1
|
Ryun S, Kim M, Kim JS, Chung CK. Cortical maps of somatosensory perception in human. Neuroimage 2023; 276:120197. [PMID: 37245558 DOI: 10.1016/j.neuroimage.2023.120197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.
Collapse
Affiliation(s)
- Seokyun Ryun
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Minkyu Kim
- Department of Cognitive Sciences, University of California Irvine, Irvine, USA
| | - June Sic Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Wu YJ, Wu N, Huang X, Rao J, Yan L, Shi L, Huang H, Li SY, Zhou FQ, Wu XR. Evidence of cortical thickness reduction and disconnection in high myopia. Sci Rep 2020; 10:16239. [PMID: 33004887 PMCID: PMC7530748 DOI: 10.1038/s41598-020-73415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023] Open
Abstract
High myopia (HM) is associated with impaired long-distance vision. accumulating evidences reported that abnormal visual experience leads to dysfunction in brain activity in HM even corrected. However, whether the long-term of abnormal visual experience lead to neuroanatomical changes remain unknown, the aim at this study is to investigate the alternation of cortical surface thickness in HM patients. 82 patients with HM (HM groups), 57 healthy controls (HC groups) were recruited. All participants underwent high-resolution T1 and resting-state functional magnetic resonance imaging (MRI) scans. The cortical thickness analysis was preformed to investigate the neuroanatomical changes in HM patients using computational anatomy toolbox (CAT 12) toolbox. Compare with HCs, HM patients showed decreased the cortical surface thickness in the left middle occipital gyrus (MOG), left inferior parietal lobule (IPL), right inferior temporal gyrus (ITG), right precuneus, right primary visual area 1 (V1), right superior temporal gyrus (STG), right superior parietal lobule (SPL), right occipital pole, and right the primary motor cortex (M1), and increased to the parietal operculum (OP4) (P < 0.01, FWE-corrected), the mean cortical thickness of right orbitofrontal cortex (OFC), right dorsolateral prefrontal cortex (DLPFC) and right subcallosal cortex showed negatively correlation between clinical variables (axis length (ALM), the average macular thickness (AMT), keratometer (KER) 1, KER2, the mean KER, the mean macular fovea thickness (MFK), the refractive diopter) in HM patients. Our result mainly provided an evidence of cortical thickness reduction and disconnection in visual center and visual processing area, and cortical thickness increase in left multimodal integration region in HM patients. This may provide important significance of the study of the neural mechanism of HM.
Collapse
Affiliation(s)
- Ya-Jun Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Na Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Rao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ling Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hui Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Si-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Limanowski J, Lopes P, Keck J, Baudisch P, Friston K, Blankenburg F. Action-Dependent Processing of Touch in the Human Parietal Operculum and Posterior Insula. Cereb Cortex 2019; 30:607-617. [DOI: 10.1093/cercor/bhz111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jakub Limanowski
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| | - Pedro Lopes
- Department of Computer Science, University of Chicago, Chicago IL 60637, USA
- Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Janis Keck
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| | - Patrick Baudisch
- Hasso Plattner Institute, Faculty of Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Felix Blankenburg
- Neurocomputation Neuroimaging Unit, Department of Education and Psychology and Center for Cognitive Neuroscience Berlin, IL 60637, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
4
|
Cheng CH. Effects of observing normal and abnormal goal-directed hand movements on somatosensory cortical activation. Eur J Neurosci 2017; 47:48-57. [PMID: 29178356 DOI: 10.1111/ejn.13783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/01/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022]
Abstract
Existing evidence indicates the importance of observing correct, normal actions on the motor cortical activities. However, the exact neurophysiological mechanisms, particularly in the somatosensory system, remain unclear. This study aimed to elucidate the effects of observing normal and abnormal hand movements on the contralateral primary somatosensory (cSI), contralateral (cSII) and ipsilateral (iSII) secondary somatosensory activities. Experiment I was designed to investigate the effects of motor outputs on the somatosensory processing, in which subjects were instructed to relax or manipulate a small cube. Experiment II was tailored to examine the somatosensory responses to the observation of normal (Normal) and abnormal (Abnormal) hand movements. The subjects received electrical stimulation to right median nerve and magnetoencephalography (MEG) recordings during the whole experimental period. Regional cortical activation and functional connectivity were analyzed. Compared to the resting condition, a reduction in cSI and an enhancement of SII activation was found when subjects manipulated a cube, suggesting the motor outputs have an influence on the somatosensory responses. Further investigation of the effects of observing different hand movements showed that cSII activity was significantly stronger in the Normal than Abnormal condition. Moreover, compared with Abnormal condition, a higher cortical coherence of cSI-iSII at theta bands and cSII-iSII at beta bands was found in Normal condition. Conclusively, the present results suggest stronger activation and enhanced functional connectivity within the somatosensory system during the observation of normal than abnormal hand movements. These findings also highlight the importance of viewing normal, correct hands movements in the stroke rehabilitation.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Taoyuan, 333, Taiwan.,Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
5
|
Saby JN, Meltzoff AN, Marshall PJ. Beyond the N1: A review of late somatosensory evoked responses in human infants. Int J Psychophysiol 2016; 110:146-152. [PMID: 27553531 DOI: 10.1016/j.ijpsycho.2016.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Somatosensory evoked potentials (SEPs) have been used for decades to study the development of somatosensory processing in human infants. Research on infant SEPs has focused on the initial cortical component (N1) and its clinical utility for predicting neurological outcome in at-risk infants. However, recent studies suggest that examining the later components in the infant somatosensory evoked response will greatly advance our understanding of somatosensory processing in infancy. The purpose of this review is to synthesize the existing electroencephalography (EEG) and magnetoencephalography (MEG) studies on late somatosensory evoked responses in infants. We describe the late responses that have been reported and discuss the utility of such responses for illuminating key aspects of somatosensory processing in typical and atypical development.
Collapse
Affiliation(s)
- Joni N Saby
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Seattle, WA 98195, United States.
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Box 357988, Seattle, WA 98195, United States
| | - Peter J Marshall
- Department of Psychology, Temple University, 1701 North 13th Street, Philadelphia, PA 19122, United States
| |
Collapse
|
6
|
Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 2016; 234:3389-3398. [PMID: 27435203 DOI: 10.1007/s00221-016-4736-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.
Collapse
|
7
|
Cheng CH, Tseng YJ, Chen RS, Lin YY. Reduced functional connectivity of somatosensory network in writer's cramp patients. Brain Behav 2016; 6:e00433. [PMID: 26839735 PMCID: PMC4726822 DOI: 10.1002/brb3.433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/07/2015] [Accepted: 12/16/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The involvement of motor cortex and sensorimotor integration in patients with writer's cramp (WC) has been well documented. However, the exact neurophysiological profile within the somatosensory system, including primary somatosensory cortex (SI), contralateral (SIIc), and ipsilateral (SIIi) secondary somatosensory areas remains less understood. METHODS This study investigated the neuromagnetic cortical activities of median nerve stimulation in 10 patients with WC and 10 healthy controls (HC). To comprehensively explore all the aspects of somatosensory functioning, we analyzed our data with the minimum norm estimate (MNE), the time-frequency approach with evoked and induced activities, and functional connectivity between SI and SIIc (SI-SIIc), SI and SIIi (SI-SIIi), and SIIc and SIIi (SIIc-SIIi) from theta to gamma oscillations. RESULTS No significant between-group differences were found in the MNE cortical amplitudes of SI, SIIc, and SIIi. Power strengths of evoked gamma oscillation and induced beta synchronization were also equivalent between WC and HC groups. However, we found significantly reduced theta coherence of SI-SIIi, alpha coherence of SI-SIIi and SIIc-SIIi, as well as beta coherence of SIIc-SIIi in patients with WC. CONCLUSION Our results suggest the involvement of somatosensory abnormalities, primarily with the form of functional connectivity, in patients with WC.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy Graduate Institute of Behavioral Sciences Chang Gung University Taoyuan Taiwan; Healthy Aging Research Center Chang Gung University Taoyuan Taiwan; Department of Psychiatry Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Yi-Jhan Tseng
- Institute of Physiology National Yang-Ming University Taipei Taiwan; Laboratory of Neurophysiology Taipei Veterans General Hospital Taipei Taiwan
| | - Rou-Shayn Chen
- Department of Neurology Chang Gung Memorial Hospital Taoyuan Taiwan; College of Medicine Chang Gung University Taoyuan Taiwan
| | - Yung-Yang Lin
- Institute of Physiology National Yang-Ming University Taipei Taiwan; Laboratory of Neurophysiology Taipei Veterans General Hospital Taipei Taiwan; Institute of Brain Science National Yang-Ming University Taipei Taiwan; Department of Neurology Taipei Veterans General Hospital Taipei Taiwan
| |
Collapse
|
8
|
Cheng CH, Chan PYS, Niddam DM, Tsai SY, Hsu SC, Liu CY. Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex. Sci Rep 2016; 6:20437. [PMID: 26843358 PMCID: PMC4740805 DOI: 10.1038/srep20437] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - David M Niddam
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Yueh Tsai
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan.,Mind, Brain and Learning Center, National Chengchi University, Taipei, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
9
|
Age-Related Reduced Somatosensory Gating Is Associated with Altered Alpha Frequency Desynchronization. Neural Plast 2015; 2015:302878. [PMID: 26417458 PMCID: PMC4568376 DOI: 10.1155/2015/302878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
Sensory gating (SG), referring to an attenuated neural response to the second identical stimulus, is considered as preattentive processing in the central nervous system to filter redundant sensory inputs. Insufficient somatosensory SG has been found in the aged adults, particularly in the secondary somatosensory cortex (SII). However, it remains unclear which variables leading to the age-related somatosensory SG decline. There has been evidence showing a relationship between brain oscillations and cortical evoked excitability. Thus, this study used whole-head magnetoencephalography to record responses to paired-pulse electrical stimulation to the left median nerve in healthy young and elderly participants to test whether insufficient stimulus 1- (S1-) induced event-related desynchronization (ERD) contributes to a less-suppressed stimulus 2- (S2-) evoked response. Our analysis revealed that the minimum norm estimates showed age-related reduction of SG in the bilateral SII regions. Spectral power analysis showed that the elderly demonstrated significantly reduced alpha ERD in the contralateral SII (SIIc). Moreover, it was striking to note that lower S1-induced alpha ERD was associated with higher S2-evoked amplitudes in the SIIc among the aged adults. Conclusively, our findings suggest that age-related decline of somatosensory SG is partially attributed to the altered S1-induced oscillatory activity.
Collapse
|
10
|
Tseng YJ, Chen RS, Hsu WY, Hsiao FJ, Lin YY. Reduced motor cortex deactivation in individuals who suffer from writer's cramp. PLoS One 2014; 9:e97561. [PMID: 24831291 PMCID: PMC4022529 DOI: 10.1371/journal.pone.0097561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/21/2014] [Indexed: 11/26/2022] Open
Abstract
This study investigated the neuromagnetic activities of self-paced finger lifting task and electrical median nerve stimulation in ten writer's cramp patients and fourteen control subjects. The event-related de/synchronizations (ERD/ERS) of beta-band activity levels were evaluated and the somatosensory cortical activity levels were analyzed using equivalent-current dipole modeling. No significant difference between the patients and control subjects was found in the electrical stimulation-induced beta ERS and electrical evoked somatosensory cortical responses. Movement-related beta ERD did not differ between controls and patients. Notably, the amplitude of the beta ERS after termination of finger movement was significantly lower in the patients than in the control subjects. The reduced movement-related beta ERS might reflect an impairment of motor cortex deactivation. In conclusion, a motor dependent dysregulation of the sensorimotor network seems to be involved in the functional impairment of patients with writer's cramp.
Collapse
Affiliation(s)
- Yi-Jhan Tseng
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan
| | - Wan-Yu Hsu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Jung Hsiao
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Education and Research, Taipei City hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Laboratory of Neurophysiology, Taipei Veterans General Hospital, Taipei, Taiwan; Integrated Brain Research Laboratory, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Dietz V, Macauda G, Schrafl-Altermatt M, Wirz M, Kloter E, Michels L. Neural coupling of cooperative hand movements: a reflex and fMRI study. ACTA ACUST UNITED AC 2013; 25:948-58. [PMID: 24122137 DOI: 10.1093/cercor/bht285] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The neural control of "cooperative" hand movements reflecting "opening a bottle" was explored in human subjects by electromyographic (EMG) and functional magnetic resonance imaging (fMRI) recordings. EMG responses to unilateral nonnoxious ulnar nerve stimulation were analyzed in the forearm muscles of both sides during dynamic movements against a torque applied by the right hand to a device which was compensated for by the left hand. For control, stimuli were applied while task was performed in a static/isometric mode and during bilateral synchronous pro-/supination movements. During the dynamic cooperative task, EMG responses to stimulations appeared in the right extensor and left flexor muscles, regardless of which side was stimulated. Under the control conditions, responses appeared only on the stimulated side. fMRI recordings showed a bilateral extra-activation and functional coupling of the secondary somatosensory cortex (S2) during the dynamic cooperative, but not during the control, tasks. This activation might reflect processing of shared cutaneous input during the cooperative task. Correspondingly, it is assumed that stimulation-induced unilateral volleys are processed in S2, leading to a release of EMG responses to both forearms. This indicates a task-specific neural coupling during cooperative hand movements, which has consequences for the rehabilitation of hand function in poststroke patients.
Collapse
Affiliation(s)
- Volker Dietz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Gianluca Macauda
- Clinic of Neuroradiology, University Hospital of Zurich, 8001 Zurich, Switzerland
| | | | - Markus Wirz
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Evelyne Kloter
- Spinal Cord Injury Center, Balgrist University Hospital, 8008 Zurich, Switzerland and
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital of Zurich, 8001 Zurich, Switzerland
| |
Collapse
|
12
|
Aging-related decline in somatosensory inhibition of the human cerebral cortex. Exp Brain Res 2013; 226:145-52. [PMID: 23377148 DOI: 10.1007/s00221-013-3420-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Primary somatosensory (SI) cortical inhibition to repetitive stimuli tends to decline with increasing age. However, aging effects on the inhibition mechanism of secondary somatosensory cortex (SII) remain elusive. We aimed to study the aging-related changes of cortical inhibition in the human somatosensory system. Neuromagnetic responses to paired-pulse electrical stimulation to the median nerve were recorded in 21 young and 20 elderly male adults. Paired-pulse suppression (PPS) of SI and SII activities was estimated by the ratio of the response to Stimulus 2 to the response to Stimulus 1. Based on equivalent current dipole modeling, PPS ratios of the contralateral (SIIc) and ipsilateral (SIIi) secondary somatosensory cortices were higher in elderly than in young subjects (p < 0.001 in SIIc and p = 0.034 in SIIi). At an individual basis, a higher PPS ratio in SIIc than in SI was found in 16 (80 %) out of the 20 elderly participants; in contrast, the PPS ratios of SIIc and SI cortices were similar in young participants (p = 0.031). In conclusion, a larger PPS ratio in elderly suggests an aging-related decline in somatosensory cortical inhibition. Furthermore, compared to SI, the electrophysiological responses of SII cortex are especially vulnerable to aging in terms of cortical inhibition to repetitive stimulation.
Collapse
|
13
|
Lim M, Kim JS, Chung CK. Modulation of somatosensory evoked magnetic fields by intensity of interfering stimuli in human somatosensory cortex: An MEG study. Neuroimage 2012; 61:660-9. [DOI: 10.1016/j.neuroimage.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
|
14
|
Wasaka T, Kakigi R. Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. Neuroimage 2011; 59:1501-7. [PMID: 21889595 DOI: 10.1016/j.neuroimage.2011.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
The role of sensory information in motor control has been studied, but the cortical processing underlying cross-modal relationship between visual and somatosensory information for movement execution remains a matter of debate. Visual estimates of limb positions are congruent with proprioceptive estimates under normal visual conditions, but a mismatch between the watched and felt movement of the hand disrupts motor execution. We investigated whether activation in somatosensory areas was affected by the discordance between the intended and an executed action. Subjects performed self-paced thumb movement of the left hand under normal visual and mirror conditions. The Mirror condition provided a non-veridical and unexpected visual feedback. The results showed activity in the primary somatosensory area to be inhibited and activity in the secondary somatosensory area (SII) to be enhanced with voluntary movement, and neural responses in the SII and parietal cortex were strongly affected by the unexpected visual feedback. These results provide evidence that the visual information plays a crucial role in activation in somatosensory areas during motor execution. A mechanism that monitors sensory inputs and motor outputs congruent with current intension is necessary to control voluntary movement.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
15
|
Forss N, Mustanoja S, Roiha K, Kirveskari E, Mäkelä JP, Salonen O, Tatlisumak T, Kaste M. Activation in parietal operculum parallels motor recovery in stroke. Hum Brain Mapp 2011; 33:534-41. [PMID: 21425393 DOI: 10.1002/hbm.21230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/21/2010] [Accepted: 11/18/2010] [Indexed: 11/08/2022] Open
Abstract
Motor recovery after stroke requires continuous interaction of motor and somatosensory systems. Integration of somatosensory feedback with motor programs is needed for the automatic adjustment of the speed, range, and strength of the movement. We recorded somatosensory evoked fields (SEFs) to tactile finger stimulation with whole-scalp magnetoencephalography in 23 acute stroke patients at 1 week, 1 month, and 3 months after stroke to investigate how deficits in the somatosensory cortical network affect motor recovery. SEFs were generated in the contralateral primary somatosensory cortex (SI) and in the bilateral parietal opercula (PO) in controls and patients. In the patients, SI amplitude or latency did not correlate with any of the functional outcome measures used. In contrast, the contralateral PO (cPO) amplitude to the affected hand stimuli correlated significantly with hand function in the acute phase and during recovery; the weaker the PO activation, the clumsier the hand was. At 1 and 3 months, enhancement of the cPO activation paralleled the improvement of the hand function. Whole-scalp magnetoencephalography measurements revealed that dysfunction of somatosensory cortical areas distant from the ischemic lesion may affect the motor recovery. Activation strength of the PO paralleled motor recovery after stroke, suggesting that the PO area is an important hub in mediating modulatory afferent input to motor cortex.
Collapse
Affiliation(s)
- Nina Forss
- Brain Research Unit, Low Temperature Laboratory, Aalto University, Espoo, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sakamoto K, Nakata H, Yumoto M, Kakigi R. Somatosensory processing of the tongue in humans. Front Physiol 2010; 1:136. [PMID: 21423377 PMCID: PMC3059928 DOI: 10.3389/fphys.2010.00136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/12/2010] [Indexed: 11/13/2022] Open
Abstract
We review research on somatosensory (tactile) processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex, Brodmann area 40, and the anterior cingulate cortex.
Collapse
Affiliation(s)
- Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Hiroki Nakata
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Faculty of Sport Sciences, Waseda UniversityTokorozawa, Saitama, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
| |
Collapse
|
17
|
Jouanin JC, Pérès M, Ducorps A, Renault B. A dynamic network involving M1-S1, SII-insular, medial insular, and cingulate cortices controls muscular activity during an isometric contraction reaction time task. Hum Brain Mapp 2009; 30:675-88. [PMID: 18266218 DOI: 10.1002/hbm.20534] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Magnetoencephalographic, electromyographic (EMG), work, and reaction time (RT) were recorded from nine subjects during visually triggered intermittent isometric contractions of the middle finger under two conditions: unloaded and loaded (30% of maximal voluntary contraction). The effect of muscle fatigue was studied over three consecutive periods under both conditions. In the loaded condition, the motor evoked field triggered by the EMG onset decreased with fatigue, whereas movement-evoked fields (MEFs) increased (P < 0.01). Fatigue was demonstrated in the loaded condition, since (i) RT increased due to an increase in the electromechanical delay (P < 0.002); (ii) work decreased from Periods 1 to 3 (P < 0.005), while (iii) the myoelectric RMS amplitude of both flexor digitorum superficialis and extensor muscles increased (P < 0.003) and (iv) during Period 3, the spectral deflection of the EMG median frequency of the FDS muscle decreased (P < 0.001). In the unloaded condition and at the beginning of the loaded condition, a parallel network including M1-S1, posterior SII-insular, and posterior cingulate cortices accounted for the MEF activities. However, under the effect of fatigue, medial insular and posterior cingulate cortices drove this network. Moreover, changes in the location of insular and M1-S1 activations were significantly correlated with muscle fatigue (increase of RMS-EMG; P < 0.03 and P < 0.01, respectively). These results demonstrate that a plastic network controls the strength of the motor command as fatigue occurs: sensory information, pain, and exhaustion act through activation of the medial insular and posterior cingulate cortices to decrease the motor command in order to preserve muscle efficiency and integrity.
Collapse
Affiliation(s)
- Jean-Claude Jouanin
- Department of Integrated Physiology, Aerospace Medical Institute of Health, Brétigny-sur-Orge, France.
| | | | | | | |
Collapse
|
18
|
Sakamoto K, Nakata H, Kakigi R. Somatotopic representation of the tongue in human secondary somatosensory cortex. Clin Neurophysiol 2008; 119:2125-34. [DOI: 10.1016/j.clinph.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/25/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
|
19
|
Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage 2008; 42:858-68. [DOI: 10.1016/j.neuroimage.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 01/29/2023] Open
|
20
|
Sakamoto K, Nakata H, Kakigi R. Somatosensory-evoked magnetic fields following stimulation of the tongue in humans. Clin Neurophysiol 2008; 119:1664-73. [DOI: 10.1016/j.clinph.2008.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/26/2008] [Accepted: 03/25/2008] [Indexed: 11/28/2022]
|
21
|
Kanno A, Nakasato N, Nagamine Y, Tominaga T. Non-transcallosal ipsilateral area 3b responses to median nerve stimulus. J Clin Neurosci 2008; 11:868-71. [PMID: 15519865 DOI: 10.1016/j.jocn.2004.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 01/11/2004] [Indexed: 11/18/2022]
Abstract
We report two patients with left hemisphere lesions who had no normal left hemispheric responses to right median nerve stimulus on magnetoencephalography but displayed right area 3b responses. One patient had suffered a severe left hemispheric contusion and the other left hemispheric infarction. Equivalent current dipoles of these ipsilateral responses were detected on the central sulcus adjacent to the location of the N20m response to left median nerve stimulus. The somatosensory afferent pathway from the hand may extend directly to the ipsilateral area 3b without following the transcallosal pathway in at least part of the population.
Collapse
Affiliation(s)
- A Kanno
- Tohoku Ryogo Center, Kohnan Hospital, Sendai, Japan
| | | | | | | |
Collapse
|
22
|
Dijkerman HC, de Haan EHF. Somatosensory processes subserving perception and action. Behav Brain Sci 2007; 30:189-201; discussion 201-39. [PMID: 17705910 DOI: 10.1017/s0140525x07001392] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe functions of the somatosensory system are multiple. We use tactile input to localize and experience the various qualities of touch, and proprioceptive information to determine the position of different parts of the body with respect to each other, which provides fundamental information for action. Further, tactile exploration of the characteristics of external objects can result in conscious perceptual experience and stimulus or object recognition. Neuroanatomical studies suggest parallel processing as well as serial processing within the cerebral somatosensory system that reflect these separate functions, with one processing stream terminating in the posterior parietal cortex (PPC), and the other terminating in the insula. We suggest that, analogously to the organisation of the visual system, somatosensory processing for the guidance of action can be dissociated from the processing that leads to perception and memory. In addition, we find a second division between tactile information processing about external targets in service of object recognition and tactile information processing related to the body itself. We suggest the posterior parietal cortex subserves both perception and action, whereas the insula principally subserves perceptual recognition and learning.
Collapse
Affiliation(s)
- H Chris Dijkerman
- Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands.
| | | |
Collapse
|
23
|
Wasaka T, Kida T, Nakata H, Akatsuka K, Kakigi R. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study. Neuroscience 2007; 149:446-56. [PMID: 17869442 DOI: 10.1016/j.neuroscience.2007.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 11/30/2022]
Abstract
We studied sensori-motor interaction in the primary (SI) and secondary somatosensory cortex (SII) using magnetoencephalography. Since SII in both hemispheres was activated following unilateral stimulation, we analyzed SIIc (contralateral to stimulation) as well as SIIi (ipsilateral to stimulation). Four tasks were performed in human subjects in which a voluntary thumb movement of the left or right hand was combined with electrical stimulation applied to the index finger of the left or right hand: L(M)-L(S) (movement of the left thumb triggered stimulation to the left finger), L(M)-R(S) (movement of the left thumb triggered electrical stimulation to the right finger), R(M)-R(S) (movement of the right thumb triggered electrical stimulation to the right finger), and R(M)-L(S) (movement of the right thumb triggered electrical stimulation to the left finger). Stimulation to the index finger only (S condition) was also recorded. In SI, the amplitude of N20m and P35m was significantly attenuated in the R(M)-R(S) and L(M)-L(S) tasks compared with the S condition, but that for other tasks showed no change, corresponding to a conventional gating phenomenon. In SII, the R(M)-L(S) task significantly enhanced the amplitude of SIIc but reduced that of SIIi compared with the S condition. The L(M)-L(S) and R(M)-R(S) tasks caused a significant enhancement only in SIIi. The L(M)-R(S) task enhanced the amplitude only in SIIc. The laterality index showed that SII modulation with voluntary movement was more dominant in the hemisphere ipsilateral to movement but was not affected by the side of stimulation. These results provided the characteristics of activities in somatosensory cortices, a simple inhibition in SI but complicated changes in SII depending on the side of movement and stimulation, which may indicate the higher cognitive processing in SII.
Collapse
Affiliation(s)
- T Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | | | |
Collapse
|
24
|
Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA. Sensorimotor integration in S2, PV, and parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 2006; 97:1288-97. [PMID: 17122318 PMCID: PMC4060608 DOI: 10.1152/jn.00733.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explored cortical fields on the upper bank of the Sylvian fissure using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to measure responses to two stimulus conditions: a tactile stimulus applied to the right hand and a tactile stimulus with an additional movement component. fMRI data revealed bilateral activation in S2/PV in response to tactile stimulation alone and source localization of MEG data identified a peak latency of 122 ms in a similar location. During the tactile and movement condition, fMRI revealed bilateral activation of S2/PV and an anterior field, while MEG data contained one source at a location identical to the tactile-only condition with a latency of 96 ms and a second rostral source with a longer latency (136 ms). Furthermore, Region-of-interest analysis of fMRI data identified increased bilateral activation in S2/PV and the rostral area in the tactile and movement condition compared with the tactile only condition. An area of cortex immediately rostral to S2/PV in monkeys has been called the parietal rostroventral area (PR). Based on location, latency, and conditions under which this field was active, we have termed the rostral area of human cortex PR as well. These findings indicate that humans, like non-human primates, have a cortical field rostral to PV that processes proprioceptive inputs, both S2/PV and PR play a role in somatomotor integration necessary for manual exploration and object discrimination, and there is a temporal hierarchy of processing with S2/PV active prior to PR.
Collapse
Affiliation(s)
- Leighton B Hinkley
- Center for Neuroscience, University of California-Davis, 1544 Newton Court, Davis, CA 95618, USA
| | | | | | | |
Collapse
|
25
|
Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage 2006; 32:1355-64. [PMID: 16806987 DOI: 10.1016/j.neuroimage.2006.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/27/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022] Open
Abstract
Many studies have reported a movement-related modulation of response in the primary and secondary somatosensory cortices (SI and SII) to a task-irrelevant stimulation in primates. In the present study, magnetoencephalography (MEG) was used to examine the top-down centrifugal regulation of neural responses in the human SI and SII to a task-relevant somatosensory signal triggering a voluntary movement. Nine healthy adults participated in the study. A visual warning signal was followed 2 s later by a somatosensory imperative signal delivered to the right median nerve at the wrist. Three kinds of warning signal informed the participants of the reaction which should be executed on presentation of the imperative signal (rest or extension of the right index finger, extension of the left index finger). The somatosensory stimulation was used to both generate neural responses and trigger voluntary movement and therefore was regarded as a task-relevant signal. The responses were recorded using a whole-head MEG system. The P35m response around the SI was reduced in magnitude without alteration of the primary SI response, N20m, when the signal triggered a voluntary movement compared to the control condition, whereas bilateral SII responses peaking at 70-100 ms were enhanced and the peak latency was shortened. The peak latency of the responses in the SI and SII preceded the onset of the earliest voluntary muscle activation in each subject. Later bilateral perisylvian responses were also enhanced with movement. In conclusion, neural activities in the SI and SII evoked by task-relevant somatosensory signals are regulated differently by motor-related neural activities before the afferent inputs. The present findings indicate a difference in function between the SI and SII in somatosensory-motor regulation.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Kida T, Wasaka T, Nakata H, Akatsuka K, Kakigi R. Centrifugal regulation of a task-relevant somatosensory signal triggering voluntary movement without a preceding warning signal. Exp Brain Res 2006; 173:733-41. [PMID: 16636794 DOI: 10.1007/s00221-006-0448-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
A warning signal followed by an imperative signal generates anticipatory and preparatory activities, which regulate sensory evoked neuronal activities through a top-down centrifugal mechanism. The present study investigated the centrifugal regulation of neuronal responses evoked by a task-relevant somatosensory signal, which triggers a voluntary movement without a warning signal. Eleven healthy adults participated in this study. Electrical stimulation was delivered to the right median nerve at a random interstimulus interval (1.75-2.25 s). The participants were instructed to extend the second digit of the right hand as fast as possible when the electrical stimulus was presented (ipsilateral reaction condition), or extend that of the left hand (contralateral reaction condition). They also executed repetitively extension of the right second digit at a rate of about 0.5 Hz, irrespective of electrical stimulation (movement condition), to count silently the number of stimuli (counting condition). In the control condition, they had no task to perform. The amplitude of short-latency somatosensory evoked potentials, the central P25, frontal N30, and parietal P30, was significantly reduced in both movement and ipsilateral reaction conditions compared to the control condition. The amplitude of long-latency P80 was significantly enhanced only in the ipsilateral reaction condition compared to the control, movement, contralateral reaction, and counting conditions. The long-latency N140 was significantly enhanced in both movement and ipsilateral reaction conditions compared to the control condition. In conclusion, short- and long-latency neuronal activities evoked by task-relevant somatosensory signals were regulated differently through a centrifugal mechanism even when the signal triggered a voluntary movement without a warning signal. The facilitation of activities at a latency of around 80 ms is associated with gain enhancement of the task-relevant signals from the body part involved in the action, whereas that at a latency of around 140 ms is associated with unspecific gain regulation generally induced by voluntary movement. These may be dissociated from the simple effect of directing attention to the stimulation.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | | | |
Collapse
|
27
|
Vrána J, Polácek H, Stancák A. Somatosensory-evoked potentials are influenced differently by isometric muscle contraction of stimulated and non-stimulated hand in humans. Neurosci Lett 2005; 386:170-5. [PMID: 15998566 DOI: 10.1016/j.neulet.2005.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
Chronic pain is associated with motor dysfunctions, and stimulation of the motor cortex has been shown to alleviate chronic pain. Recently Nakata et al. [Pain 107 (2004) 91-98] showed differentiated patterns of neuromagnetic evoked fields following painful laser stimulation during phasic movements of stimulated and non-stimulated hand. Phasic movements and static contractions differ in their functional activation of the motor cortices. Therefore, we decided to analyze the effects of isometric contractions of intrinsic right and left hand muscles on cortical sources of somatic-evoked potentials related to a painful galvanic stimulation of the right middle finger. Using spatio-temporal source dipole analysis of 111 electroencephalographic signals in 10 right-handed men, source activities were evaluated in the left primary somatosensory cortex (S1), left (S2(L)) and right (S2(R)) secondary somatosensory cortex, anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC). Ipsilateral hand muscle contraction was associated with a decrease of source activity in S1 and with subsequent increases in S2(L) and the PCC. Contralateral hand muscle contraction was accompanied by a decrease of source activity in bilateral S2 cortices followed by decreases in the S1 and anterior cingulate cortex. Results suggest early suppression of source activity in S1 during ipsilateral hand muscle contractions and in bilateral S2 during contralateral hand muscle contractions.
Collapse
Affiliation(s)
- Jirí Vrána
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University Prague, Ke Karlovu 4, 120 00 Prague, Czech Republic
| | | | | |
Collapse
|
28
|
Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R. Differential modulation in human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci 2005; 22:1239-47. [PMID: 16176367 DOI: 10.1111/j.1460-9568.2005.04289.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To elucidate the mechanisms underlying sensorimotor integration, we investigated modulation in the primary (SI) and secondary (SII) somatosensory cortices during the preparatory period of a self-initiated finger extension. Electrical stimulation of the right median nerve was applied continuously, while the subjects performed a self-initiated finger extension and were instructed not to pay attention to the stimulation. The preparatory period was divided into five sub-periods from the onset of the electromyogram to 3000 ms before movement and the magnetoencephalogram signals following stimulation in each sub-period were averaged. Multiple source analysis indicated that the equivalent current dipoles (ECDs) were located in SI and bilateral SII. Although the ECD moment for N 20 m (the upward deflection peaking at around 20 ms) was not significantly changed, that for P 30 m (the downward deflection peaking at around 30 m) was significantly smaller in the 0- to -500-ms sub-period than the -2000- to -3000-ms sub-period. As for SII, the ECD moment for the SII ipsilateral to movement showed no significant change, while that for the contralateral SII was significantly larger in the 0- to -500-ms sub-period than the -1500- to -2000-ms or -2000- to -3000-ms sub-period. The opposite effects of movement on SI and SII cortices indicated that these cortical areas play a different role in the function of the sensorimotor integration and are affected differently by the centrifugal process.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Lin YY, Chen WT, Liao KK, Yeh TC, Wu ZA, Ho LT, Lee LS. Differential generators for N20m and P35m responses to median nerve stimulation. Neuroimage 2005; 25:1090-9. [PMID: 15850727 DOI: 10.1016/j.neuroimage.2004.12.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 11/18/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022] Open
Abstract
To study the spatial and behavioral dynamics of cortical sources for N20m and P35m at varying stimulus intensities, we measured neuromagnetic cortical responses to left electric median nerve stimulation at the wrist in 17 male healthy adults. The stimulus intensity levels were individually determined according to sensory threshold (ST) for perceiving electric pulses. Using equivalent current dipole (ECD) modeling, we analyzed the peak latencies, amplitudes, and locations of ECDs from 14 subjects for N20m and P35m elicited at 2 ST, 3 ST, and 4 ST. Compared with N20m, P35m was localized 3.3 +/- 0.6 mm more superiorly at 2-4 ST, and 2.9 +/- 1.2 mm more medially at 3-4 ST. Superimposed over subjects' own MR images, N20m ECDs were localized in the area of 3b contralateral to stimulus side in all 17 subjects at 3 ST, whereas P35m ECDs were localized either in the postcentral (in 14 subjects) or in the precentral areas (in 3 subjects). We found no clear correlation between N20m and P35m in terms of peak latencies as well as the corresponding growth of activation strengths along with stepwise increase in stimulus intensity. Our results imply that the two early SEF components, N20m and P35m, have differential cortical generators, with distinctive neurophysiological behaviors in response to varying stimulus intensity levels.
Collapse
Affiliation(s)
- Yung-Yang Lin
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wasaka T, Nakata H, Kida T, Kakigi R. Gating of SEPs by contraction of the contralateral homologous muscle during the preparatory period of self-initiated plantar flexion. ACTA ACUST UNITED AC 2005; 23:354-60. [PMID: 15820642 DOI: 10.1016/j.cogbrainres.2004.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 11/28/2022]
Abstract
To investigate the centrifugal change in somatosensory information processing caused by contraction of the contralateral homologous muscle, we recorded the somatosensory-evoked potentials (SEPs) during the preparatory period of a self-initiated plantar flexion. The SEPs following stimulation of the right tibial nerve at the popliteal fossa were recorded in nine healthy subjects. Self-initiated plantar flexion of the left ankle was performed once every 5 to 7 s. The electrical stimulation was delivered continuously, and the subjects were instructed to concentrate on the movement and not to pay attention to the electrical stimulation. Based on the components of movement-related cortical potential, Bereitschaftspotential (BP) and Negative slope (NS), the preparatory period was divided into four sub-periods (NS, BP-1, BP-2, and Pre-BP). To obtain pre-movement SEPs, the signals following stimulation in each sub-period were averaged. SEPs were attenuated in the preparatory period, especially in the NS sub-period. The amplitude of N40 component was significantly attenuated compared with that in the stationary state and other sub-periods. The amplitude of P53 and N70 was smaller in the NS sub-period than other pre-movement sub-periods. Since there was no centripetal effect on SEPs in the preparatory period, these findings suggested that the activity of motor-related areas modulated the somatosensory information from the contralateral non-movement limb (centrifugal gating). It was assumed that an inhibition on the somatosensory inputs from contralateral limb was caused by the projection via either the corpus callosum or ipsilateral cortico-cortical projections.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrated Physiology, National Institute for Physiological Sciences, 38 Nishigonaka Myoudaiji, 444-8585 Okazaki, Japan.
| | | | | | | |
Collapse
|
31
|
Horie N, Inoue K, Shirai T, Hashizume A, Nakanishi K, Harada T, Kawakami H, Kohriyama T, Mimori Y, Matsumoto M. Activation of human SII cortex during exploratory finger movement and hand clenching tasks. Neuroreport 2005; 16:145-8. [PMID: 15671865 DOI: 10.1097/00001756-200502080-00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used electric median nerve stimuli to elucidate the functional properties of neurons in the human secondary somatosensory cortex during exploration of small objects and muscle contraction. Somatosensory evoked fields were recorded from nine healthy subjects with a 204-channel neuromagnetometer. Electrical stimuli were applied once every 3 s to the left median nerve at the wrist. The conditions during the stimulation were rest (control session), exploration of small objects (exploration session) and clenching the hand while the wrist was being electrically stimulated (clench session). The strengths of equivalent current dipoles of evoked fields from the secondary somatosensory cortex were increased during the exploration session, but those of evoked fields were decreased by the clench session.
Collapse
Affiliation(s)
- Nobuko Horie
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T. Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol 2004; 115:2223-30. [PMID: 15351362 DOI: 10.1016/j.clinph.2004.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2004] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated modulation of the short- and long-latency somatosensory evoked potentials (SEPs) in a forewarned reaction time task. METHODS A pair of warning (auditory) and imperative stimuli (somatosensory) was presented with a 2 s interstimulus interval. In movement condition, subjects responded by grip movement with the ipsilateral hand to the somatosensory stimulation when the imperative stimulus was presented. In counting condition, they silently counted the number of imperative stimuli. The SEPs in response to the imperative stimuli were recorded. RESULTS Frontal N30 and central N60 amplitudes were significantly smaller in the movement than in the counting or rest conditions. None of the short-latency components differed between the counting and rest conditions. In contrast to the short-latency components, P80 was significantly larger in the counting than in the rest condition, and showed a further increase from the counting to the movement condition. The N140 amplitude was significantly larger in the movement than the rest condition, but was not changed between the counting and the rest conditions. CONCLUSIONS The attenuation of the frontal N30 and central N60, and the enhancement of the P80 and possibly the N140 resulted from the centrifugal mechanism. The present findings may show the different effects of voluntary movement on the early and subsequent cortical processing of the relevant somatosensory information requiring a behavioral response. SIGNIFICANCE The present study demonstrated the differential modulation of short- and long-latency components of SEPs in a forewarned reaction time task.
Collapse
Affiliation(s)
- Tetsuo Kida
- Doctoral program in Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
33
|
Nakata H, Inui K, Wasaka T, Tamura Y, Tran TD, Qiu Y, Wang X, Nguyen TB, Kakigi R. Movements modulate cortical activities evoked by noxious stimulation. Pain 2004; 107:91-8. [PMID: 14715394 DOI: 10.1016/j.pain.2003.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To evaluate the effects of movement on cortical activities evoked by noxious stimulation, we recorded magnetoencephalography following noxious YAG laser stimulation applied to the dorsum of the left hand in normal volunteers. Results of the present study can be summarized as follows: (1) active movement of the hand ipsilateral to the side of noxious stimulation resulted in significant attenuation of both primary and secondary somatosensory cortices (SI and SII) in the hemisphere contralateral to the stimulated hand (cSI and cSII). Activity in the hemisphere ipsilateral to the side of stimulation (iSII) was not affected. (2) Active movement of the hand contralateral to the side of noxious stimulation resulted in significant attenuation of cSII. Activity in cSI and iSII was not affected. (3) Passive movement of the hand ipsilateral to the side of noxious stimulation resulted in significant attenuation of cSI. Activity in cSII and iSII was not affected. (4) Visual analogue scale (VAS) changes showed a similar pattern to the amplitude changes of cSII. These results suggest that activities in three regions are modulated by movements differently. Inhibition in cSI was considered to be mainly due to an interaction in SI by the signals ascending from the stimulated and movement hand. Inhibition in cSII was considered to be mainly due to particular brain activities relating to motor execution and/or movement execution associated with a specific attention effect. In addition, since VAS changes showed a similar relationship with the amplitude changes of cSII, cSII may play a role in pain perception.
Collapse
Affiliation(s)
- Hiroki Nakata
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin YY, Shih YH, Chen JT, Hsieh JC, Yeh TC, Liao KK, Kao CD, Lin KP, Wu ZA, Ho LT. Differential effects of stimulus intensity on peripheral and neuromagnetic cortical responses to median nerve stimulation. Neuroimage 2003; 20:909-17. [PMID: 14568461 DOI: 10.1016/s1053-8119(03)00387-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 06/09/2003] [Accepted: 06/23/2003] [Indexed: 11/28/2022] Open
Abstract
To study the differential effects of tactile stimulus intensity on cortical and peripheral responses, we measured neuromagnetic cortical responses, compound muscle action potentials (CMAP), sensory nerve action potentials (SNAP), and the subjective estimation of tactile magnitude to electric median nerve stimulation at the wrist in 13 male healthy adults. The sensory perception threshold (ST) for electric pulses at wrist skin was determined and then various levels of stimulus intensity (1 approximately 6 ST) were given to each subject. At 1 ST, only the P50m components of the primary somatosensory (SI) cortical responses were recorded. The second somatosensory (SII) cortical responses were saturated at 2 ST, while the SI responses reached maximum at 3 ST equivalent to the subjective threshold intensity for "strong" tactility. The CMAP and SNAP were maximum at 4-5 ST. At 2 ST, >70% of maximum SI responses were produced, whereas only <40% of maximum CMAP or SNAP responses were obtained. We concluded that the stimulus intensities for activating or saturating somatosensory cortical responses were lower than those for CMAP and SNAP. The differential intensity effects on cortical and peripheral responses suggest a polysynaptic organization underlying the central amplification for somatosensory cortical activation. The optimal intensity levels for producing maximum SI and SII responses were 3 and 2 ST, respectively. Compared with the SII, the SI plays a crucial role in the coding of the tactile stimulus intensity.
Collapse
Affiliation(s)
- Yung-Yang Lin
- Integrated Brain Research Unit, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lin YY, Chang KP, Hsieh JC, Yeh TC, Yu HY, Kwan SY, Yen DJ, Yiu CH, Hari R. Magnetoencephalographic analysis of bilaterally synchronous discharges in benign rolandic epilepsy of childhood. Seizure 2003; 12:448-55. [PMID: 12967572 DOI: 10.1016/s1059-1311(03)00002-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to examine the spatial and temporal relationship between bilateral foci of bilaterally synchronous discharges in benign rolandic epilepsy of childhood (BREC) using a whole-scalp neuromagnetometer. We simultaneously recorded interictal magnetoencephalographic (MEG) and electroencephalographic (EEG) signals in six children with BREC. Interictal spikes were classified into three groups: bilaterally synchronous discharges (BSDs), unilateral discharges on right side (UD-R), and unilateral discharges on left side (UD-L). We used equivalent current dipole (ECD) modelling to analyse the cortical sources of interictal spikes. Both BSDs and UDs were found in Patients 1-4, whereas only UDs were identified in Patients 5 and 6. The ECDs of interictal spikes were located in rolandic regions, 10-20mm anterior and lateral to hand somatosensory cortices. Multi-dipole analysis of BSDs showed two ECDs in homotopic motor areas of the hemispheres. During BSDs, the right-sided activation preceded the left-sided activation by 15-21 milliseconds in Patients 1 and 2. In Patients 3 and 4, the activation occurred 17-20 milliseconds earlier in the left than the right hemisphere. Within the same hemisphere, the sources of BSDs and UDs were located in similar areas. In conclusion, our results imply the cortical epileptogenicity in bilateral perirolandic areas in BREC. The sequential activation during BSDs in both hemispheres suggest the existence of synaptic connections, possibly via the corpus callosum, between bilateral irritative foci.
Collapse
Affiliation(s)
- Yung-Yang Lin
- Integrated Brain Research Unit, Department of Medical Research and Education, Taipei Veterans General Hospital, No 201, Sector 2, Shih-Pai Road, Taipei 11217, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Disbrow E, Litinas E, Recanzone GH, Padberg J, Krubitzer L. Cortical connections of the second somatosensory area and the parietal ventral area in macaque monkeys. J Comp Neurol 2003; 462:382-99. [PMID: 12811808 DOI: 10.1002/cne.10731] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To gain insight into how cortical fields process somatic inputs and ultimately contribute to complex abilities such as tactile object perception, we examined the pattern of connections of two areas in the lateral sulcus of macaque monkeys: the second somatosensory area (S2), and the parietal ventral area (PV). Neuroanatomical tracers were injected into electrophysiologically and/or architectonically defined locations, and labeled cell bodies were identified in cortex ipsilateral and contralateral to the injection site. Transported tracer was related to architectonically defined boundaries so that the full complement of connections of S2 and PV could be appreciated. Our results indicate that S2 is densely interconnected with the primary somatosensory area (3b), PV, and area 7b of the ipsilateral hemisphere, and with S2, 7b, and 3b in the opposite hemisphere. PV is interconnected with areas 3b and 7b, with the parietal rostroventral area, premotor cortex, posterior parietal cortex, and with the medial auditory belt areas. Contralateral connections were restricted to PV in the opposite hemisphere. These data indicate that S2 and PV have unique and overlapping patterns of connections, and that they comprise part of a network that processes both cutaneous and proprioceptive inputs necessary for tactile discrimination and recognition. Although more data are needed, these patterns of interconnections of cortical fields and thalamic nuclei suggest that the somatosensory system may not be segregated into two separate streams of information processing, as has been hypothesized for the visual system. Rather, some fields may be involved in a variety of functions that require motor and sensory integration.
Collapse
Affiliation(s)
- Elizabeth Disbrow
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
37
|
Lin YY, Wu ZA, Hsieh JC, Yu HY, Kwan SY, Yen DJ, Yiu CH, Ho LT. Magnetoencephalographic study of rhythmic mid-temporal discharges in non-epileptic and epileptic patients. Seizure 2003; 12:220-5. [PMID: 12763469 DOI: 10.1016/s1059-1311(02)00264-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To evaluate the source location and clinical significance of rhythmic mid-temporal theta discharges (RMTD) by MEG in non-epileptic and epileptic patients, we conducted simultaneous MEG and EEG recordings with a whole-scalp 306-channel neuromagnetometer in three patients: one with right temporal lobe epilepsy (TLE), one with right frontal lobe epilepsy (FLE), and one with tension headache. We visually detected the RMTD activity and interictal spikes, and then localised their generators by MEG source modelling. We repeated MEG measurement 3 months after right anterior temporal lobectomy (ATL) in the TLE patient; 3 months after anticonvulsant medication in the FLE patient. In epileptic patients, RMTD activities were found during drowsiness over the left temporal channels of both MEG and EEG recordings, and their generators were localised to the left posterior inferior temporal region. In the patient with tension headache, RMTD was localised in the right inferior temporal area. When the epileptic patients became seizure free with disappearance of epileptic spikes, RMTD was still found over the left temporal channels. Besides, some bursts of RMTD appeared also in the right temporal channels in our TLE patient after ATL. Our results indicate that the source of RMTD activity is located in the fissural cortex of the posterior inferior temporal region. As a physiologic rhythm related to dampened vigilance, RMTD has no direct relation to epileptogenic activity.
Collapse
Affiliation(s)
- Y-Y Lin
- Integrated Brain Research Unit, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
OBJECTIVE To explore the somatosensory cortical responses to natural moving tactile stimulation in adult subjects using magnetoencephalography. METHODS We measured cortical somatosensory magnetic evoked fields (SEFs) to moving tactile stimuli by a brush over the right thumb once every 1.5 s in seven subjects. Electric SEFs with various intensity or simulated jitter were used for comparison. RESULTS Tactile SEFs in primary somatosensory cortex (SI) consisted of two deflections: N24mT and P55mT. Electric SEFs consisted of N24mE, P30mE, P40mE, and P55mE. The amplitude of N24mT was only 34% +/- 12% of N24mE, whereas P55mT and P55mE were of about the same size. With increased jitter or decreased intensity, attenuation of electric SEFs was more clearly found in early deflection than late deflection. CONCLUSIONS Natural moving tactile stimulation produced simpler cortical somatosensory waveforms in comparison with electric SEFs, partly related to less sharp intensity and stimulation jitter with moving tactile stimulation. We propose that of all the afferent fibers conveying the early deflection, the low threshold components participate the generation of the late deflection.
Collapse
Affiliation(s)
- Yung-Yang Lin
- Integrated Brain Research Unit, Department of Medical Research and Education, and Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | |
Collapse
|
39
|
Kanno A, Nakasato N, Hatanaka K, Yoshimoto T. Ipsilateral area 3b responses to median nerve somatosensory stimulation. Neuroimage 2003; 18:169-77. [PMID: 12507453 DOI: 10.1006/nimg.2002.1283] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Magnetoencephalography investigation of the somatosensory evoked fields for median nerve stimulation detected ipsilateral area 3b responses in 18 hemispheres of 14 (1 normal subject and 13 patients with brain diseases) among 482 consecutive subjects. The major three peaks in the ipsilateral response were named iP50m, iN75m, and iP100m, based on the current orientation in the posterior, anterior, and posterior directions and the latency of 52.7 +/- 6.2, 74.1 +/- 9.4, and 100.2 +/- 15.8 ms (mean +/- standard deviation), respectively. The moment of the iP50m dipole (9.4 +/- 5.7 nAm) was significantly smaller than that of the N20m dipole of the contralateral response (cN20m, 27.5 +/- 10.5 nAm, P < 0.0001). Dipoles of iP50m and cN20m were similarly localized on the posterior bank of the central sulcus. iP50m in the present study had the same current orientation as and peak latency similar to that of the first ipsilateral primary somatosensory response to lip stimulation in our previous report. Therefore, the somatosensory afferent pathway from the hand may reach directly to the ipsilateral area 3b at least in part of the human population.
Collapse
Affiliation(s)
- Akitake Kanno
- Ryogo Center, Kohnan Hospital, 4-20-1 Nagamachi-minami, Taihaku-ku, Sendai, Japan
| | | | | | | |
Collapse
|
40
|
Park ES, Park CI, Kim DY, Kim YR. The effect of spasticity on cortical somatosensory-evoked potentials: changes of cortical somatosensory-evoked potentials after botulinum toxin type A injection. Arch Phys Med Rehabil 2002; 83:1592-6. [PMID: 12422331 DOI: 10.1053/apmr.2002.34623] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the changes in cortical somatosensory-evoked potentials (SEPs) after botulinum toxin type A injection to determine what effect spasticity has on cortical SEPs. DESIGN Intervention study and before-after trial. SETTING University-affiliated hospital in Korea. PARTICIPANTS Twelve children with spastic hemiplegic cerebral palsy (CP), 7 children with spastic diplegic CP, and 8 patients with traumatic brain injury. INTERVENTION All participants had botulinum toxin type A injected into the muscles of the spastic limb. MAIN OUTCOME MEASURES SEPs were recorded before and 7 days after the botulinum toxin type A injection. Spasticity of the affected spastic limb was also measured. The short latency and amplitude of waves in SEPs were measured. The SEP results were divided into 3 groups: flat (no evoked potential), abnormal (evoked but delayed in latency), and normal (clear waveform with normal latency). RESULTS The normal response of cortical SEP increased after injection. The SEPs exhibited more frequent improvement in the limbs, with greater improvement of spasticity in grade (>1.0 grade) and in patients of younger age (<3y) after injection (P<.05). CONCLUSION The observed improvement of cortical SEPs with associated reduction of spasticity that occurred after the botulinum toxin type A injection indicates that spasticity itself can be considered a factor affecting cortical SEPs.
Collapse
Affiliation(s)
- Eun Sook Park
- Rehabilitation Department, Yonsei University College of Medicine, #120-752 Seoul, Korea
| | | | | | | |
Collapse
|
41
|
Lin YY, Forss N. Functional characterization of human second somatosensory cortex by magnetoencephalography. Behav Brain Res 2002; 135:141-5. [PMID: 12356444 DOI: 10.1016/s0166-4328(02)00143-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Magnetoencephalographic (MEG) recordings allow noninvasive monitoring of simultaneously active brain areas with reasonable spatial and excellent temporal resolution. Whole-scalp neuromagnetic recordings show activation of contralateral primary (SI) and bilateral second (SII) somatosensory cortices to unilateral median nerve stimulation. Recent MEG studies on healthy and diseased human subjects have shown some functional characteristics of SII cortex. Besides tactile input, the SII cortex also responds to nociceptive afferents. The SII activation is differentially modulated by isometric muscle contraction of various body parts. Lesions in the SII cortex may disturb the self-perception of body scheme. Moreover, the SI and SII cortices may be sequentially activated within one hemisphere, but the SII cortex may also receive direct peripheral input on the ipsilateral side.
Collapse
Affiliation(s)
- Y Y Lin
- Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT Espoo, Finland.
| | | |
Collapse
|
42
|
Narici L, Forss N, Jousmäki V, Peresson M, Hari R. Evidence for a 7- to 9-Hz "sigma" rhythm in the human SII cortex. Neuroimage 2001; 13:662-8. [PMID: 11305895 DOI: 10.1006/nimg.2000.0725] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical activity of the human brain features several rhythmical components which can be readily studied with whole-scalp neuromagnetometers. We describe a new 7- to 9-Hz "sigma" rhythm in the human second somatosensory cortex, distinct from both the mu rhythm of the primary sensorimotor cortex and the tau rhythm of the supratemporal auditory cortex. Sigma shows rate-selective responsiveness to rhythmical median nerve stimulation and is enhanced by stimulation at the rhythm's dominant frequency. Single stimuli may trigger several periods of the rhythm. The functional significance of the sigma rhythm remains to be investigated.
Collapse
Affiliation(s)
- L Narici
- Brain Research Unit, Helsinki University of Technology, Espoo, FIN-02015 HUT, Finland
| | | | | | | | | |
Collapse
|
43
|
Forss N, Sil�n T, Karjalainen T. Lack of activation of human secondary somatosensory cortex in Unverricht-Lundborg type of progressive myoclonus epilepsy. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200101)49:1<90::aid-ana12>3.0.co;2-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|