1
|
Tomasino B, Canderan C, Rumiati RI. Instruction-induced modulation of the visual stream during gesture observation. Neuropsychologia 2025; 208:109078. [PMID: 39848316 DOI: 10.1016/j.neuropsychologia.2025.109078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus. MT (vs HT) differentially activated the left and right calcarine cortex, the fusiform gyrus bilaterally, the left inferior temporal gyrus, the left and right hippocampus and parahippocampal gyri, and the temporal pole bilaterally. Processing the actor's moving hand modulates the dorsal action observation network (while processing gesture meaning modulates the ventral object recognition stream). The present results suggest instruction-induced modulation on the visual stream during gesture observation.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute IRCCS "Eugenio Medea", Polo FVG, Pasian di Prato (UD), Italy.
| | - Cinzia Canderan
- Scientific Institute IRCCS "Eugenio Medea", Polo FVG, Pasian di Prato (UD), Italy
| | - Raffaella I Rumiati
- Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy
| |
Collapse
|
2
|
Bechi Gabrielli G, D'Antonio F, Di Vita A, Margiotta R, Panigutti M, Boccia M, Piccardi L, Palermo L, Salati E, Sepe Monti M, Talarico G, Bruno G, Guariglia C. Mind's eye in the Alzheimer's disease spectrum continuum. J Alzheimers Dis 2025; 103:194-207. [PMID: 39610295 DOI: 10.1177/13872877241299134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Visual mental imagery (VMI) is the ability to represent stimuli in the mind without sensory visual input. Previous studies have shown alterations in VMI in Alzheimer's disease (AD). However, VMI has not been investigated in the AD prodromal stage, mild cognitive impairment (MCI). OBJECTIVE We investigated VMI ability in mild AD and MCI patients, hypothesizing that VMI ability could be compromised since early disease stage. METHODS We enrolled 14 patients with mild AD, 19 amnestic MCI (aMCI), and 23 healthy control subjects (HC), matched for sex, age, and education. VMI assessment included: 1) the O'clock test that allows disentangling the possible role of visuo-perceptual difficulties in the VMI task's performance; 2) a modified version of The Complete Visual Mental Imagery Battery (CVMIB), including tasks evaluating the different VMI processes (generation, maintenance, inspection and transformation). RESULTS Results indicated that AD patients performed worse than HC in both perceptual and imaginal tasks of the O'clock test and in all CVMIB's tasks but maintenance. On the contrary, aMCI patients showed difficulties in the generation process and in the imaginal task of the O'clock test. CONCLUSIONS Visual images generation, inspection and transformation processes are impaired in mild AD. Moreover, the generation process is selectively impaired in aMCI patients, suggesting that VMI deficits are already present in the prodromal stage of AD.
Collapse
Affiliation(s)
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonella Di Vita
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Roberta Margiotta
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Laura Piccardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Cassino San Raffaele Hospital, Cassino (FR), Italy
| | - Liana Palermo
- Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy
| | - Emanuela Salati
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Micaela Sepe Monti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cecilia Guariglia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Farraj N, Reiner M. Applications of Alpha Neurofeedback Processes for Enhanced Mental Manipulation of Unfamiliar Molecular and Spatial Structures. Appl Psychophysiol Biofeedback 2024; 49:365-382. [PMID: 38722457 DOI: 10.1007/s10484-024-09640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 08/09/2024]
Abstract
This study explores a novel approach to enhancing cognitive proficiency by targeting neural mechanisms that facilitate science and math learning, especially mental rotation. The study specifically examines the relationship between upper alpha intensity and mental rotation skills. Although prior neurofeedback research for increasing upper alpha highlights this correlation, mostly with familiar objects, novel chemistry and math learning prompts envisioning unfamiliar objects which question the persistence of this correlation. This study revisits the upper alpha and mental rotation relationship in the context of unfamiliar objects with a single neurofeedback session and examines the efficiency of manual and automatic neurofeedback protocols. Results will provide a basis for integrating neurofeedback protocols into learning applications for enhanced learning. Our study encompassed three cohorts: Group 1 experienced an automatic neurofeedback protocol, Group 2 received a manual neurofeedback protocol, and the control group had no neurofeedback intervention. The experimental phases involved EEG measurement of individual upper alpha (frequency of maximal power + 2 Hz) intensity, mental rotation tasks featuring geometric and unfamiliar molecular stimuli, one neurofeedback session for applicable groups, post-treatment upper alpha level assessments, and a mental rotation retest. The neurofeedback groups exhibited increased levels of upper alpha power, which was correlated with improved response time in mental rotation, regardless of stimulus type, compared to the control group. Both neurofeedback protocols achieved comparable results. This study advocates integrating neurofeedback into learning software for optimal learning experiences, highlighting a single session's efficacy and the substantial neurofeedback protocol's impact in enhancing upper alpha oscillations.
Collapse
Affiliation(s)
- Nehai Farraj
- Faculty of Education in Science and Technology, Technion Israel Institute of Technology, Haifa, Israel.
| | - Miriam Reiner
- Faculty of Education in Science and Technology, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Whittaker HT, Khayyat L, Fortier-Lavallée J, Laverdière M, Bélanger C, Zatorre RJ, Albouy P. Information-based rhythmic transcranial magnetic stimulation to accelerate learning during auditory working memory training: a proof-of-concept study. Front Neurosci 2024; 18:1355565. [PMID: 38638697 PMCID: PMC11024337 DOI: 10.3389/fnins.2024.1355565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.
Collapse
Affiliation(s)
- Heather T. Whittaker
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Lina Khayyat
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Megan Laverdière
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Carole Bélanger
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| |
Collapse
|
5
|
Günseli E, Foster JJ, Sutterer DW, Todorova L, Vogel EK, Awh E. Encoded and updated spatial working memories share a common representational format in alpha activity. iScience 2024; 27:108963. [PMID: 38333713 PMCID: PMC10850742 DOI: 10.1016/j.isci.2024.108963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Working memory (WM) flexibly updates information to adapt to the dynamic environment. Here, we used alpha-band activity in the EEG to reconstruct the content of dynamic WM updates and compared this representational format to static WM content. An inverted encoding model using alpha activity precisely tracked both the initially encoded position and the updated position following an auditory cue signaling mental updating. The timing of the update, as tracked in the EEG, correlated with reaction times and saccade latency. Finally, cross-training analyses revealed a robust generalization of alpha-band reconstruction of WM contents before and after updating. These findings demonstrate that alpha activity tracks the dynamic updates to spatial WM and that the format of this activity is preserved across the encoded and updated representations. Thus, our results highlight a new approach for measuring updates to WM and show common representational formats during dynamic mental updating and static storage.
Collapse
Affiliation(s)
- Eren Günseli
- Department of Psychology, Sabancı University, Istanbul, Turkey
| | - Joshua J. Foster
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - David W. Sutterer
- Department of Psychology, University of Tennessee, Knoxville, TN, USA
| | - Lara Todorova
- Department of Psychology, Sabancı University, Istanbul, Turkey
| | - Edward K. Vogel
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Edward Awh
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Doganci N, Yahia Coll S, Marti E, Ptak R. Anatomical predictors of mental rotation with bodily and non-bodily stimuli: A lesion-symptom study. Neuropsychologia 2024; 193:108775. [PMID: 38135209 DOI: 10.1016/j.neuropsychologia.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Mental rotation (MR) is widely regarded as a quintessential example of an embodied cognitive process. This viewpoint stems from the functional parallels between MR and the physical rotation of tangible objects, as well as participants' inclination to employ motor-based strategies when tackling MR tasks involving bodily stimuli. These commonalities imply that MR may depend on brain regions crucial for the planning and execution of motor programs. However, there is disagreement regarding the anatomy of MR between findings from functional imaging and lesion studies involving brain-injured patients. The former indicate the involvement of the right-hemispheric parietal cortex, while the latter underscore the significance of posterior areas in the left hemisphere. In this study, we aimed to discern the neural underpinnings of MR using lesion-symptom mapping (LSM) for both bodily (hands) and non-bodily (letters) stimuli. Behavioral results from the two MR tasks revealed impaired MR of bodily stimuli in patients with left hemisphere damage. LSM results pinpointed the left primary motor and somatosensory cortices, along with the superior parietal lobule, as the anatomical substrates of MR for both bodily and non-bodily stimuli. Furthermore, damage to the left angular gyrus, supramarginal gyrus, supplementary motor area, and retrosplenial cortex was associated with MR of non-bodily stimuli. These findings support the causal involvement of the left hemisphere in MR and underscore the existence of a common anatomical substrate in brain regions pertinent to motor planning and execution.
Collapse
Affiliation(s)
- Naz Doganci
- Laboratory of Cognitive Neurorehabilitation, Faculty of medicine, University of Geneva, 1206, Geneva, Switzerland.
| | - Sélim Yahia Coll
- Laboratory of Cognitive Neurorehabilitation, Faculty of medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Emilie Marti
- Laboratory of Cognitive Neurorehabilitation, Faculty of medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Radek Ptak
- Laboratory of Cognitive Neurorehabilitation, Faculty of medicine, University of Geneva, 1206, Geneva, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
7
|
Yang J, Chen K, Zhang J, Ma Y, Chen M, Shao H, Zhang X, Fan D, Wang Z, Sun Z, Wang J. Molecular mechanisms underlying human spatial cognitive ability revealed with neurotransmitter and transcriptomic mapping. Cereb Cortex 2023; 33:11320-11328. [PMID: 37804242 DOI: 10.1093/cercor/bhad368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
Mental rotation, one of the cores of spatial cognitive abilities, is closely associated with spatial processing and general intelligence. Although the brain underpinnings of mental rotation have been reported, the cellular and molecular mechanisms remain unexplored. Here, we used magnetic resonance imaging, a whole-brain spatial distribution atlas of 19 neurotransmitter receptors, transcriptomic data from Allen Human Brain Atlas, and mental rotation performances of 356 healthy individuals to identify the genetic/molecular foundation of mental rotation. We found significant associations of mental rotation performance with gray matter volume and fractional amplitude of low-frequency fluctuations in primary visual cortex, fusiform gyrus, primary sensory-motor cortex, and default mode network. Gray matter volume and fractional amplitude of low-frequency fluctuations in these brain areas also exhibited significant sex differences. Importantly, spatial correlation analyses were conducted between the spatial patterns of gray matter volume or fractional amplitude of low-frequency fluctuations with mental rotation and the spatial distribution patterns of neurotransmitter receptors and transcriptomic data, and identified the related genes and neurotransmitter receptors associated with mental rotation. These identified genes are localized on the X chromosome and are mainly involved in trans-synaptic signaling, transmembrane transport, and hormone response. Our findings provide initial evidence for the neural and molecular mechanisms underlying spatial cognitive ability.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Junyu Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Meiling Chen
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Xing Zhang
- The Second People's Hospital of Yuxi, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Defang Fan
- The Second People's Hospital of Yuxi, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenglong Sun
- Bio-imaging lab, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
8
|
Song Y, Shin W, Kim P, Jeong J. Neural representations for multi-context visuomotor adaptation and the impact of common representation on multi-task performance: a multivariate decoding approach. Front Hum Neurosci 2023; 17:1221944. [PMID: 37822708 PMCID: PMC10562562 DOI: 10.3389/fnhum.2023.1221944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
The human brain's remarkable motor adaptability stems from the formation of context representations and the use of a common context representation (e.g., an invariant task structure across task contexts) derived from structural learning. However, direct evaluation of context representations and structural learning in sensorimotor tasks remains limited. This study aimed to rigorously distinguish neural representations of visual, movement, and context levels crucial for multi-context visuomotor adaptation and investigate the association between representation commonality across task contexts and adaptation performance using multivariate decoding analysis with fMRI data. Here, we focused on three distinct task contexts, two of which share a rotation structure (i.e., visuomotor rotation contexts with -90° and +90° rotations, in which the mouse cursor's movement was rotated 90 degrees counterclockwise and clockwise relative to the hand-movement direction, respectively) and the remaining one does not (i.e., mirror-reversal context where the horizontal movement of the computer mouse was inverted). This study found that visual representations (i.e., visual direction) were decoded in the occipital area, while movement representations (i.e., hand-movement direction) were decoded across various visuomotor-related regions. These findings are consistent with prior research and the widely recognized roles of those areas. Task-context representations (i.e., either -90° rotation, +90° rotation, or mirror-reversal) were also distinguishable in various brain regions. Notably, these regions largely overlapped with those encoding visual and movement representations. This overlap suggests a potential intricate dependency of encoding visual and movement directions on the context information. Moreover, we discovered that higher task performance is associated with task-context representation commonality, as evidenced by negative correlations between task performance and task-context-decoding accuracy in various brain regions, potentially supporting structural learning. Importantly, despite limited similarities between tasks (e.g., rotation and mirror-reversal contexts), such association was still observed, suggesting an efficient mechanism in the brain that extracts commonalities from different task contexts (such as visuomotor rotations or mirror-reversal) at multiple structural levels, from high-level abstractions to lower-level details. In summary, while illuminating the intricate interplay between visuomotor processing and context information, our study highlights the efficiency of learning mechanisms, thereby paving the way for future exploration of the brain's versatile motor ability.
Collapse
Affiliation(s)
- Youngjo Song
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Wooree Shin
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Pyeongsoo Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
9
|
Borra D, Bossi F, Rivolta D, Magosso E. Deep learning applied to EEG source-data reveals both ventral and dorsal visual stream involvement in holistic processing of social stimuli. Sci Rep 2023; 13:7365. [PMID: 37147445 PMCID: PMC10162973 DOI: 10.1038/s41598-023-34487-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023] Open
Abstract
Perception of social stimuli (faces and bodies) relies on "holistic" (i.e., global) mechanisms, as supported by picture-plane inversion: perceiving inverted faces/bodies is harder than perceiving their upright counterpart. Albeit neuroimaging evidence suggested involvement of face-specific brain areas in holistic processing, their spatiotemporal dynamics and selectivity for social stimuli is still debated. Here, we investigate the spatiotemporal dynamics of holistic processing for faces, bodies and houses (adopted as control non-social category), by applying deep learning to high-density electroencephalographic signals (EEG) at source-level. Convolutional neural networks were trained to classify cortical EEG responses to stimulus orientation (upright/inverted), separately for each stimulus type (faces, bodies, houses), resulting to perform well above chance for faces and bodies, and close to chance for houses. By explaining network decision, the 150-200 ms time interval and few visual ventral-stream regions were identified as mostly relevant for discriminating face and body orientation (lateral occipital cortex, and for face only, precuneus cortex, fusiform and lingual gyri), together with two additional dorsal-stream areas (superior and inferior parietal cortices). Overall, the proposed approach is sensitive in detecting cortical activity underlying perceptual phenomena, and by maximally exploiting discriminant information contained in data, may reveal spatiotemporal features previously undisclosed, stimulating novel investigations.
Collapse
Affiliation(s)
- Davide Borra
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy
| | - Francesco Bossi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Elisa Magosso
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Cesena Campus, Cesena, Italy.
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Hiew S, Roothans J, Eldebakey H, Volkmann J, Zeller D, Reich MM. Imaging the Spin: Disentangling the Core Processes Underlying Mental Rotation by Network Mapping of Data From Meta-analysis. Neurosci Biobehav Rev 2023; 150:105187. [PMID: 37086933 DOI: 10.1016/j.neubiorev.2023.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Research on the mental rotation task has sparked debate regarding the specific processes that underly the capability of humans to mentally rotate objects. The spread of reported brain activations suggests that mental rotation is subserved by a neural network circle. However, no common network has yet been found that uncovers the crucial processes underlying this ability. We aimed to identify the common network crucial for mental rotation by coordinate-based network mapping of previous neuroimaging findings in mental rotation. A meta-analysis revealed 710 peak activation coordinates from 42 fMRI studies in mental rotation, which include a total 844 participants. The coordinates were mapped to a normative functional connectome (n = 1000) to identify a network of connected regions. To account for experimental factors, we examined this network against two control tasks, action imitation and symbolic number processing. A common and crucial network for mental rotation, centring on dorsal premotor, superior parietal and inferior temporal lobes was revealed. This network, separated from other experimental aspects, suggests that the crucial processes underlying mental rotation are motor rotation, visuospatial processing, and higher order visual object recognition.
Collapse
Affiliation(s)
- Shawn Hiew
- Department of Neurology, University Hospital of Würzburg, Germany.
| | - Jonas Roothans
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Hazem Eldebakey
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital of Würzburg, Germany
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Germany
| |
Collapse
|
11
|
Markov I, Kharitonova K, Grigorenko EL. Language: Its Origin and Ongoing Evolution. J Intell 2023; 11:61. [PMID: 37103246 PMCID: PMC10142271 DOI: 10.3390/jintelligence11040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
With the present paper, we sought to use research findings to illustrate the following thesis: the evolution of language follows the principles of human evolution. We argued that language does not exist for its own sake, it is one of a multitude of skills that developed to achieve a shared communicative goal, and all its features are reflective of this. Ongoing emerging language adaptations strive to better fit the present state of the human species. Theories of language have evolved from a single-modality to multimodal, from human-specific to usage-based and goal-driven. We proposed that language should be viewed as a multitude of communication techniques that have developed and are developing in response to selective pressure. The precise nature of language is shaped by the needs of the species (arguably, uniquely H. sapiens) utilizing it, and the emergence of new situational adaptations, as well as new forms and types of human language, demonstrates that language includes an act driven by a communicative goal. This article serves as an overview of the current state of psycholinguistic research on the topic of language evolution.
Collapse
Affiliation(s)
- Ilia Markov
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Texas Institute for Measurement, Evaluation, and Statistics (TIMES), The University of Houston, Houston, TX 77204, USA
- Center for Cognitive Sciences, Sirius University for Science and Technology, Sochi 354340, Russia
| | | | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, TX 77204, USA
- Texas Institute for Measurement, Evaluation, and Statistics (TIMES), The University of Houston, Houston, TX 77204, USA
- Center for Cognitive Sciences, Sirius University for Science and Technology, Sochi 354340, Russia
- Baylor College of Medicine, Houston, TX 77030, USA
- Child Study Center and Haskins Laboratories, Yale University, New Haven, CT 06520, USA
- Rector’s Office, Moscow State University for Psychology and Education, Moscow 127051, Russia
| |
Collapse
|
12
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Dziego CA, Bornkessel-Schlesewsky I, Jano S, Chatburn A, Schlesewsky M, Immink MA, Sinha R, Irons J, Schmitt M, Chen S, Cross ZR. Neural and cognitive correlates of performance in dynamic multi-modal settings. Neuropsychologia 2023; 180:108483. [PMID: 36638860 DOI: 10.1016/j.neuropsychologia.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The endeavour to understand human cognition has largely relied upon investigation of task-related brain activity. However, resting-state brain activity can also offer insights into individual information processing and performance capabilities. Previous research has identified electroencephalographic resting-state characteristics (most prominently: the individual alpha frequency; IAF) that predict cognitive function. However, it has largely overlooked a second component of electrophysiological signals: aperiodic 1/ƒ activity. The current study examined how both oscillatory and aperiodic resting-state EEG measures, alongside traditional cognitive tests, can predict performance in a dynamic and complex, semi-naturalistic cognitive task. Participants' resting-state EEG was recorded prior to engaging in a Target Motion Analysis (TMA) task in a simulated submarine control room environment (CRUSE), which required participants to integrate dynamically changing information over time. We demonstrated that the relationship between IAF and cognitive performance extends from simple cognitive tasks (e.g., digit span) to complex, dynamic measures of information processing. Further, our results showed that individual 1/ƒ parameters (slope and intercept) differentially predicted performance across practice and testing sessions, whereby flatter slopes and higher intercepts were associated with improved performance during learning. In addition to the EEG predictors, we demonstrate a link between cognitive skills most closely related to the TMA task (i.e., spatial imagery) and subsequent performance. Overall, the current study highlights (1) how resting-state metrics - both oscillatory and aperiodic - have the potential to index higher-order cognitive capacity, while (2) emphasising the importance of examining these electrophysiological components within more dynamic settings and over time.
Collapse
Affiliation(s)
- Chloe A Dziego
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia.
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Sophie Jano
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Maarten A Immink
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia; Sport, Health, Activity, Performance and Exercise (SHAPE) Research Centre, Flinders University, South Australia, Australia
| | - Ruchi Sinha
- Centre for Workplace Excellence, University of South Australia, 61-68 North Terrace, Adelaide, South Australia, Australia
| | - Jessica Irons
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Megan Schmitt
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Steph Chen
- Human and Decision Sciences Division, Defence Science and Technology Group, Australia
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Paul KI, Mueller K, Rousseau PN, Glathe A, Taatgen NA, Cnossen F, Lanzer P, Villringer A, Steele CJ. Visuo-motor transformations in the intraparietal sulcus mediate the acquisition of endovascular medical skill. Neuroimage 2023; 266:119781. [PMID: 36529202 DOI: 10.1016/j.neuroimage.2022.119781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Performing endovascular medical interventions safely and efficiently requires a diverse set of skills that need to be practised in dedicated training sessions. Here, we used multimodal magnetic resonance (MR) imaging to determine the structural and functional plasticity and core skills associated with skill acquisition. A training group learned to perform a simulator-based endovascular procedure, while a control group performed a simplified version of the task; multimodal MR images were acquired before and after training. Using a well-controlled interaction design, we found strong multimodal evidence for the role of the intraparietal sulcus (IPS) in endovascular skill acquisition that is in line with previous work implicating the structure in visuospatial transformations including simple visuo-motor and mental rotation tasks. Our results provide a unique window into the multimodal nature of rapid structural and functional plasticity of the human brain while learning a multifaceted and complex clinical skill. Further, our results provide a detailed description of the plasticity process associated with endovascular skill acquisition and highlight specific facets of skills that could enhance current medical pedagogy and be useful to explicitly target during clinical resident training.
Collapse
Affiliation(s)
- Katja I Paul
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands.
| | - Karsten Mueller
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Annegret Glathe
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Niels A Taatgen
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Fokie Cnossen
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Lanzer
- Mitteldeutsches Herzzentrum, Health Care Center Bitterfeld-Wolfen GmbH, Bitterfeld-Wolfen, Germany
| | - Arno Villringer
- Day Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin; Faculty of Medicine, University of Leipzig, Leipzig, Germany; Center for Stroke Research Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Christopher J Steele
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Department of Psychology, Concordia University, Montreal, Canada
| |
Collapse
|
15
|
Experimental evidence for involvement of monocular channels in mental rotation. Psychon Bull Rev 2022; 30:575-584. [PMID: 36279047 DOI: 10.3758/s13423-022-02195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
According to the prevailing view, cognitive processes of mental rotation are carried out by visuospatial perceptual circuits located primarily in high cortical areas. Here, we examined the functional involvement of (mostly subcortical) monocular channels in mental rotation tasks. Images of two rotated objects (0°, 50°, 100°, or 150°; identical or mirrored) were presented either to one eye (monocular) or segregated between the eyes (interocular). The results indicated a causal role for low monocular visual channels in mental rotation: Response times for identical ("same") objects at high angular disparities (100°, 150°) were shorter when both objects were presented to a single eye than when each object was presented to a different eye. We suggest that mental rotation processes rely on cortico-subcortical loops that support visuospatial perception. More generally, the findings highlight the potential contribution of lower-level mechanisms to what are typically considered to be high-level cognitive functions, such as mental representation.
Collapse
|
16
|
Schaefer SY, Hooyman A, Haikalis NK, Essikpe R, Lohse KR, Duff K, Wang P. Efficacy of Corsi Block Tapping Task training for improving visuospatial skills: a non-randomized two-group study. Exp Brain Res 2022; 240:3023-3032. [PMID: 36227343 PMCID: PMC9558013 DOI: 10.1007/s00221-022-06478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022]
Abstract
Even though impaired visuospatial abilities can negatively affect daily functioning, there are very few training programs that attempt to improve visuospatial abilities. The purpose of this study was to examine if a single training session with a computerized version of the Corsi Block Tapping Task could improve mental rotation skills. Fifty-three young adults were assigned to one of two groups: (1) control group (mean age = 21.4; 10 females), who had 20 min of rest after their baseline assessment, or (2) training group (mean age = 21.5; 17 females), who had 20 min of training on the Corsi Block Tapping Task after their baseline assessment. The primary outcome was reaction time on a computer-based mental rotation task, and it was assessed both before and after the rest or training. There was a significant interaction between time (pre vs. post) and group (control vs. training) on mental rotation performance (p = 0.04), with the training group performing on average 124 ms faster on accurate trials than the control group at post-test. This preliminary study suggested that improving mental rotation may be feasible through targeted cognitive training. Future studies will consider multiple sessions of Corsi Block Tapping Task training to maximize training benefits (i.e., dose-response), as well as longer term retention in cognitively intact and impaired individuals.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287-9709, USA.
| | - Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287-9709, USA
| | - Nicole K Haikalis
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287-9709, USA
| | - Randy Essikpe
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287-9709, USA
| | - Keith R Lohse
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Duff
- Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Peiyuan Wang
- School of Biological and Health Systems Engineering, Arizona State University, 501 E. Tyler Mall, MC 9709, Tempe, AZ, 85287-9709, USA
| |
Collapse
|
17
|
Thérien VD, Degré-Pelletier J, Barbeau EB, Samson F, Soulières I. Differential neural correlates underlying mental rotation processes in two distinct cognitive profiles in autism. Neuroimage Clin 2022; 36:103221. [PMID: 36228483 PMCID: PMC9668634 DOI: 10.1016/j.nicl.2022.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Enhanced visuospatial abilities characterize the cognitive profile of a subgroup of autistics. However, the neural correlates underlying such cognitive strengths are largely unknown. Using functional magnetic resonance imaging (fMRI), we investigated the neural underpinnings of superior visuospatial functioning in different autistic subgroups. Twenty-seven autistic adults, including 13 with a Wechsler's Block Design peak (AUTp) and 14 without (AUTnp), and 23 typically developed adults (TYP) performed a classic mental rotation task. As expected, AUTp participants were faster at the task compared to TYP. At the neural level, AUTp participants showed enhanced bilateral parietal and occipital activation, stronger occipito-parietal and fronto-occipital connectivity, and diminished fronto-parietal connectivity compared to TYP. On the other hand, AUTnp participants presented greater activation in right and anterior regions compared to AUTp. In addition, reduced connectivity between occipital and parietal regions was observed in AUTnp compared to AUTp and TYP participants. A greater reliance on posterior regions is typically reported in the autism literature. Our results suggest that this commonly reported finding may be specific to a subgroup of autistic individuals with enhanced visuospatial functioning. Moreover, this study demonstrated that increased occipito-frontal synchronization was associated with superior visuospatial abilities in autism. This finding contradicts the long-range under-connectivity hypothesis in autism. Finally, given the relationship between distinct cognitive profiles in autism and our observed differences in brain functioning, future studies should provide an adequate characterization of the autistic subgroups in their research. The main limitations are small sample sizes and the inclusion of male-only participants.
Collapse
Affiliation(s)
- Véronique D. Thérien
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada
| | - Elise B. Barbeau
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Fabienne Samson
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Psychology Department, Université du Québec à Montréal, Montreal, QC, Canada,Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, Montreal, QC, Canada,Corresponding author at: Psychology Department, Université du Québec à Montréal, C.P. 8888 succursale Centre-ville, Montréal (Québec) H3C 3P8, Canada.
| |
Collapse
|
18
|
da Silva Soares R, Ambriola Oku AY, Barreto CSF, Ricardo Sato J. Applying functional near-infrared spectroscopy and eye-tracking in a naturalistic educational environment to investigate physiological aspects that underlie the cognitive effort of children during mental rotation tests. Front Hum Neurosci 2022; 16:889806. [PMID: 36072886 PMCID: PMC9442578 DOI: 10.3389/fnhum.2022.889806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Spatial cognition is related to academic achievement in science, technology, engineering, and mathematics (STEM) domains. Neuroimaging studies suggest that brain regions' activation might be related to the general cognitive effort while solving mental rotation tasks (MRT). In this study, we evaluate the mental effort of children performing MRT tasks by measuring brain activation and pupil dilation. We use functional near-infrared spectroscopy (fNIRS) concurrently to collect brain hemodynamic responses from children's prefrontal cortex (PFC) and an Eye-tracking system to measure pupil dilation during MRT. Thirty-two healthy students aged 9-11 participated in this experiment. Behavioral measurements such as task performance on geometry problem-solving tests and MRT scores were also collected. The results were significant positive correlations between the children's MRT and geometry problem-solving test scores. There are also significant positive correlations between dorsolateral PFC (dlPFC) hemodynamic signals and visuospatial task performances (MRT and geometry problem-solving scores). Moreover, we found significant activation in the amplitude of deoxy-Hb variation on the dlPFC and that pupil diameter increased during the MRT, suggesting that both physiological responses are related to mental effort processes during the visuospatial task. Our findings indicate that children with more mental effort under the task performed better. The multimodal approach to monitoring students' mental effort can be of great interest in providing objective feedback on cognitive resource conditions and advancing our comprehension of the neural mechanisms that underlie cognitive effort. Hence, the ability to detect two distinct mental states of rest or activation of children during the MRT could eventually lead to an application for investigating the visuospatial skills of young students using naturalistic educational paradigms.
Collapse
Affiliation(s)
- Raimundo da Silva Soares
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Graduate Program in Neuroscience and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Amanda Yumi Ambriola Oku
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Cândida S. F. Barreto
- South African National Research Foundation Research Chair, Faculty of Education, University of Johannesburg, Johannesburg, South Africa
| | - João Ricardo Sato
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
19
|
Shahab QS, Young IM, Dadario NB, Tanglay O, Nicholas PJ, Lin YH, Fonseka RD, Yeung JT, Bai MY, Teo C, Doyen S, Sughrue ME. A connectivity model of the anatomic substrates underlying Gerstmann syndrome. Brain Commun 2022; 4:fcac140. [PMID: 35706977 PMCID: PMC9189613 DOI: 10.1093/braincomms/fcac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
The Gerstmann syndrome is a constellation of neurological deficits that include agraphia, acalculia, left-right discrimination and finger agnosia. Despite a growing interest in this clinical phenomenon, there remains controversy regarding the specific neuroanatomic substrates involved. Advancements in data-driven, computational modelling provides an opportunity to create a unified cortical model with greater anatomic precision based on underlying structural and functional connectivity across complex cognitive domains. A literature search was conducted for healthy task-based functional MRI and PET studies for the four cognitive domains underlying Gerstmann's tetrad using the electronic databases PubMed, Medline, and BrainMap Sleuth (2.4). Coordinate-based, meta-analytic software was utilized to gather relevant regions of interest from included studies to create an activation likelihood estimation (ALE) map for each cognitive domain. Machine-learning was used to match activated regions of the ALE to the corresponding parcel from the cortical parcellation scheme previously published under the Human Connectome Project (HCP). Diffusion spectrum imaging-based tractography was performed to determine the structural connectivity between relevant parcels in each domain on 51 healthy subjects from the HCP database. Ultimately 102 functional MRI studies met our inclusion criteria. A frontoparietal network was found to be involved in the four cognitive domains: calculation, writing, finger gnosis, and left-right orientation. There were three parcels in the left hemisphere, where the ALE of at least three cognitive domains were found to be overlapping, specifically the anterior intraparietal area, area 7 postcentral (7PC) and the medial intraparietal sulcus. These parcels surround the anteromedial portion of the intraparietal sulcus. Area 7PC was found to be involved in all four domains. These regions were extensively connected in the intraparietal sulcus, as well as with a number of surrounding large-scale brain networks involved in higher-order functions. We present a tractographic model of the four neural networks involved in the functions which are impaired in Gerstmann syndrome. We identified a 'Gerstmann Core' of extensively connected functional regions where at least three of the four networks overlap. These results provide clinically actionable and precise anatomic information which may help guide clinical translation in this region, such as during resective brain surgery in or near the intraparietal sulcus, and provides an empiric basis for future study.
Collapse
Affiliation(s)
- Qazi S. Shahab
- School of Medicine, University of New South Wales, 2052 Sydney, Australia
| | | | | | - Onur Tanglay
- Omniscient Neurotechnology, Sydney 2000, Australia
| | | | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - R. Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Jacky T. Yeung
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Michael Y. Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | - Charles Teo
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Randwick 2031, Australia
| | | | | |
Collapse
|
20
|
Wang L, Ke J, Zhang H. A Functional Near-Infrared Spectroscopy Examination of the Neural Correlates of Mental Rotation for Individuals With Different Depressive Tendencies. Front Hum Neurosci 2022; 16:760738. [PMID: 35197834 PMCID: PMC8860193 DOI: 10.3389/fnhum.2022.760738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to examine the neural mechanisms underlying the ability to process the mental rotation with mirrored stimuli for different depressive tendencies with psychomotor retardation. Using functional near-infrared spectroscopy (fNIRS), we measured brain cortex activation of participants with higher and lower depressive tendencies while performing a left-right paradigm of object mental rotation or a same-different paradigm of subject mental rotation. Behavioral data revealed no differences in reaction time and rotation speed. The fNIRS data revealed a higher deactivation of oxyhemoglobin (HbO) change for the higher depression group in the perceptual stage of object mental rotation with mirrored stimuli in the superior external frontal cortex (BA46), inferior frontal gyrus (BA45), premotor cortex (BA6), and primary motor cortex (BA4) (study 1). In addition, there existed a significant difference between the two groups in premotor cortex (BA6) in subject mental rotation with mirrored stimuli (study 2). These results suggest that the neural mechanism of higher depression individuals connected with psychomotor retardation exists in the frontal and motor areas when processing object mental rotation with mirrored stimuli, and the motor cortex when processing subject mental rotation.
Collapse
Affiliation(s)
| | - Jingqi Ke
- Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Haiyan Zhang
- School of Foreign Languages, Jimei University, Xiamen, China
- *Correspondence: Haiyan Zhang,
| |
Collapse
|
21
|
Context matters: Cortical rhythms in infants across baseline and play. Infant Behav Dev 2021; 66:101665. [PMID: 34823054 DOI: 10.1016/j.infbeh.2021.101665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022]
Abstract
This study uses electroencephalography (EEG) to examine infants' cortical activity during baseline while they watched a dynamic audiovisual display and while engaged in play with an object and parent. Fifty-five 6- to 12-month-old infants participated in both baseline and play with their mother. We hypothesized that the baseline task recruits relatively more exogenous attention due to the dynamic audiovisual task, while the play task recruits relatively more endogenous attention when exploring the toy. We expected higher frontal theta and alpha power during play, reflecting higher endogenous control of attention compared to the baseline task. We expected the faster rhythms, beta and gamma, to have higher power during baseline at frontal locations, reflecting the salient attention-grabbing (exogenous) attributes of the baseline task in comparison to play. We also examined changes in parietal power between contexts. Our results were consistent with the expectations. Theta (3-6 Hz) and alpha (6-9 Hz) power were higher at frontal sites (Fp1/Fp2) during play relative to baseline. Beta (9-30 Hz) and gamma (30-50 Hz) power were higher at frontal (Fp1/Fp2) and frontal medial sites (F3/F4) during baseline relative to play. Alpha power was higher during baseline at frontal medial sites (F3/F4) relative to play. Beta and gamma power was higher during play at parietal sites (P3/P4). The results are discussed in terms of the potential role of different cortical rhythms over the scalp as they respond to relative endogenous and exogenous attentional demands.
Collapse
|
22
|
Bauer R, Jost L, Günther B, Jansen P. Pupillometry as a measure of cognitive load in mental rotation tasks with abstract and embodied figures. PSYCHOLOGICAL RESEARCH 2021; 86:1382-1396. [PMID: 34382111 PMCID: PMC9177492 DOI: 10.1007/s00426-021-01568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2021] [Indexed: 11/15/2022]
Abstract
We investigated sex differences in behavioral performance and cognitive load in chronometric mental rotation tasks with abstract and embodied figures. Eighty participants (44 females and 36 males) completed 126 items, which included cube figures, body postures, and human figures, which were all comparable in shape and color. Reaction time, accuracy, and cognitive load, measured by changes in pupil dilation, were analyzed. As a function of angular disparity, participants showed shorter reaction times and higher accuracy rates for embodied stimuli than cube figures. Changes in pupil dilation showed a similar pattern, indicating that mental rotation of embodied figures caused less cognitive load to solve the task. No sex differences appeared in any of the measurements.
Collapse
Affiliation(s)
- Robert Bauer
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Leonardo Jost
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Bianca Günther
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Petra Jansen
- Faculty of Human Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
23
|
Xiang ZQ, Huang YL, Luo GL, Ma HL, Zhang DL. Decreased Event-Related Desynchronization of Mental Rotation Tasks in Young Tibetan Immigrants. Front Hum Neurosci 2021; 15:664039. [PMID: 34276324 PMCID: PMC8278785 DOI: 10.3389/fnhum.2021.664039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to explore the cortical activity underlying mental rotation in high-altitude immigrants via the event-related desynchronization (ERD), the electroencephalogram time–frequency analysis, and source localization based on electroencephalographic data. When compared with the low-altitude individuals, the reaction time of mental rotation tasks was significantly slower in immigrants who had lived in high-altitude areas for 3 years. The time–frequency analysis showed that the alpha ERD and the beta ERD within the time window (400–700 ms) were decreased during the mental rotation tasks in these immigrants. The decreased ERD was observed at the parietal–occipital regions within the alpha band and at the central–parietal regions within the beta band. The decreased ERD might embody the sensorimotor-related cortical activity from hypoxia, which might be involved in cognitive control function in high-altitude immigrants, which provided insights into the neural mechanism of spatial cognition change on aspect of embodied cognition due to high-altitude exposure.
Collapse
Affiliation(s)
- Zu-Qiang Xiang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Yi-Lin Huang
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China
| | - Guang-Li Luo
- Department of Psychology, School of Education, Guangzhou University, Guangzhou, China.,The Fourth Primary School of Qiaotou Town, Dongguan, China
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Plateau Brain Science Research Center, Tibet University, Lhasa, China.,Plateau Brain Science Research Center, South China Normal University, Guangzhou, China.,Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Hemispheric asymmetries in visual mental imagery. Brain Struct Funct 2021; 227:697-708. [PMID: 33885966 DOI: 10.1007/s00429-021-02277-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Visual mental imagery is the faculty whereby we can "visualize" objects that are not in our line of sight. Longstanding evidence dating back over thirty years has shown that unilateral brain lesions, especially in the left temporal lobe, can impair aspects of this ability. Yet, there is currently no attempt to identify analogies between these neuropsychological findings of hemispheric asymmetry and those from other neuroscientific approaches. Here, we present a critical review of the available literature on the hemispheric laterality of visual mental imagery, by looking at cross-method patterns of evidence in the domains of lesion neuropsychology, neuroimaging, and direct cortical stimulation. Results can be summarized under three main axes. First, frontoparietal networks in both hemispheres appear to be associated with visual mental imagery. Second, lateralization patterns emerge in the temporal lobes, with the left inferior temporal lobe being the most common finding in the literature for endogenously generated images, especially, but not exclusively, when orthographic material is used to ignite imagery. Third, an opposite pattern of hemispheric laterality emerges when visual mental images are induced by exogenous stimulation; direct cortical electrical stimulation tends to produce visual imagery experiences predominantly when applied to the right temporal lobe. These patterns of hemispheric asymmetry are difficult to reconcile with the dominant model of visual mental imagery, which emphasizes the implication of early sensory cortices. They suggest instead that visual mental imagery relies on large-scale brain networks, with a crucial participation of high-level visual regions in the temporal lobes.
Collapse
|
25
|
Oh S, Jung WH, Kim T, Shim G, Kwon JS. Brain Activation of Patients With Obsessive-Compulsive Disorder During a Mental Rotation Task: A Functional MRI Study. Front Psychiatry 2021; 12:659121. [PMID: 34025482 PMCID: PMC8138312 DOI: 10.3389/fpsyt.2021.659121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Functional neuroimaging studies have implicated alterations in frontostriatal and frontoparietal circuits in obsessive-compulsive disorder (OCD) during various tasks. To date, however, brain activation for visuospatial function in conjunction with symptoms in OCD has not been comprehensively evaluated. To elucidate the relationship between neural activity, cognitive function, and obsessive-compulsive symptoms, we investigated regional brain activation during the performance of a visuospatial task in patients with OCD using functional magnetic resonance imaging (fMRI). Seventeen medication-free patients with OCD and 21 age-, sex-, and IQ-matched healthy controls participated in this study. Functional magnetic resonance imaging data were obtained while the subjects performed a mental rotation (MR) task. Brain activation during the task was compared between the two groups using a two-sample t-test. Voxel-wise whole-brain multiple regression analyses were also performed to examine the relationship between obsessive-compulsive symptom severity and neural activity during the task. The two groups did not differ in MR task performance. Both groups also showed similar task-related activation patterns in frontoparietal regions with no significant differences. Activation in the right dorsolateral prefrontal cortex in patients with OCD during the MR task was positively associated with their total Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) scores. This study identified the specific brain areas associated with the interaction between symptom severity and visuospatial cognitive function during an MR task in medication-free patients with OCD. These findings may serve as potential neuromodulation targets for OCD treatment.
Collapse
Affiliation(s)
- Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, South Korea
| | - Wi Hoon Jung
- Department of Psychology, Daegu University, Gyeongsan, South Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Geumsook Shim
- KAIST Clinic Pappalardo Center, KAIST, Daejeon, South Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, South Korea
| |
Collapse
|
26
|
Yang J, Wu D, Luo J, Xie S, Chang C, Li H. Neural Correlates of Mental Rotation in Preschoolers With High or Low Working Memory Capacity: An fNIRS Study. Front Psychol 2020; 11:568382. [PMID: 33362634 PMCID: PMC7758205 DOI: 10.3389/fpsyg.2020.568382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/17/2020] [Indexed: 11/21/2022] Open
Abstract
This study explored the differentiated neural correlates of mental rotation (MR) in preschoolers with high and low working memory capacity using functional near-infrared spectroscopy (fNIRS). Altogether 38 Chinese preschoolers (M = 5.0 years, SD = 0.69 years) completed the Working Memory Capacity (WMC) test, the Mental Rotation (MR), and its Control tasks (without MR). They were divided into High-WMC (N1 = 9) and Low-WMC (N2 = 18) groups based on the WMC scores. The behavioral and fNIRS results indicated that: (1) there were no significant differences in MR task performance between the High-WMC (Mmr = 23.44, SD = 0.88) and Low-WMC group (Mmr = 23.67, SD = 0.59); (2) the Low-WMC group activated BA6, BA8, BA 9, and BA 44, whereas the High-WMC group activated BA8, BA10 and BA 44 during mental rotation; (3) significant differences were found in the activation of BA44 and BA9 between the High-WMC and Low-WMC groups during mental rotation; and (4) the High-WMC and Low-WMC groups differed significantly in the activation of BA 9 and BA10 during the control tasks, indicating that both areas might be responsible for the group differences in working memory.
Collapse
Affiliation(s)
| | - Dandan Wu
- Macquarie University, Sydney, NSW, Australia
| | - Jiutong Luo
- The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Xie
- The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Hui Li
- Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Riemer F, Grüner R, Beresniewicz J, Kazimierczak K, Ersland L, Hugdahl K. Dynamic switching between intrinsic and extrinsic mode networks as demands change from passive to active processing. Sci Rep 2020; 10:21463. [PMID: 33293637 PMCID: PMC7722921 DOI: 10.1038/s41598-020-78579-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
In this study we report on the relationship between default and extrinsic mode networks across alternating brief periods of rest and active task processing. Three different visual tasks were used in a classic fMRI ON-OFF block design where task (ON) blocks alternated with equal periods of rest (OFF) blocks: mental rotation, working memory and mental arithmetic. We showed the existence of a generalized task-positive network, labelled the extrinsic mode network (EMN) that is anti-correlated with the default mode network (DMN) as processing demands shifted from rest to active processing. We then identified two key regions of interest (ROIs) in the supplementary motor area (SMA) and precuneus/posterior cingulate cortex (PCC) regions as hubs for the extrinsic and intrinsic networks, and extracted the time-course from these ROIs. The results showed a close to perfect anti-correlation for the SMA and Precuneus/PCC time-courses for ON- and OFF-blocks. We suggest the existence of two large-scale networks, an extrinsic mode network and an intrinsic mode network, which are up- and down-regulated as environmental demands change from active to passive processing.
Collapse
Affiliation(s)
- Frank Riemer
- Mohn Medical Imaging and Visualization Centre, University of Bergen and, Haukeland University Hospital, Bergen, Norway. .,Department of Radiology, Haukeland University Hospital, Bergen, Norway.
| | - Renate Grüner
- Mohn Medical Imaging and Visualization Centre, University of Bergen and, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Justyna Beresniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Katarzyna Kazimierczak
- Mohn Medical Imaging and Visualization Centre, University of Bergen and, Haukeland University Hospital, Bergen, Norway.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
28
|
What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychon Bull Rev 2020; 27:465-482. [PMID: 31965485 DOI: 10.3758/s13423-019-01694-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an emerging consensus that spatial thinking plays a fundamental role in how people conceive, express, and perform mathematics. However, the underlying nature of this relationship remains elusive. Questions remain as to how, why, and under what conditions spatial skills and mathematics are linked. This review paper addresses this gap. Through a review and synthesis of research in psychology, neuroscience, and education, we examine plausible mechanistic accounts for the oft-reported close, and potentially causal, relations between spatial and mathematical thought. More specifically, this review targets candidate mechanisms that link spatial visualization skills and basic numerical competencies. The four explanatory accounts we describe and critique include the: (1) Spatial representation of numbers account, (2) shared neural processing account, (3) spatial modelling account, and (4) working memory account. We propose that these mechanisms do not operate in isolation from one another, but in concert with one another to give rise to spatial-numerical associations. Moving from the theoretical to the practical, we end our review by considering the extent to which spatial visualization abilities are malleable and transferrable to numerical reasoning. Ultimately, this paper aims to provide a more coherent and mechanistic account of spatial-numerical relations in the hope that this information may (1) afford new insights into the uniquely human ability to learn, perform, and invent abstract mathematics, and (2) on a more practical level, prove useful in the assessment and design of effective mathematics curricula and intervention moving forward.
Collapse
|
29
|
Olivers CN, Roelfsema PR. Attention for action in visual working memory. Cortex 2020; 131:179-194. [DOI: 10.1016/j.cortex.2020.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022]
|
30
|
Mental rotation ability and spontaneous brain activity: a magnetoencephalography study. Neuroreport 2020; 31:999-1005. [PMID: 32769738 DOI: 10.1097/wnr.0000000000001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We performed experiments using magnetoencephalography to clarify the relationship between three-dimensional visuospatial abilities and spontaneous visual thinking characteristics. Subjects were divided into two groups based on the rate of correct answers to mental rotation tasks: those with good performances (Group G) and those with bad performances (Group B). We found the followings: (1) in the mental rotation tasks, the 25-35 Hz lower γ band activities in the superior parietal lobule/intraparietal sulcus regions and in the occipitotemporal region were significantly larger in Group G than in Group B and (2) in the spontaneous mental imagery tasks, the 20-Hz band activity in the left premotor cortex and the 35-Hz band activity in the supplementary motor area were significantly larger in Group G.
Collapse
|
31
|
Chen DW, Miao R, Deng ZY, Lu YY, Liang Y, Huang L. Sparse Logistic Regression With L 1/2 Penalty for Emotion Recognition in Electroencephalography Classification. Front Neuroinform 2020; 14:29. [PMID: 32848688 PMCID: PMC7427509 DOI: 10.3389/fninf.2020.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/28/2020] [Indexed: 01/12/2023] Open
Abstract
Emotion recognition based on electroencephalography (EEG) signals is a current focus in brain-computer interface research. However, the classification of EEG is difficult owing to large amounts of data and high levels of noise. Therefore, it is important to determine how to effectively extract features that include important information. Regularization, one of the effective methods for EEG signal processing, can effectively extract important features from the signal and has potential applications in EEG emotion recognition. Currently, the most popular regularization technique is Lasso (L 1) and Ridge Regression (L 2). In recent years, researchers have proposed many other regularization terms. In theory, L q -type regularization has a lower q value, which means that it can be used to find solutions with better sparsity. L 1/2 regularization is of L q type (0 < q < 1) and has been shown to have many attractive properties. In this work, we studied the L 1/2 penalty in sparse logistic regression for three-classification EEG emotion recognition, and used a coordinate descent algorithm and a univariate semi-threshold operator to implement L 1/2 penalty logistic regression. The experimental results on simulation and real data demonstrate that our proposed method is better than other existing regularization methods. Sparse logistic regression with L 1/2 penalty achieves higher classification accuracy than the conventional L 1, Ridge Regression, and Elastic Net regularization methods, using fewer but more informative EEG signals. This is very important for high-dimensional small-sample EEG data and can help researchers to reduce computational complexity and improve computational accuracy. Therefore, we propose that sparse logistic regression with the L 1/2 penalty is an effective technique for emotion recognition in practical classification problems.
Collapse
Affiliation(s)
- Dong-Wei Chen
- School of Electronic Information Engineering, University of Electronic Science and Technology of China, Zhongshan, China
| | - Rui Miao
- Faculty of Information Technology, Macau University of Science and Technology, Macau, China
| | - Zhao-Yong Deng
- School of Electronic Information Engineering, University of Electronic Science and Technology of China, Zhongshan, China
| | - Yue-Yue Lu
- School of Electronic Information Engineering, University of Electronic Science and Technology of China, Zhongshan, China
| | - Yong Liang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Lan Huang
- School of Electronic Information Engineering, University of Electronic Science and Technology of China, Zhongshan, China
| |
Collapse
|
32
|
Lacey S, Nguyen J, Schneider P, Sathian K. Crossmodal Visuospatial Effects on Auditory Perception of Musical Contour. Multisens Res 2020; 34:113-127. [PMID: 33706275 DOI: 10.1163/22134808-bja10034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
The crossmodal correspondence between auditory pitch and visuospatial elevation (in which high- and low-pitched tones are associated with high and low spatial elevation respectively) has been proposed as the basis for Western musical notation. One implication of this is that music perception engages visuospatial processes and may not be exclusively auditory. Here, we investigated how music perception is influenced by concurrent visual stimuli. Participants listened to unfamiliar five-note musical phrases with four kinds of pitch contour (rising, falling, rising-falling, or falling-rising), accompanied by incidental visual contours that were either congruent (e.g., auditory rising/visual rising) or incongruent (e.g., auditory rising/visual falling) and judged whether the final note of the musical phrase was higher or lower in pitch than the first. Response times for the auditory judgment were significantly slower for incongruent compared to congruent trials, i.e., there was a congruency effect, even though the visual contours were incidental to the auditory task. These results suggest that music perception, although generally regarded as an auditory experience, may actually be multisensory in nature.
Collapse
Affiliation(s)
- Simon Lacey
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,2Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - James Nguyen
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Peter Schneider
- 3Department of Neuroradiology, Heidelberg Medical School, Heidelberg, Germany.,4Department of Neurology, Heidelberg Medical School, Heidelberg, Germany
| | - K Sathian
- 1Department of Neurology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,2Department of Neural and Behavioral Sciences, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA.,5Department of Psychology, Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033-0859, USA
| |
Collapse
|
33
|
Nasr S, Rosas HD. Impact of Huntington's Disease on Mental Rotation Performance in Motor Pre-Symptomatic Individuals. J Huntingtons Dis 2020; 8:339-356. [PMID: 31306138 DOI: 10.3233/jhd-190348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic disorder known for affecting motor control. Despite evidence for the impact of HD on visual cortico-striatal loops, evidence for impaired visual perception in early symptomatic HD patients is limited; much less is known about what happens during the HD prodrome. OBJECTIVE The goals of this study were to evaluate perceptual processing in motor pre-manifest HD gene-carriers (Pre-HDs) during a visual mental rotation task. METHODS To achieve this goal, 79 participants including 24 Pre-HD participants and 55 healthy matched controls were scanned using functional MRI as they performed a mental rotation task. Another group of 36 subjects including 15 pre-HDs and 21 healthy age/gender matched controls participated in a control behavioral test of judgment of line orientation outside the scanner. RESULTS We found that, although Pre-HDs (in this stage of disease) did not demonstrate slower response times, their response accuracy was lower than controls. On the fMRI task, controls showed a significant decrease in activity in the occipito-temporal (OT) visual network and increase in activity in the caudo-fronto-parietal (CFP) network with mental rotation load. Interestingly, the amount of mental rotation-related activity decrease in the OT network was reduced in Pre-HDs compared to controls while, the level of CFP response remained unchanged between the two groups. Comparing the link between the evoked BOLD activity within these networks and response accuracy (i.e., behavior), we found that the models fit to data from controls were less accurate in predicting response accuracy of Pre-HDs. CONCLUSION These findings provide some of the earliest functional evidence of impaired visual processing and altered neural processing underlying visual perceptual decision making during the HD prodrome.
Collapse
Affiliation(s)
- Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Herminia D Rosas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Center for Neuroimaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
34
|
Mutlu MC, Erdoğan SB, Öztürk OC, Canbeyli R, Saybaşιlι H. Functional Near-Infrared Spectroscopy Indicates That Asymmetric Right Hemispheric Activation in Mental Rotation of a Jigsaw Puzzle Decreases With Task Difficulty. Front Hum Neurosci 2020; 14:252. [PMID: 32694987 PMCID: PMC7339288 DOI: 10.3389/fnhum.2020.00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022] Open
Abstract
Mental rotation (MR) is a cognitive skill whose neural dynamics are still a matter of debate as previous neuroimaging studies have produced controversial results. In order to investigate the underlying neurophysiology of MR, hemodynamic responses from the prefrontal cortex of 14 healthy subjects were recorded with functional near-infrared spectroscopy (fNIRS) during a novel MR task that had three categorical difficulty levels. Hemodynamic activity strength (HAS) parameter, which reflects the ratio of brain activation during the task to the baseline activation level, was used to assess the prefrontal cortex activation localization and strength. Behavioral data indicated that the MR requiring conditions are more difficult than the condition that did not require MR. The right dorsolateral prefrontal cortex (DLPFC) was found to be active in all conditions and to be the dominant region in the easiest task while more complex tasks showed widespread bilateral prefrontal activation. A significant increase in left DLPFC activation was observed with increasing task difficulty. Significantly higher right DLPFC activation was observed when the incongruent trials were contrasted against the congruent trials, which implied the possibility of a robust error or conflict-monitoring process during the incongruent trials. Our results showed that the right DLPFC is a core region for the processing of MR tasks regardless of the task complexity and that the left DLPFC is involved to a greater extent with increasing task complexity, which is consistent with the previous neuroimaging literature.
Collapse
Affiliation(s)
- Murat Can Mutlu
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Sinem Burcu Erdoğan
- Department of Medical Engineering, Acιbadem Mehmet Ali Aydιnlar University, Istanbul, Turkey
| | - Ozan Cem Öztürk
- School of Sport Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Reşit Canbeyli
- Department of Psychology, Boğaziçi University, Istanbul, Turkey
| | - Hale Saybaşιlι
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
35
|
Gerver CR, Overman AA, Babu HJ, Hultman CE, Dennis NA. Examining the Neural Basis of Congruent and Incongruent Configural Contexts during Associative Retrieval. J Cogn Neurosci 2020; 32:1796-1812. [PMID: 32530379 DOI: 10.1162/jocn_a_01593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the configural context, or relative organization and orientation of paired stimuli, between encoding and retrieval negatively impacts memory. Using univariate and multivariate fMRI analyses, we examined the effect of retaining and manipulating the configural context on neural mechanisms supporting associative retrieval. Behavioral results showed participants had significantly higher hit rates for recollecting pairs in a contextually congruent, versus incongruent, configuration. In addition, contextual congruency between memory phases was a critical determinant to characterizing both the magnitude and patterns of neural activation within visual and parietal cortices. Regions within visual cortices also exhibited higher correlations between patterns of activity at encoding and retrieval when configural context was congruent across memory phases than incongruent. Collectively, these findings shed light on how manipulating configural context between encoding and retrieval affects associative recognition, with changes in the configural context leading to reductions in information transfer and increases in task difficulty.
Collapse
|
36
|
Anomal RF, Brandão DS, Porto SB, de Oliveira SS, de Souza RFL, Fiel JDS, Gomes BD, Pires IAH, Pereira A. The role of frontal and parietal cortex in the performance of gifted and average adolescents in a mental rotation task. PLoS One 2020; 15:e0232660. [PMID: 32401804 PMCID: PMC7219753 DOI: 10.1371/journal.pone.0232660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 04/19/2020] [Indexed: 11/19/2022] Open
Abstract
Visual-spatial abilities are usually neglected in academic settings, even though several studies have shown that their predictive power in science, technology, engineering, and mathematics domains exceeds that of math and verbal ability. This neglect means that many spatially talented youths are not identified and nurtured, at a great cost to society. In the present work, we aim to identify behavioral and electrophysiological markers associated with visual spatial-ability in intellectually gifted adolescents (N = 15) compared to age-matched controls (N = 15). The participants performed a classic three-dimensional mental rotation task developed by Shepard and Metzler (1971) [33] while event-related potentials were measured in both frontal and parietal regions of interest. While response time was similar in the two groups, gifted subjects performed the test with greater accuracy. There was no indication of interhemispheric asymmetry of ERPs over parietal regions in both groups, although interhemispheric differences were observed in the frontal lobes. Moreover, intelligence quotient and working memory measures predicted variance in ERP’s amplitude in the right parietal and frontal hemispheres. We conclude that while gifted adolescents do not display a different pattern of electroencephalographic activity over the parietal cortex while performing the mental rotation task, their performance is correlated with the amplitude of ERPs in the frontal cortex during the execution of this task.
Collapse
Affiliation(s)
| | | | - Silvia Beltrame Porto
- Department of Psychology, Federal University of Rio Grande do Norte, Natal (RN), Brazil
| | | | | | - José de Santana Fiel
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Belém (PA), Brazil
| | | | | | - Antonio Pereira
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Belém (PA), Brazil
- * E-mail:
| |
Collapse
|
37
|
Moen KC, Beck MR, Saltzmann SM, Cowan TM, Burleigh LM, Butler LG, Ramanujam J, Cohen AS, Greening SG. Strengthening spatial reasoning: elucidating the attentional and neural mechanisms associated with mental rotation skill development. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2020; 5:20. [PMID: 32372296 PMCID: PMC7200965 DOI: 10.1186/s41235-020-00211-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/11/2020] [Indexed: 11/16/2022]
Abstract
Spatial reasoning is a critical skill in many everyday tasks and in science, technology, engineering, and mathematics disciplines. The current study examined how training on mental rotation (a spatial reasoning task) impacts the completeness of an encoded representation and the ability to rotate the representation. We used a multisession, multimethod design with an active control group to determine how mental rotation ability impacts performance for a trained stimulus category and an untrained stimulus category. Participants in the experimental group (n = 18) showed greater improvement than the active control group (n = 18) on the mental rotation tasks. The number of saccades between objects decreased and saccade amplitude increased after training, suggesting that participants in the experimental group encoded more of the object and possibly had more complete mental representations after training. Functional magnetic resonance imaging data revealed distinct neural activation associated with mental rotation, notably in the right motor cortex and right lateral occipital cortex. These brain areas are often associated with rotation and encoding complete representations, respectively. Furthermore, logistic regression revealed that activation in these brain regions during the post-training scan significantly predicted training group assignment. Overall, the current study suggests that effective mental rotation training protocols should aim to improve the encoding and manipulation of mental representations.
Collapse
Affiliation(s)
- Katherine C Moen
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA.,Department of Psychology, University of Nebraska at Kearney, Kearney, NE, USA
| | - Melissa R Beck
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA.
| | - Stephanie M Saltzmann
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Tovah M Cowan
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Lauryn M Burleigh
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Leslie G Butler
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Jagannathan Ramanujam
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Alex S Cohen
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| | - Steven G Greening
- Department of Psychology, Louisiana State University, 236 Audubon Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
38
|
Tivadar RI, Chappaz C, Anaflous F, Roche J, Murray MM. Mental Rotation of Digitally-Rendered Haptic Objects by the Visually-Impaired. Front Neurosci 2020; 14:197. [PMID: 32265628 PMCID: PMC7099598 DOI: 10.3389/fnins.2020.00197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
In the event of visual impairment or blindness, information from other intact senses can be used as substitutes to retrain (and in extremis replace) visual functions. Abilities including reading, mental representation of objects and spatial navigation can be performed using tactile information. Current technologies can convey a restricted library of stimuli, either because they depend on real objects or renderings with low resolution layouts. Digital haptic technologies can overcome such limitations. The applicability of this technology was previously demonstrated in sighted participants. Here, we reasoned that visually-impaired and blind participants can create mental representations of letters presented haptically in normal and mirror-reversed form without the use of any visual information, and mentally manipulate such representations. Visually-impaired and blind volunteers were blindfolded and trained on the haptic tablet with two letters (either L and P or F and G). During testing, they haptically explored on any trial one of the four letters presented at 0°, 90°, 180°, or 270° rotation from upright and indicated if the letter was either in a normal or mirror-reversed form. Rotation angle impacted performance; greater deviation from 0° resulted in greater impairment for trained and untrained normal letters, consistent with mental rotation of these haptically-rendered objects. Performance was also generally less accurate with mirror-reversed stimuli, which was not affected by rotation angle. Our findings demonstrate, for the first time, the suitability of a digital haptic technology in the blind and visually-impaired. Classic devices remain limited in their accessibility and in the flexibility of their applications. We show that mental representations can be generated and manipulated using digital haptic technology. This technology may thus offer an innovative solution to the mitigation of impairments in the visually-impaired, and to the training of skills dependent on mental representations and their spatial manipulation.
Collapse
Affiliation(s)
- Ruxandra I Tivadar
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.,Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | | | - Fatima Anaflous
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Jean Roche
- Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Micah M Murray
- The LINE (Laboratory for Investigative Neurophysiology), Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.,Department of Ophthalmology, University of Lausanne and Fondation Asile des Aveugles, Lausanne, Switzerland.,Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
39
|
Jansen P, Render A, Scheer C, Siebertz M. Mental rotation with abstract and embodied objects as stimuli: evidence from event-related potential (ERP). Exp Brain Res 2020; 238:525-535. [PMID: 31970433 PMCID: PMC7080707 DOI: 10.1007/s00221-020-05734-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
This study investigated sex differences in performance and neuronal activity in a mental rotation task with abstract and embodied figures. Fifty-eight participants (26 females and 32 males) completed a chronometric mental rotation task with cube figures, human figures, and body postures. The results are straightforward: depending on angular disparity, participants had a faster reaction time and a higher accuracy rate for embodied stimuli compared to cube figures. The electroencephalogram (EEG) activity pattern showed a higher negative amplitude modulation in the frontal electrodes for females compared to males during the late (400-600 ms) time interval. From 200 to 400 ms after stimulus onset, there was a different activation pattern in the parietal and central electrodes, whereas frontal electrodes did not show differences between embodied and abstract stimuli. From 400 to 600 ms after stimulus onset, there was a different pattern in the central and frontal electrodes but not in the parietal areas for embodied figures in compared to cube figures. Concluding, even though there were no sex differences in the behavioral data, the EEG data did show alterations at the late time interval. Thus, the disparate results regarding sex differences that depend on the type of analysis (behavioral versus neurophysiological) should be more thoroughly investigated. Furthermore, the difference in processing embodied stimuli in an object-based mental rotation task could be confirmed in EEG activity pattern for the first time.
Collapse
Affiliation(s)
- Petra Jansen
- Faculty of Human Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| | - Anna Render
- Faculty of Human Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Clara Scheer
- Faculty of Human Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Markus Siebertz
- Faculty of Human Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
40
|
Acute administration of nicotine does not enhance cognitive functions. Arh Hig Rada Toksikol 2019; 70:273-282. [PMID: 32623864 DOI: 10.2478/aiht-2019-70-3257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
Chronic smokers often claim that smoking improves their cognitive abilities, such as concentration. However, scientific evidence to support this claim is scarce. Previous studies gave inconclusive results, and some of them had significant methodological flaws. Therefore, the aim of this study was to test whether smoking a single cigarette affects performance across several cognitive domains. It included a group of 22 occasional smokers aged 19-29 years. Attention, working memory, and visuospatial reasoning were assessed using a within-subjects design with a control setting. There were two separate testing sessions two days apart. Half the group started with experimental and the other half with control setting. In the experimental setting, the participants completed the first block of tasks, smoked one cigarette (with a nicotine yield of 0.5 mg), and then completed the second block of tasks. In the control setting, the procedure was the same, except that the participants had a glass of water instead of a cigarette. Repeated measures ANOVA showed no significant effects of cigarette smoking on either reaction time rates or accuracy on any of the three cognitive domains. These results suggest that, at least among young, occasional smokers, smoking does not affect cognition and the claims of its improvement are probably a result of some sort of cognitive bias.
Collapse
|
41
|
Holland P, Codol O, Oxley E, Taylor M, Hamshere E, Joseph S, Huffer L, Galea JM. Domain-Specific Working Memory, But Not Dopamine-Related Genetic Variability, Shapes Reward-Based Motor Learning. J Neurosci 2019; 39:9383-9396. [PMID: 31604835 PMCID: PMC6867814 DOI: 10.1523/jneurosci.0583-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 11/21/2022] Open
Abstract
The addition of rewarding feedback to motor learning tasks has been shown to increase the retention of learning, spurring interest in its possible utility for rehabilitation. However, motor tasks using rewarding feedback have repeatedly been shown to lead to great interindividual variability in performance. Understanding the causes of such variability is vital for maximizing the potential benefits of reward-based motor learning. Thus, using a large human cohort of both sexes (n = 241), we examined whether spatial (SWM), verbal, and mental rotation (RWM) working memory capacity and dopamine-related genetic profiles were associated with performance in two reward-based motor tasks. The first task assessed the participant's ability to follow a slowly shifting reward region based on hit/miss (binary) feedback. The second task investigated the participant's capacity to preserve performance with binary feedback after adapting to the rotation with full visual feedback. Our results demonstrate that higher SWM is associated with greater success and an enhanced capacity to reproduce a successful motor action, measured as change in reach angle following reward. In contrast, higher RWM was predictive of an increased propensity to express an explicit strategy when required to make large reach angle adjustments. Therefore, SWM and RWM were reliable, but dissociable, predictors of success during reward-based motor learning. Change in reach direction following failure was also a strong predictor of success rate, although we observed no consistent relationship with working memory. Surprisingly, no dopamine-related genotypes predicted performance. Therefore, working memory capacity plays a pivotal role in determining individual ability in reward-based motor learning.SIGNIFICANCE STATEMENT Reward-based motor learning tasks have repeatedly been shown to lead to idiosyncratic behaviors that cause varying degrees of task success. Yet, the factors determining an individual's capacity to use reward-based feedback are unclear. Here, we assessed a wide range of possible candidate predictors, and demonstrate that domain-specific working memory plays an essential role in determining individual capacity to use reward-based feedback. Surprisingly, genetic variations in dopamine availability were not found to play a role. This is in stark contrast with seminal work in the reinforcement and decision-making literature, which show strong and replicated effects of the same dopaminergic genes in decision-making. Therefore, our results provide novel insights into reward-based motor learning, highlighting a key role for domain-specific working memory capacity.
Collapse
Affiliation(s)
- Peter Holland
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Olivier Codol
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Elizabeth Oxley
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Madison Taylor
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Elizabeth Hamshere
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Shadiq Joseph
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Laura Huffer
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Joseph M Galea
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
42
|
Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neurosci Biobehav Rev 2019; 103:316-336. [DOI: 10.1016/j.neubiorev.2019.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 11/20/2022]
|
43
|
Language Processing. Cognition 2019. [DOI: 10.1017/9781316271988.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Methods of Cognitive Psychology. Cognition 2019. [DOI: 10.1017/9781316271988.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Cognitive Psychologists’ Approach to Research. Cognition 2019. [DOI: 10.1017/9781316271988.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Visual Imagery. Cognition 2019. [DOI: 10.1017/9781316271988.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Index. Cognition 2019. [DOI: 10.1017/9781316271988.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Decision Making and Reasoning. Cognition 2019. [DOI: 10.1017/9781316271988.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Attention. Cognition 2019. [DOI: 10.1017/9781316271988.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Long-Term Memory Structure. Cognition 2019. [DOI: 10.1017/9781316271988.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|