate fully in society, and maintain employment--factors that can all affect the overall quality of life of the patient. The increased use of neuroimaging techniques in patients with MS has advanced our understanding of structural and functional changes in the brain that are characteristic of this disease, although much remains to be learned. Moreover, examination of efforts to treat the cognitive deficits in MS is still in the early stages.
Collapse
|