1
|
Han S, Son JP, Cho H, Park JY, Kim SG. Gradient-echo and spin-echo blood oxygenation level-dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla. Magn Reson Med 2018; 81:1237-1246. [PMID: 30183108 PMCID: PMC6585650 DOI: 10.1002/mrm.27457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Purpose Sensitivity and specificity of blood oxygenation level–dependent (BOLD) functional MRI (fMRI) is sensitive to magnetic field strength and acquisition methods. We have investigated gradient‐echo (GE)‐ and spin‐echo (SE)‐BOLD fMRI at ultrahigh fields of 9.4 and 15.2 Tesla. Methods BOLD fMRI experiments responding to forepaw stimulation were performed with 3 echo times (TE) at each echo type and B0 in α‐chloralose–anesthetized rats. The contralateral forelimb somatosensory region was selected for quantitative analyses. Results At 9.4 T and 15.2 T, average baseline T2* (n = 9) was 26.6 and 17.1 msec, whereas baseline T2 value (n = 9) was 35.7 and 24.5 msec, respectively. Averaged stimulation‐induced ΔR2* was –1.72 s–1 at 9.4 T and –3.09 s–1 at 15.2 T, whereas ΔR2 was –1.19 s–1 at 9.4 T and –1.97 s–1 at 15.2 T. At the optimal TE of tissue T2* or T2, BOLD percent changes were slightly higher at 15.2 T than at 9.4 T (GE: 7.4% versus 6.4% and SE: 5.7% versus 5.4%). The ΔR2* and ΔR2 ratio of 15.2 T to 9.4 T was 1.8 and 1.66, respectively. The ratio of the macrovessel‐containing superficial to microvessel‐dominant parenchymal BOLD signal was 1.73 to 1.76 for GE‐BOLD versus 1.13 to 1.19 for SE‐BOLD, indicating that the SE‐BOLD contrast is less sensitive to macrovessels than GE‐BOLD. Conclusion SE‐BOLD fMRI improves spatial specificity to microvessels compared to GE‐BOLD at both fields. BOLD sensitivity is similar at the both fields and can be improved at ultrahigh fields only for thermal‐noise–dominant ultrahigh‐resolution fMRI.
Collapse
Affiliation(s)
- SoHyun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Athinoula A. Martinos Center for Biomedical Imaging, MGH/Harvard Medical School, Charlestown, Massachusetts
| | - Jeong Pyo Son
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jang-Yeon Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
2
|
Di Salle F, Scarabino T, Esposito F, Aragri A, Santopaolo O, Elefante A, Cirillo M, Cirillo S, Elefante R. Functional MRI at High Field Strength. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/197140090401700611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- F. Di Salle
- Dipartimento di Scienze Neurologiche, Università Federico II di Napoli
- Dipartimento di Neuroscienze, Università di Pisa
| | - T. Scarabino
- Neuroradiologia, Casa Sollievo della Sofferenza; S. Giovanni Rotondo, Foggia
| | - F. Esposito
- Dipartimento di Scienze Neurologiche, II Università di Napoli
| | - A. Aragri
- Dipartimento di Scienze Neurologiche, Università Federico II di Napoli
| | - O. Santopaolo
- Dipartimento di Scienze Neurologiche, Università Federico II di Napoli
| | - A. Elefante
- Dipartimento di Scienze Neurologiche, Università Federico II di Napoli
| | - M. Cirillo
- Dipartimento di Scienze Neurologiche, II Università di Napoli
| | - S. Cirillo
- Dipartimento di Scienze Neurologiche, II Università di Napoli
| | - R. Elefante
- Dipartimento di Scienze Neurologiche, Università Federico II di Napoli
| |
Collapse
|
3
|
Kazan SM, Mohammadi S, Callaghan MF, Flandin G, Huber L, Leech R, Kennerley A, Windischberger C, Weiskopf N. Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study. Neuroimage 2016; 124:794-805. [PMID: 26416648 PMCID: PMC4655941 DOI: 10.1016/j.neuroimage.2015.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/04/2022] Open
Abstract
The blood oxygenation level-dependent (BOLD) signal is widely used for functional magnetic resonance imaging (fMRI) of brain function in health and disease. The statistical power of fMRI group studies is significantly hampered by high inter-subject variance due to differences in baseline vascular physiology. Several methods have been proposed to account for physiological vascularization differences between subjects and hence improve the sensitivity in group studies. However, these methods require the acquisition of additional reference scans (such as a full resting-state fMRI session or ASL-based calibrated BOLD). We present a vascular autorescaling (VasA) method, which does not require any additional reference scans. VasA is based on the observation that slow oscillations (<0.1Hz) in arterial blood CO2 levels occur naturally due to changes in respiration patterns. These oscillations yield fMRI signal changes whose amplitudes reflect the blood oxygenation levels and underlying local vascularization and vascular responsivity. VasA estimates proxies of the amplitude of these CO2-driven oscillations directly from the residuals of task-related fMRI data without the need for reference scans. The estimates are used to scale the amplitude of task-related fMRI responses, to account for vascular differences. The VasA maps compared well to cerebrovascular reactivity (CVR) maps and cerebral blood volume maps based on vascular space occupancy (VASO) measurements in four volunteers, speaking to the physiological vascular basis of VasA. VasA was validated in a wide variety of tasks in 138 volunteers. VasA increased t-scores by up to 30% in specific brain areas such as the visual cortex. The number of activated voxels was increased by up to 200% in brain areas such as the orbital frontal cortex while still controlling the nominal false-positive rate. VasA fMRI outperformed previously proposed rescaling approaches based on resting-state fMRI data and can be readily applied to any task-related fMRI data set, even retrospectively.
Collapse
Affiliation(s)
- Samira M Kazan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.
| | - Siawoosh Mohammadi
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Guillaume Flandin
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Laurentius Huber
- NMR-Unit, Max Planck Institute for Human Cognition and Brain Sciences, Leipzig, Germany
| | - Robert Leech
- Cognitive, Clinical and Computational Neuroimaging Lab, Imperial College, Hammersmith Hospital, University of London, London W12 0NN, United Kingdom
| | - Aneurin Kennerley
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Christian Windischberger
- MR Centre of Excellence, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
4
|
Solana AB, Menini A, Sacolick LI, Hehn N, Wiesinger F. Quiet and distortion-free, whole brain BOLD fMRI using T2
-prepared RUFIS. Magn Reson Med 2015; 75:1402-12. [DOI: 10.1002/mrm.25658] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/09/2015] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Nicolas Hehn
- GE Global Research; Munich Germany
- Department of Medical Engineering; Technische Universität München; Munich Germany
| | | |
Collapse
|
5
|
Abstract
Advanced MR imaging techniques have found extensive utility in the clinical practice of neuroradiology. A variety of these techniques are incorporated into imaging protocols for routine use, specific applications to particular disease entities, or as problem-solving tools on an ad hoc basis. This article summarizes and illustrates the spectrum of advanced MR imaging tools used clinically in the practice of neuroradiology.
Collapse
|
6
|
Li X, Wang D, Auerbach EJ, Moeller S, Ugurbil K, Metzger GJ. Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage 2014; 106:170-81. [PMID: 25462690 DOI: 10.1016/j.neuroimage.2014.10.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022] Open
Abstract
Multi-band echo planar imaging (MB-EPI), a new approach to increase data acquisition efficiency and/or temporal resolution, has the potential to overcome critical limitations of standard acquisition strategies for obtaining high-resolution whole brain perfusion imaging using arterial spin labeling (ASL). However, the use of MB also introduces confounding effects, such as spatially varying amplified thermal noise and leakage contamination, which have not been evaluated to date as to their effect on cerebral blood flow (CBF) estimation. In this study, both the potential benefits and confounding effects of MB-EPI were systematically evaluated through both simulation and experimentally using a pseudo-continuous arterial spin labeling (pCASL) strategy. These studies revealed that the amplified noise, given by the geometry factor (g-factor), and the leakage contamination, assessed by the total leakage factor (TLF), have a minimal impact on CBF estimation. Furthermore, it is demonstrated that MB-EPI greatly benefits high-resolution whole brain pCASL studies in terms of improved spatial and temporal signal-to-noise ratio efficiencies, and increases compliance with the assumptions of the commonly used single blood compartment model, resulting in improved CBF estimates.
Collapse
Affiliation(s)
- Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| | - Dingxin Wang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Siemens Healthcare, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Mazerolle EL, Gawryluk JR, Dillen KNH, Patterson SA, Feindel KW, Beyea SD, Stevens MTR, Newman AJ, Schmidt MH, D’Arcy RC. Sensitivity to white matter FMRI activation increases with field strength. PLoS One 2013; 8:e58130. [PMID: 23483983 PMCID: PMC3587428 DOI: 10.1371/journal.pone.0058130] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/03/2013] [Indexed: 12/12/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) activation in white matter is controversial. Given that many of the studies that report fMRI activation in white matter used high field MRI systems, we investigated the field strength dependence of sensitivity to white matter fMRI activation. In addition, we evaluated the temporal signal to noise ratio (tSNR) of the different tissue types as a function of field strength. Data were acquired during a motor task (finger tapping) at 1.5 T and 4 T. Group and individual level activation results were considered in both the sensorimotor cortex and the posterior limb of the internal capsule. We found that sensitivity increases associated with field strength were greater for white matter than gray matter. The analysis of tSNR suggested that white matter might be less susceptible to increases in physiological noise related to increased field strength. We therefore conclude that high field MRI may be particularly advantageous for fMRI studies aimed at investigating activation in both gray and white matter.
Collapse
Affiliation(s)
- Erin L. Mazerolle
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jodie R. Gawryluk
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kim N. H. Dillen
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Cognitive Neuroscience, Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany
| | - Steven A. Patterson
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kirk W. Feindel
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatric Neurology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Steven D. Beyea
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - M. Tynan R Stevens
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aaron J. Newman
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Ryan C.N. D’Arcy
- Institute for Biodiagnostics (Atlantic), National Research Council, Halifax, Nova Scotia, Canada
- Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Prabhakaran V, Nair VA, Austin BP, La C, Gallagher TA, Wu Y, McLaren DG, Xu G, Turski P, Rowley H. Current status and future perspectives of magnetic resonance high-field imaging: a summary. Neuroimaging Clin N Am 2012; 22:373-97, xii. [PMID: 22548938 DOI: 10.1016/j.nic.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are several magnetic resonance (MR) imaging techniques that benefit from high-field MR imaging. This article describes a range of novel techniques that are currently being used clinically or will be used in the future for clinical purposes as they gain popularity. These techniques include functional MR imaging, diffusion tensor imaging, cortical thickness assessment, arterial spin labeling perfusion, white matter hyperintensity lesion assessment, and advanced MR angiography.
Collapse
Affiliation(s)
- Vivek Prabhakaran
- Division of Neuroradiology, Department of Radiology, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792-3252, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis. Pediatr Radiol 2012; 42:63-75. [PMID: 21818554 DOI: 10.1007/s00247-011-2194-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/03/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. OBJECTIVE To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. MATERIALS AND METHODS Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. RESULTS Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P<0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). CONCLUSION As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis.
Collapse
|
10
|
Abstract
T2*-weighted Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) requires efficient acquisition methods in order to fully sample the brain in a several second time period. The most widely used approach is Echo Planar Imaging (EPI), which utilizes a Cartesian trajectory to cover k-space. This trajectory is subject to ghosts from off-resonance and gradient imperfections and is intrinsically sensitive to cardiac-induced pulsatile motion from substantial first- and higher order moments of the gradient waveform near the k-space origin. In addition, only the readout direction gradient contributes significant energy to the trajectory. By contrast, the spiral method samples k-space with an Archimedean or similar trajectory that begins at the k-space center and spirals to the edge (spiral-out), or its reverse, ending at the origin (spiral-in). Spiral methods have reduced sensitivity to motion, shorter readout times, improved signal recovery in most frontal and parietal brain regions, and exhibit blurring artifacts instead of ghosts or geometric distortion. Methods combining spiral-in and spiral-out trajectories have further advantages in terms of diminished susceptibility-induced signal dropout and increased BOLD signal. In measurements of temporal signal to noise ratio measured in 8 subjects, spiral-in/out exhibited significant increases over EPI in voxel volumes recovered in frontal and whole brain regions (18% and 10%, respectively).
Collapse
|
11
|
Han K, Talavage TM. Effects of combining field strengths on auditory functional MRI group analysis: 1.5T and 3T. J Magn Reson Imaging 2011; 34:1480-8. [PMID: 21959971 DOI: 10.1002/jmri.22823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 08/25/2011] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate effects of combining functional magnetic resonance imaging (fMRI) data acquired from different field strengths on group analysis as a function of the number of subjects at each field strength. MATERIALS AND METHODS In all, 28 subjects (18 at 3T) participated in an auditory task of passively listening to a 0.75s segment of jazz music in an event-related design. Results of single-subject analysis were combined to create all possible subject combinations for a group size of eight subjects from each of the 3T and 1.5T pools, comprising subject mixtures of (3T/1.5T) 0/8, 2/6, 4/4, 6/2, and 8/0. Group analysis performance of each subject permutation was measured by receiver operating characteristic (ROC) curves and activation overlap maps. RESULTS While area under ROC curves, extent of activation in the gold standard region, and reliability of activation increased with the number of 3T subjects, marginal gain decreased. ROC performance overlap across mixtures was observed, indicating that some combinations of subjects markedly outperformed others. For detection of activation, 4/4 was arguably the minimum mixture level that was comparable to 3T-only group results. CONCLUSION Inclusion of 1.5T data does not necessarily reduce the validity of group analysis. Lower field strength data was found only to limit detection power, but did not affect specificity. Within the limits of realignment error, these results should also extend to group longitudinal analyses of subject mixtures from different field strengths.
Collapse
Affiliation(s)
- Kihwan Han
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.
| | | |
Collapse
|
12
|
García-Eulate R, García-García D, Dominguez PD, Noguera JJ, De Luis E, Rodriguez-Oroz MC, Zubieta JL. Functional bold MRI: advantages of the 3 T vs. the 1.5 T. Clin Imaging 2011; 35:236-41. [DOI: 10.1016/j.clinimag.2010.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 05/01/2010] [Indexed: 10/18/2022]
|
13
|
No increase of the blood oxygenation level-dependent functional magnetic resonance imaging signal with higher field strength: implications for brain activation studies. J Neurosci 2010; 30:5234-41. [PMID: 20392946 DOI: 10.1523/jneurosci.0844-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Experimental data up to 7.0 T show that the blood oxygenation level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) increases with higher magnetic field strength. Although several studies at 11.7 T report higher BOLD signal compared with studies at 7.0 T, no direct comparison at these two field strengths has been performed under the exact same conditions. It therefore remains unclear whether the expected increase of BOLD effect with field strength will still continue to hold for fields >7.0 T. To examine this issue, we compared the BOLD activation signal at 7.0 and 11.7 T with the two common sequences, spin-echo (SE) and gradient-echo (GE) echo planar imaging (EPI). We chose the physiologically well controlled rat model of electrical forepaw stimulation under medetomidine sedation. While a linear to superlinear increase in activation with field strengths up to 7.0 T was reported in the literature, we observed no significant activation difference between 7.0 and 11.7 T with either SE or GE. Discussing the results in light of the four-component model of the BOLD signal, we showed that at high field only two extravascular contributions remain relevant, while both intravascular components vanish. Constancy of the BOLD effect is discussed due to motional narrowing, i.e., susceptibility gradients become so strong that phase variance of diffusing spins decreases and therefore the BOLD signal also decreases. This finding will be of high significance for the planning of future human and animal fMRI studies at high fields and their quantitative analysis.
Collapse
|
14
|
van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R. fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes. Neuroimage 2009; 47:1425-34. [DOI: 10.1016/j.neuroimage.2009.05.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
|
15
|
Preoperative fMRI in tumour surgery. Eur Radiol 2009; 19:2523-34. [PMID: 19430795 DOI: 10.1007/s00330-009-1429-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/16/2009] [Accepted: 02/22/2009] [Indexed: 10/20/2022]
Abstract
Minimally invasive resection of brain tumours aims at removing as much pathological tissue as possible while preserving essential brain functions. Therefore, the precise spatial relationship between the lesion and adjacent functionally essential brain parenchyma needs to be known. Functional magnetic resonance imaging (fMRI) is increasingly being used for this purpose because of its non-invasiveness, its relatively high spatial resolution and the preoperative availability of the results. In this review, the goals of fMRI at various key points during the management of patients with a brain tumour are discussed. Further, several practical aspects associated with fMRI for motor and language functioning are summarised, and the validation of the fMRI results with standard invasive mapping techniques is addressed. Next, several important pitfalls and limitations that warrant careful interpretations of the fMRI results are highlighted. Finally, two important future perspectives of presurgical fMRI are emphasised.
Collapse
|
16
|
Simultaneous EEG/functional magnetic resonance imaging at 4 Tesla: correlates of brain activity to spontaneous alpha rhythm during relaxation. J Clin Neurophysiol 2008; 25:255-64. [PMID: 18791470 DOI: 10.1097/wnp.0b013e3181879d56] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
SUMMARY : Simultaneous EEG and functional magnetic resonance imaging have been applied to the study of brain states associated with alpha waves using a magnetic field strength of 1.5 Tesla and has been shown in recent years to be feasible up to 3 Tesla for other applications. This study demonstrates this technique's continued viability at a field strength of 4 Tesla, affording a proportionally greater sensitivity to changes in Blood Oxygen Level Dependent (BOLD) signal. In addition, for the study of alpha correlations, the authors used a larger number of subjects and scanning sessions than in the previous work. Random effects group regression analysis of 35 EEG/functional magnetic resonance imaging sessions against occipital alpha magnitude in a relaxed state detected bilateral widespread activation of dorsal thalamus and portions of the anterior cingulate and cerebellum. In the same group analysis, deactivations arose predominantly in the fusiform and adjacent visual association areas with a small activation cluster also detected in dorsolateral prefrontal cortex. This pattern is consistent with a correspondence between alpha magnitude variations and resting state network dynamics ascertained by recent studies of low frequency spontaneous BOLD fluctuations. The central role of the thalamus in resting state networks correlated with alpha activity is highlighted. Demonstrating the applicability of simultaneous EEG/functional magnetic resonance imaging up to 4 Tesla is particularly important for clinically relevant research involving challenging spontaneous EEG abnormalities, such as those of epilepsy.
Collapse
|
17
|
Jerde TA, Lewis SM, Goerke U, Gourtzelidis P, Tzagarakis C, Lynch J, Moeller S, Van de Moortele PF, Adriany G, Trangle J, Uğurbil K, Georgopoulos AP. Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving. Exp Brain Res 2008; 187:551-61. [PMID: 18305932 DOI: 10.1007/s00221-008-1318-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/11/2008] [Indexed: 11/28/2022]
Abstract
We used ultra-high field (7 T) fMRI and parallel imaging to scan the superior parietal lobule (SPL) of human subjects as they mentally traversed a maze path in one of four directions (up, down, left, right). A counterbalanced design for maze presentation and a quasi-isotropic voxel (1.46 x 1.46 x 2 mm thick) collection were implemented. Fifty-one percent of single voxels in the SPL were tuned to the direction of the maze path. Tuned voxels were distributed throughout the SPL, bilaterally. A nearest neighbor analysis revealed a "honeycomb" arrangement such that voxels tuned to a particular direction tended to occur in clusters. Three-dimensional (3D) directional clusters were identified in SPL as oriented centroids traversing the cortical depth. There were 13 same-direction clusters per hemisphere containing 22 voxels per cluster, on the average; the mean nearest-neighbor, same-direction intercluster distance was 9.4 mm. These results provide a much finer detail of the directional tuning in SPL, as compared to those obtained previously at 4 T (Gourtzelidis et al. Exp Brain Res 165:273-282, 2005). The more accurate estimates of quantitative clustering parameters in 3D brain space in this study were made possible by the higher signal-to-noise and contrast-to-noise ratios afforded by the higher magnetic field of 7 T as well as the quasi-isotropic design of voxel data collection.
Collapse
Affiliation(s)
- Trenton A Jerde
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Meindl T, Born C, Britsch S, Reiser M, Schoenberg S. Functional BOLD MRI: comparison of different field strengths in a motor task. Eur Radiol 2008; 18:1102-13. [PMID: 18274756 DOI: 10.1007/s00330-008-0869-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 12/28/2007] [Accepted: 01/11/2008] [Indexed: 11/30/2022]
Abstract
The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX. Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR.
Collapse
Affiliation(s)
- T Meindl
- Institute for Clinical Radiology, University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
19
|
Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0T: Theory and experimental evaluation in canines. J Magn Reson Imaging 2008; 27:1037-45. [DOI: 10.1002/jmri.21345] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Tieleman A, Vandemaele P, Seurinck R, Deblaere K, Achten E. Comparison between functional magnetic resonance imaging at 1.5 and 3 Tesla: effect of increased field strength on 4 paradigms used during presurgical work-up. Invest Radiol 2007; 42:130-8. [PMID: 17220731 DOI: 10.1097/01.rli.0000251579.05052.08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES We sought to evaluate the benefit of 3 T compared with 1.5 T during presurgical functional magnetic resonance imaging. MATERIALS AND METHODS Six participants performed a motor, a visual, and 2 language paradigms both at 1.5 and 3 T. The number of activated voxels, mean t-value, and assessment of language dominancy were compared between both field strengths. Group analysis was performed to evaluate the influence of field strength on the cortical language activation patterns. RESULTS The number of activated voxels and mean t-values were significantly higher at 3 T for all paradigms. Using the same statistical threshold, language activation was significantly less lateralized, and more activation zones were depicted at 3 T compared with 1.5 T. CONCLUSIONS Sensitivity associated with visual, motor and language functional magnetic resonance imaging increased significantly at 3 T. Additional cortical areas were depicted during language processing at 3 T. For assessment of language dominancy, usage of more stringent statistical thresholds at 3 T is suggested.
Collapse
Affiliation(s)
- Ann Tieleman
- Department of Radiology, Ghent Institute for functional Magnetic Resonance Imaging, GIfMI, Labaratory for Neuropsychology, Neurology Section, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
21
|
Friedman L, Glover GH, Krenz D, Magnotta V. Reducing inter-scanner variability of activation in a multicenter fMRI study: Role of smoothness equalization. Neuroimage 2006; 32:1656-68. [PMID: 16875843 DOI: 10.1016/j.neuroimage.2006.03.062] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 12/07/2005] [Accepted: 03/30/2006] [Indexed: 10/24/2022] Open
Abstract
Scanner-to-scanner variability of activation in multicenter fMRI studies is often considered undesirable. The purpose of this investigation was to evaluate the effect of a new procedure, "smoothness equalization", on reducing scanner differences in activation effect size as part of a multicenter fMRI project (FIRST BIRN). Five subjects were sent to 9 centers (10 scanners) and scanned on 2 consecutive days using a sensorimotor fMRI protocol. High-field (4 T and 3 T) and low-field (1.5 T) scanners from three vendors (GE, Siemens, and Picker) were included. The activation effect size of the scanners for the detection of neural activation during a sensorimotor task was evaluated as the percent of temporal variance accounted for by our model (percent of variance accounted for or PVAF). Marked scanner effects were noted for both PVAF as well as the degree of smoothness of the raw and processed images. After smoothness equalization, there was a dramatic (low field) or consistent (high-field) reduction in scanner-to-scanner variation of activation. It was shown that the likely basis of the scanner differences in smoothness was differences in k-space filtering algorithms. This work highlights the need to account for differences in smoothness when comparing scanners on activation effect size in multicenter fMRI studies.
Collapse
Affiliation(s)
- Lee Friedman
- Department of Psychiatry and Human Behavior, University of California-Irvine, CA 92617, USA.
| | | | | | | |
Collapse
|
22
|
Voss HU, Zevin JD, McCandliss BD. Functional MR imaging at 3.0 T versus 1.5 T: a practical review. Neuroimaging Clin N Am 2006; 16:285-97, x. [PMID: 16731367 DOI: 10.1016/j.nic.2006.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article reviews and discusses recent findings in functional MRI at 1.5 and 3.0 T magnetic field strengths, in research and clinical applications. Particular attention is paid to comparative studies and to an explanation of the physical and biological dependencies leading to potential gains and tradeoffs of functional scanning at magnets with a high field strength.
Collapse
Affiliation(s)
- Henning U Voss
- Citigroup Biomedical Imaging Center, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
23
|
Van Westen D, Skagerberg G, Olsrud J, Fransson P, Larsson EM. Functional magnetic resonance imaging at 3T as a clinical tool in patients with intracranial tumors. Acta Radiol 2005; 46:599-609. [PMID: 16334841 DOI: 10.1080/02841850510021652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the potential of functional magnetic resonance imaging (fMRI) at 3T as a clinical tool in the preoperative evaluation of patients with intracranial tumors. High magnetic field strength such as 3T is of benefit for fMRI because signal-to-noise ratio and sensitivity to susceptibility changes are field-strength-dependent. MATERIAL AND METHODS Twenty patients with tumors close to eloquent sensorimotor or language areas were studied. Motor, sensory, and two language paradigms (word generation, rhyming) were used; their effectiveness was determined as the percentage of patients in whom the functional area of interest was activated. Activation maps were calculated and their quality rated as high, adequate, or insufficient. The influence of fMRI on the neurosurgical decision regarding operability, surgical approach, and extent of the resection, was assessed. RESULTS Paradigm effectiveness was 90% for motor and 95% for sensory stimulation, and varied from 79% to 95% for word generation and rhyming in combination. Ninety percent of the activation maps held high or adequate quality. fMRI proved useful: in the decision to operate (9 patients), in the surgical approach (13 patients), and in extent of the resection (12 patients). CONCLUSION fMRI at 3T is a clinically applicable tool in the work-up of patients with intracranial tumors.
Collapse
Affiliation(s)
- D Van Westen
- Department of Diagnostic Radiology and Department of Neurosurgery, University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
24
|
St Lawrence KS, Wang J. Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling. Magn Reson Med 2005; 53:425-33. [PMID: 15678532 DOI: 10.1002/mrm.20364] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous modeling studies have predicted that a significant fraction of the signal in arterial spin labeling (ASL) experiments originates from labeled water in the capillaries. Provided that the relaxation times in blood and tissue are similar, ASL data can still be analyzed with the conventional one-compartment Kety model. Such studies have primarily focused on T1 differences and have neglected any differences in transverse relaxation times (T2 and T2*). This is reasonable for studies at lower fields; however, it may not be valid at higher fields due to the stronger susceptibility effects of deoxygenated blood. In this study a tracer kinetic model was developed that includes T2* differences between capillary blood and tissue. The model predicts that a reduction in blood T2* at higher fields will attenuate the capillary contribution to the ASL signal. This in turn causes an underestimation of CBF when ASL data are analyzed with the one-compartment Kety model. We confirmed this prediction by comparing ASL data collected at 1.5 and 4 T, and at multiple gradient echoes (19, 32, 45, and 58 ms). A decrease in resting-state CBF with echo time (TE) was observed at 4 T, but not at 1.5 T. These results suggest that at higher fields AST data should be collected using gradient-echo techniques with short TEs, or with spin-echo techniques. Furthermore, the sensitivity of the CBF measurements to venous T2* may affect the interpretation of concurrent ASL/BOLD studies.
Collapse
|
25
|
Hoenig K, Kuhl CK, Scheef L. Functional 3.0-T MR Assessment of Higher Cognitive Function: Are There Advantages over 1.5-T Imaging? Radiology 2005; 234:860-8. [PMID: 15650039 DOI: 10.1148/radiol.2343031565] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare cortical activation patterns associated with manual motor decision tasks at 1.5- and 3.0-T functional magnetic resonance (MR) imaging. MATERIALS AND METHODS The local ethics committee approved this study, and informed written consent was obtained. Ten right-handed healthy volunteers (eight men and two women; mean age, 35 years +/- 7 [standard deviation]) underwent functional MR imaging twice, once at 1.5 T and once at 3.0 T, while performing cognitive tasks that demanded manual motor decisions (letter-finger matching and lexical and semantic decisions). While stimulus presentation was blocked, an event-related model was employed to analyze subjects' individual responses. A group analysis of functional data was performed with a t test of 1.5- and 3.0-T results in the 10 subjects. RESULTS Manual motor decisions activated a widespread network of motor- (primary motor, posterior parietal) and decision-related areas (superior frontal cortex or anterior cingulate) at both field strengths (P <.05, corrected). Moreover, additional functional activation was detected in medial (supplementary motor area) and dorsal premotor regions (P <.05, corrected) at 3.0-T functional MR imaging, which was not detectable with corresponding 1.5-T imaging. The mean t value for peak voxels in activated areas detectable with both systems was 1.3 times larger at 3.0 T than that at 1.5 T. CONCLUSION Functional 3.0-T MR imaging allows detection of additional activation in cortical areas involved in higher executive motor functions compared with functional 1.5-T MR imaging.
Collapse
Affiliation(s)
- Klaus Hoenig
- Department of Radiology, University of Bonn, Sigmund-Freud-Str 25, D-53105 Bonn, Germany.
| | | | | |
Collapse
|
26
|
Okada T, Yamada H, Ito H, Yonekura Y, Sadato N. Magnetic field strength increase yields significantly greater contrast-to-noise ratio increase: Measured using BOLD contrast in the primary visual area. Acad Radiol 2005; 12:142-7. [PMID: 15721590 DOI: 10.1016/j.acra.2004.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVE The advantage of a higher static magnetic field for functional MRI has been advocated; however, the observed advantage varies. The aim of this study was to evaluate the effect of increasing static magnetic field strength on the task-related increase in blood oxygenation level-dependent (BOLD) signal and residual noise with visual stimuli of different frequencies, which may enable better comparisons of results of different MRI scanners. MATERIALS AND METHODS Eight right-handed healthy volunteers were presented checkerboard stimuli flickering at 5 different frequencies up to 8 Hz. Field strengths of 3 T or 1.5 T were used to measure frequency-dependent signal changes in the primary visual area. Regression analysis was performed for the signal increase and the "noise," which was defined by the root mean of squares of the residual signal fluctuation. These values were compared and their relationship was analyzed. Imaging parameters were identical except for the use of a 25% shorter echo time using 3 T. RESULTS The frequency-dependent increase in BOLD signal using 3 T was twice that using 1.5 T. In contrast, the ratio of noise values that reflect time-course signal fluctuation (3 T/1.5 T) was only 0.88. There was large individual variance in these values, but the slope and noise values were linearly related using either field strength. The contrast-to-noise ratio using 3 T was 2.3 times higher than that using 1.5 T. CONCLUSION There was a greater-than-linear increase in the contrast-to-noise ratio compared with the increase of field strength, demonstrating an advantage of using higher field strengths in fMRI studies.
Collapse
Affiliation(s)
- Tomohisa Okada
- National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | | | | | | | | |
Collapse
|
27
|
Deblaere K, Boon PA, Vandemaele P, Tieleman A, Vonck K, Vingerhoets G, Backes W, Defreyne L, Achten E. MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology 2004; 46:413-20. [PMID: 15127167 DOI: 10.1007/s00234-004-1196-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The primary goal of this study was to test the reliability of presurgical language lateralization in epilepsy patients with functional magnetic resonance imaging (fMRI) with a 1.0-T MR scanner using a simple word generation paradigm and conventional equipment. In addition, hemispherical fMRI language lateralization analysis and region of interest (ROI) analysis in the frontal and temporo-parietal regions were compared with the intracarotid amytal test (IAT). Twenty epilepsy patients under presurgical evaluation were prospectively examined by both fMRI and IAT. The fMRI experiment consisted of a word chain task (WCT) using the conventional headphone set and a sparse sequence. In 17 of the 20 patients, data were available for comparison between the two procedures. Fifteen of these 17 patients were categorized as left hemispheric dominant, and 2 patients demonstrated bilateral language representation by both fMRI and IAT. The highest reliability for lateralization was obtained using frontal ROI analysis. Hemispherical analysis was less powerful and reliable in all cases but one, while temporo-parietal ROI analysis was unreliable as a stand-alone analysis when compared with IAT. The effect of statistical threshold on language lateralization prompted for the use of t-value-dependent lateralization index plots. This study illustrates that fMRI-determined language lateralization can be performed reliably in a clinical MR setting operating at a low field strength of 1 T without expensive stimulus presentation systems.
Collapse
Affiliation(s)
- K Deblaere
- Department of Neuroradiology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Preston AR, Thomason ME, Ochsner KN, Cooper JC, Glover GH. Comparison of spiral-in/out and spiral-out BOLD fMRI at 1.5 and 3 T. Neuroimage 2004; 21:291-301. [PMID: 14741667 PMCID: PMC9337266 DOI: 10.1016/j.neuroimage.2003.09.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spiral-in/out functional magnetic resonance imaging (fMRI) methods acquire one image before the echo time (TE) and a second image after TE during each scan. Weighted combination of the two images provides a time series with reduced susceptibility dropout in frontal and medial temporal regions as well as increased signal-to-noise ratio (SNR) in regions of uniform cortex. In this study, task activation with the spiral-in/out method was compared to that with conventional spiral-out acquisitions at two field strengths (1.5 and 3.0 T) using episodic memory encoding, verbal working memory, and affective processing tasks in eight human volunteers. With the conventional spiral-out sequence, greater signal dropout is observed in lateral and medial prefrontal, amygdalar, and medial temporal regions at 3 T relative to 1.5 T, whereas such dropout at 3 T is reduced or mitigated with the spiral-in/out method. Similarly, activation volumes for frontal, amygdalar, and medial temporal regions are reduced for spiral-out acquisitions relative to spiral-in/out, and this difference is more apparent at 3 T than at 1.5 T. In addition, significant regionally specific increases in Z scores are obtained with the spiral-in/out sequence relative to spiral-out acquisitions at both field strengths. It is concluded the spiral-in/out sequence may provide significant advantages over conventional spiral methods, especially at 3 T.
Collapse
Affiliation(s)
- Alison R. Preston
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Kevin N. Ochsner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey C. Cooper
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Gary H. Glover
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Lucas MR Center, Stanford University, Stanford, CA 94305, USA
- Corresponding author. Department of Radiology, Lucas MR Center, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5488. Fax: +1-650-723-5795. (G.H. Glover)
| |
Collapse
|
29
|
Lin W, An H, Chen Y, Nicholas P, Zhai G, Gerig G, Gilmore J, Bullitt E. Practical consideration for 3T imaging. Magn Reson Imaging Clin N Am 2003; 11:615-39, vi. [PMID: 15018114 DOI: 10.1016/s1064-9689(03)00068-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the past 10 to 15 years, 1.5T has been one of the most commonly used field strengths for day-to-day clinical operations. However, recent advances in high field technology and the increased availability of high field (> 1.5T) human scanners have opened the doors for a variety of exciting improvements in clinical and research applications of MR imaging. In particular, 3T has continued to gain wide acceptance as one of the main field strengths for clinical and research studies. Therefore, in this article the authors focus on the pros and cons of 3T imaging and comparisons between results obtained at 3T and 1.5T.
Collapse
Affiliation(s)
- Weili Lin
- Department of Radiology and Neurology, University of North Carolina at Chapel Hill, Old Infirmary Building CB#7515, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Di Salle F, Esposito F, Elefante A, Scarabino T, Volpicelli A, Cirillo S, Elefante R, Seifritz E. High field functional MRI. Eur J Radiol 2003; 48:138-45. [PMID: 14680904 DOI: 10.1016/j.ejrad.2003.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 08/11/2003] [Accepted: 08/13/2003] [Indexed: 11/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has become the most widely used approach for studying brain functions in humans. The rapid and widespread diffusion of fMRI has been favoured by the properties this technique presents, and particularly by its sensitivity in analysing brain functional phenomena and by the lack of biological invasiveness, resulting in an unprecedented and unparalleled flexibility of use. These properties of fMRI brought the functional examination of the brain within the reach of the whole neuroscience community and have appreciably stimulated the research on the functional processes of the living brain. Among the main features of fMRI, its spatial and temporal resolution represents clear advantages compared with the other methods of functional neuroimaging. In fact, the high spatial resolution of fMRI permits to produce more precise and better localised information, and its temporal resolution provides the potential of a better understanding of neural dynamics at the level of single functional areas and of the neural constituents of functional patterns. A fundamental possibility of improving spatial and temporal resolution without excessively degrading signal-to-noise ratio consists in the use of high magnetic field intensity fMRI units. Besides, high field units make the use of more demanding fMRI paradigms, like single trial event related studies, much more compatible with the need of a solid statistical evaluation. This has notably promoted the diffusion of high field MRI units for human studies throughout the world, with very high field MRI units, up to 8 T, working in a few research centres, and a larger number of MRI units with field intensity ranging between 3 and 5 T.
Collapse
Affiliation(s)
- F Di Salle
- Department of Neurological Sciences, University Federico II of Naples, via Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang J, Aguirre GK, Kimberg DY, Detre JA. Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T. Neuroimage 2003; 19:1449-62. [PMID: 12948702 DOI: 10.1016/s1053-8119(03)00255-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) based on arterial spin labeling (ASL) perfusion contrast is an emergent methodology for visualizing brain function both at rest and during task performance. Because of the typical pairwise subtraction approach in generating perfusion images, ASL contrast manifests different noise properties and offers potential advantages for some experimental designs as compared with blood oxygenation-level-dependent (BOLD) contrast. We studied the noise properties and statistical power of ASL contrast, with a focus on temporal autocorrelation and spatial coherence, at both 1.5- and 4.0-T field strengths. Perfusion fMRI time series were found to be roughly independent in time, and voxelwise statistical analysis assuming independence of observations yielded false-positive rates compatible with theoretical values using appropriate analysis methods. Unlike BOLD fMRI data, perfusion data were not found to have spatial coherence that varied across temporal frequency. This finding has implications for the application of spatial smoothing to perfusion data. It was also found that the spatial coherence of the ASL data is greater at high magnetic field than low field, and including the global signal as a covariate in the general linear model improves the central tendency of test statistic as well as reduces the noise level in perfusion fMRI, especially at high magnetic field.
Collapse
Affiliation(s)
- Jiongjiong Wang
- Department of Neurology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
32
|
Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 2003; 49:796-802. [PMID: 12704760 DOI: 10.1002/mrm.10437] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has become the most widely used modality for visualizing regional brain activation in response to sensorimotor or cognitive tasks. While the majority of fMRI studies have used blood oxygenation level-dependent (BOLD) contrast as a marker for neural activation, baseline drift effects result in poor sensitivity for detecting slow variations in neural activity. By contrast, drift effects are minimized in arterial spin labeling (ASL) perfusion contrast, primarily as a result of successive pairwise subtraction between images acquired with and without labeling. Recent data suggest that ASL contrast shows stable noise characteristics over the entire frequency spectrum, which makes it suitable for studying low-frequency events in brain function. The present study investigates the relative sensitivities of ASL and BOLD contrast in detecting changes in motor cortex activation over a spectrum of frequencies of experimental design, where the alternating period between the resting state and activation is varied from 30 s up to 24 hr. The results demonstrate that 1) ASL contrast can detect differences in motor cortex activation over periods of minutes, hours, and even days; 2) the functional sensitivity of ASL contrast becomes superior to that of BOLD contrast when the alternating period between the resting state and activation is greater than a few minutes; and 3) task activation measured by ASL tends to have less intersubject variability than BOLD contrast. The improved sensitivity of the ASL contrast for low task frequency and longitudinal studies, along with its superior power in group analysis, is expected to extend the range of experimental designs that can be studied using fMRI.
Collapse
Affiliation(s)
- Jiongjiong Wang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Krasnow B, Tamm L, Greicius MD, Yang TT, Glover GH, Reiss AL, Menon V. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing. Neuroimage 2003; 18:813-26. [PMID: 12725758 DOI: 10.1016/s1053-8119(03)00002-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies comparing fMRI data acquired at 1.5 T and higher field strengths have focused on examining signal increases in the visual and motor cortices. No information is, however, available on the relative gain, or the comparability of data, obtained at higher field strengths for other brain regions such as the prefrontal and other association cortices. In the present study, we investigated fMRI activation at 1.5 and 3 T during visual perception, visuospatial working memory, and affect-processing tasks. A 23% increase in striate and extrastriate activation volume was observed at 3 T compared with that for 1.5 T during the visual perception task. During the working memory task significant increases in activation volume were observed in frontal and parietal association cortices as well as subcortical structures, including the caudate, globus pallidus, putamen, and thalamus. Increases in working memory-related activation volume of 82, 73, 83, and 36% were observed in the left frontal, right frontal, left parietal, and right parietal lobes, respectively, for 3 T compared with 1.5 T. These increases were characterized by increased activation at 3 T in several prefrontal and parietal cortex regions that showed activation at 1.5 T. More importantly, at 3 T, activation was detected in several regions, such as the ventral aspects of the inferior frontal gyrus, orbitofrontal gyrus, and lingual gyrus, which did not show significant activation at 1.5 T. No difference in height or extent of activation was detected between the two scanners in the amygdala during affect processing. Signal dropout in the amygdala from susceptibility artifact was greater at 3 T, with a 12% dropout at 3 T compared with a 9% dropout at 1.5 T. The spatial smoothness of T2* images was greater at 3 T by less than 1 mm, suggesting that the greater extent of activation at 3 T beyond these spatial scales was not due primarily to increased intrinsic spatial correlations at 3 T. Rather, the increase in percentage of voxels activated reflects increased sensitivity for detection of brain activation at higher field strength. In summary, our findings suggest that functional imaging of prefrontal and other association cortices can benefit significantly from higher magnetic field strength.
Collapse
Affiliation(s)
- B Krasnow
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Fera F, Yongbi MN, van Gelderen P, Frank JA, Mattay VS, Duyn JH. EPI-BOLD fMRI of human motor cortex at 1.5 T and 3.0 T: Sensitivity dependence on echo time and acquisition bandwidth. J Magn Reson Imaging 2003; 19:19-26. [PMID: 14696216 DOI: 10.1002/jmri.10440] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the sensitivity dependence of BOLD functional imaging on MRI acquisition parameters in motor stimulation experiments using a finger tapping paradigm. MATERIALS AND METHODS Gradient-echo echo-planar fMRI experiments were performed at 1.5 T and 3.0 T with varying acquisition echo time and bandwidth, and with a 4 mm isotropic voxel size. To analyze the BOLD sensitivity, the relative contributions of BOLD signal amplitude and thermal and physiologic noise sources were evaluated, and statistical t-scores were compared in the motor area. RESULTS At 1.5 T, the number of activated pixels and the average t-score showed a relatively broad optimum over a TE range of 60-160 msec. At 3.0 T, an optimum range was observed between TEs of 30-130 msec. Averaged over nine subjects, maxima in the number of pixels and t-score values were 59% and 18% higher at 3.0 T than at 1.5 T, respectively, an improvement that was lower than the observed 100% to 110% increase in signal-to-noise ratio at 3.0 T. CONCLUSION The somewhat disappointing increase in t-scores at 3.0 T was attributed to the increased contribution of physiologic noise at the higher field strength under the given experimental conditions. At both field strengths, reducing the effective image acquisition bandwidth from 35 to 17 Hz per pixel did not affect or only marginally affect the BOLD sensitivity.
Collapse
Affiliation(s)
- Francesco Fera
- Clinical Brain Disorder Branch, National Institutes of Mental Health, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Wang J, Alsop DC, Li L, Listerud J, Gonzalez-At JB, Schnall MD, Detre JA. Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 2002; 48:242-54. [PMID: 12210932 DOI: 10.1002/mrm.10211] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
High-field arterial spin labeling (ASL) perfusion MRI is appealing because it provides not only increased signal-to-noise ratio (SNR), but also advantages in terms of labeling due to the increased relaxation time T(1) of labeled blood. In the present study, we provide a theoretical framework for the dependence of the ASL signal on the static field strength, followed by experimental validation in which a multislice pulsed ASL (PASL) technique was carried out at 4T and compared with PASL and continuous ASL (CASL) techniques at 1.5T, both in the resting state and during motor activation. The resting-state data showed an SNR ratio of 2.3:1.4:1 in the gray matter and a contrast-to-noise ratio (CNR) of 2.7:1.1:1 between the gray and white matter for the difference perfusion images acquired using 4T PASL, 1.5T CASL, and 1.5T PASL, respectively. However, the functional data acquired using 4T PASL did not show significantly improved sensitivity to motor cortex activation compared with the 1.5T functional data, with reduced fractional perfusion signal change and increased intersubject variability. Possible reasons for these experimental results, including susceptibility effects and physiological noise, are discussed.
Collapse
Affiliation(s)
- Jiongjiong Wang
- Department of Radiology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yongbi MN, Fera F, Yang Y, Frank JA, Duyn JH. Pulsed arterial spin labeling: comparison of multisection baseline and functional MR imaging perfusion signal at 1.5 and 3.0 T: initial results in six subjects. Radiology 2002; 222:569-75. [PMID: 11818630 DOI: 10.1148/radiol.2222001697] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flow-alternating inversion-recovery magnetic resonance imaging was performed at 3.0 T to measure cerebral perfusion during rest and motor activation in six healthy adult volunteers. Results were compared with those at 1.5 T. The mean signal-to-noise ratio for both gray matter and white matter perfusion measured with and without vascular suppression at 3.0 T was significantly (P <.01) higher (n = 6) than that at 1.5 T. Brain perfusion activation maps collected during a motor task showed a substantially larger number of activated pixels (>80%) at 3.0 T, with activation in the supplementary motor area in the 3.0-T data that was not present on 1.5-T perfusion maps.
Collapse
Affiliation(s)
- Martin N Yongbi
- Laboratory of Functional and Molecular Imaging, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
37
|
Krüger G, Glover GH. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001; 46:631-7. [PMID: 11590638 DOI: 10.1002/mrm.1240] [Citation(s) in RCA: 460] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The physiological noise in the resting brain, which arises from fluctuations in metabolic-linked brain physiology and subtle brain pulsations, was investigated in six healthy volunteers using oxygenation-sensitive dual-echo spiral MRI at 3.0 T. In contrast to the system and thermal noise, the physiological noise demonstrates a signal strength dependency and, unique to the metabolic-linked noise, an echo-time dependency. Variations of the MR signal strength by changing the flip angle and echo time allowed separation of the different noise components and revealed that the physiological noise at 3.0 T (1) exceeds other noise sources and (2) is significantly greater in cortical gray matter than in white matter regions. The SNR in oxygenation-sensitive MRI is predicted to saturate at higher fields, suggesting that noise measurements of the resting brain at 3.0 T and higher may provide a sensitive probe of functional information.
Collapse
Affiliation(s)
- G Krüger
- Lucas MRS Center, Department of Radiology, Stanford University, Palo Alto, California, USA.
| | | |
Collapse
|
38
|
Krüger G, Kastrup A, Glover GH. Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 2001; 45:595-604. [PMID: 11283987 DOI: 10.1002/mrm.1081] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Noise properties, the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal responses were compared during functional activation of the human brain at 1.5 and 3.0 T. At the higher field spiral gradient-echo (GRE) brain images revealed an average gain in SNR of 1.7 in fully relaxed and 2.2 in images with a repetition time (TR) of 1.5 sec. The tempered gain at longer TRs reflects the fact that the physiological noise depends on the signal strength and becomes a larger fraction of the total noise at 3.0 T. Activation of the primary motor and visual cortex resulted in a 36% and 44% increase of "activated pixels" at 3.0 T, which reflects a greater sensitivity for the detection of activated gray matter at the higher field. The gain in the CNR exhibited a dependency on the underlying tissue, i.e., an increase of 1.8x in regions of particular high activation-induced signal changes (presumably venous vessels) and of 2.2x in the average activated areas. These results demonstrate that 3.0 T provides a clear advantage over 1.5 T for neuroimaging of homogeneous brain tissue, although stronger physiological noise contributions, more complicated signal features in the proximity of strong susceptibility gradients, and changes in the intrinsic relaxation times may mediate the enhancement. Magn Reson Med 45:595-604, 2001.
Collapse
Affiliation(s)
- G Krüger
- Lucas MRS Center, Department of Radiology, Stanford University, Palo Alto, CA, USA.
| | | | | |
Collapse
|