1
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -shared and -unique gyral peaks on human and macaque brains. eLife 2024; 12:RP90182. [PMID: 38635322 PMCID: PMC11026093 DOI: 10.7554/elife.90182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Jingchao Zhou
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Zhibin He
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Xiao Li
- School of Information Technology, Northwest UniversityXi'anChina
| | - Yudan Ren
- School of Information Technology, Northwest UniversityXi'anChina
| | - Tao Liu
- College of Science, North China University of Science and TechnologyTangshanChina
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of ChinaChengduChina
| | - Lei Guo
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Junwei Han
- School of Automation, Northwestern Polytechnical UniversityXi’anChina
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of GeorgiaAthensUnited States
| |
Collapse
|
2
|
Zhang S, Zhang T, Cao G, Zhou J, He Z, Li X, Ren Y, Liu T, Jiang X, Guo L, Han J, Liu T. Species -Shared and -Unique Gyral Peaks on Human and Macaque Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550760. [PMID: 37546923 PMCID: PMC10402126 DOI: 10.1101/2023.07.26.550760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, we defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. In this study, we identified shared and unique gyral peaks in human and macaque, and investigated the similarities and differences in the spatial distribution, anatomical morphology, and functional connectivity of them.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Jingchao Zhou
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Xiao Li
- School of Information Technology, Northwest University, Xi’an, China
| | - Yudan Ren
- School of Information Technology, Northwest University, Xi’an, China
| | - Tao Liu
- College of Science, North China University of Science and Technology, Tangshan, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi’an, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Huang Y, Zhang T, Zhang S, Zhang W, Yang L, Zhu D, Liu T, Jiang X, Han J, Guo L. Genetic Influence on Gyral Peaks. Neuroimage 2023; 280:120344. [PMID: 37619794 DOI: 10.1016/j.neuroimage.2023.120344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic mechanisms have been hypothesized to be a major determinant in the formation of cortical folding. Although there is an increasing number of studies examining the heritability of cortical folding, most of them focus on sulcal pits rather than gyral peaks. Gyral peaks, which reflect the highest local foci on gyri and are consistent across individuals, remain unstudied in terms of heritability. To address this knowledge gap, we used high-resolution data from the Human Connectome Project (HCP) to perform classical twin analysis and estimate the heritability of gyral peaks across various brain regions. Our results showed that the heritability of gyral peaks was heterogeneous across different cortical regions, but relatively symmetric between hemispheres. We also found that pits and peaks are different in a variety of anatomic and functional measures. Further, we explored the relationship between the levels of heritability and the formation of cortical folding by utilizing the evolutionary timeline of gyrification. Our findings indicate that the heritability estimates of both gyral peaks and sulcal pits decrease linearly with the evolution timeline of gyrification. This suggests that the cortical folds which formed earlier during gyrification are subject to stronger genetic influences than the later ones. Moreover, the pits and peaks coupled by their time of appearance are also positively correlated in respect of their heritability estimates. These results fill the knowledge gap regarding genetic influences on gyral peaks and significantly advance our understanding of how genetic factors shape the formation of cortical folding. The comparison between peaks and pits suggests that peaks are not a simple morphological mirror of pits but could help complete the understanding of folding patterns.
Collapse
Affiliation(s)
- Ying Huang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China; School of Information and Technology, Northwest University, Xi'an 710127, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Li Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Dajiang Zhu
- Computer Science & Engineering, University of Texas at Arlington, TX 76010, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Xi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
4
|
Zhang S, Zhang T, He Z, Li X, Zhang L, Zhu D, Jiang X, Liu T, Han J, Guo L. Gyral peaks and patterns in human brains. Cereb Cortex 2023; 33:6708-6722. [PMID: 36646465 PMCID: PMC10422926 DOI: 10.1093/cercor/bhac537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Cortical folding patterns are related to brain function, cognition, and behavior. Since the relationship has not been fully explained on a coarse scale, many efforts have been devoted to the identification of finer grained cortical landmarks, such as sulcal pits and gyral peaks, which were found to remain invariant across subjects and ages and the invariance may be related to gene mediated proto-map. However, gyral peaks were only investigated on macaque monkey brains, but not on human brains where the investigation is challenged due to high inter-individual variabilities. To this end, in this work, we successfully identified 96 gyral peaks both on the left and right hemispheres of human brains, respectively. These peaks are spatially consistent across individuals. Higher or sharper peaks are more consistent across subjects. Both structural and functional graph metrics of peaks are significantly different from other cortical regions, and more importantly, these nodal graph metrics are anti-correlated with the spatial consistency metrics within peaks. In addition, the distribution of peaks and various cortical anatomical, structural/functional connective features show hemispheric symmetry. These findings provide new clues to understanding the cortical landmarks, as well as their relationship with brain functions, cognition, behavior in both healthy and aberrant brains.
Collapse
Affiliation(s)
- Songyao Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Tuo Zhang
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Zhibin He
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Xiao Li
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwest University, Xi’an, China
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Xi Jiang
- School of Automation, School of Information Technology, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, United States
| | - Junwei Han
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| | - Lei Guo
- School of Automation, School of Information Technology, and School of Life Science and Technology, Northwestern Polytechnical University, Xi’an 710000, China
| |
Collapse
|
5
|
Fernández-Pena A, Martín de Blas D, Navas-Sánchez FJ, Marcos-Vidal L, M Gordaliza P, Santonja J, Janssen J, Carmona S, Desco M, Alemán-Gómez Y. ABLE: Automated Brain Lines Extraction Based on Laplacian Surface Collapse. Neuroinformatics 2023; 21:145-162. [PMID: 36008650 DOI: 10.1007/s12021-022-09601-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The archetypical folded shape of the human cortex has been a long-standing topic for neuroscientific research. Nevertheless, the accurate neuroanatomical segmentation of sulci remains a challenge. Part of the problem is the uncertainty of where a sulcus transitions into a gyrus and vice versa. This problem can be avoided by focusing on sulcal fundi and gyral crowns, which represent the topological opposites of cortical folding. We present Automated Brain Lines Extraction (ABLE), a method based on Laplacian surface collapse to reliably segment sulcal fundi and gyral crown lines. ABLE is built to work on standard FreeSurfer outputs and eludes the delineation of anastomotic sulci while maintaining sulcal fundi lines that traverse the regions with the highest depth and curvature. First, it segments the cortex into gyral and sulcal surfaces; then, each surface is spatially filtered. A Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the surfaces. This surface is then used for careful detection of the endpoints of the lines. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the connectivity between the endpoints. The method is validated by comparing ABLE with three other sulcal extraction methods using the Human Connectome Project (HCP) test-retest database to assess the reproducibility of the different tools. The results confirm ABLE as a reliable method for obtaining sulcal lines with an accurate representation of the sulcal topology while ignoring anastomotic branches and the overestimation of the sulcal fundi lines. ABLE is publicly available via https://github.com/HGGM-LIM/ABLE .
Collapse
Affiliation(s)
- Alberto Fernández-Pena
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Daniel Martín de Blas
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Francisco J Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Luis Marcos-Vidal
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Pedro M Gordaliza
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Javier Santonja
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Joost Janssen
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| | - Yasser Alemán-Gómez
- Connectomics Lab, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
6
|
Song T, Bodin C, Coulon O. Ensemble learning for the detection of pli-de-passages in the superior temporal sulcus. Neuroimage 2023; 265:119776. [PMID: 36460275 DOI: 10.1016/j.neuroimage.2022.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The surface of the cerebral cortex is very convoluted, with a large number of folds, the cortical sulci. These folds are extremely variable from one individual to another, and this large variability is a problem for many applications in neuroscience and brain imaging. In particular, sulcal geometry (shape) and sulcal topology (branches, number of pieces) are very variable. "Plis de passages" (PPs) or "annectant gyri" can explain part of the topological variability, namely why sulci have a variable number of pieces across subjects. The concept of PPs was first introduced by Gratiolet (1854) to describe transverse gyri that interconnect both sides of a sulcus, that are frequently buried in the depth of sulci, and that are sometimes apparent on the cortical surface, hence seemingly interrupting the course of sulci and separating them in several pieces. Nevertheless, the difficulty of identifying PPs and the lack of systematic methods to automatically detect them has limited their use. However, based on a recent characterization of PPs in the superior temporal sulcus, we present here a method to automatically detect PPs in the superior temporal sulcus. Local morphology within the sulcus is characterized using cortical surface profiling, and the three-dimensional PP recognition problem is performed as a two-dimensional image classification problem with class-imbalance. This is solved by using an ensemble support vector machine model (EnsSVM) with a rebalancing strategy. Cross validation and quantitative experimental results on an external dataset show the effectiveness and robustness of our approach.
Collapse
Affiliation(s)
- Tianqi Song
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, UMR CNRS 7289, Marseille, France
| | - Clémentine Bodin
- Center for Research on Brain, Language, and Music, McGill University, Montreal, QC, Canada; Department of Biology, McGill University, Montreal, QC, Canada
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, UMR CNRS 7289, Marseille, France.
| |
Collapse
|
7
|
Zhang S, Chavoshnejad P, Li X, Guo L, Jiang X, Han J, Wang L, Li G, Wang X, Liu T, Razavi MJ, Zhang S, Zhang T. Gyral peaks: Novel gyral landmarks in developing macaque brains. Hum Brain Mapp 2022; 43:4540-4555. [PMID: 35713202 PMCID: PMC9491295 DOI: 10.1002/hbm.25971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex development undergoes a variety of processes, which provide valuable information for the study of the developmental mechanism of cortical folding as well as its relationship to brain structural architectures and brain functions. Despite the variability in the anatomy-function relationship on the higher-order cortex, recent studies have succeeded in identifying typical cortical landmarks, such as sulcal pits, that bestow specific functional and cognitive patterns and remain invariant across subjects and ages with their invariance being related to a gene-mediated proto-map. Inspired by the success of these studies, we aim in this study at defining and identifying novel cortical landmarks, termed gyral peaks, which are the local highest foci on gyri. By analyzing data from 156 MRI scans of 32 macaque monkeys with the age spanned from 0 to 36 months, we identified 39 and 37 gyral peaks on the left and right hemispheres, respectively. Our investigation suggests that these gyral peaks are spatially consistent across individuals and relatively stable within the age range of this dataset. Moreover, compared with other gyri, gyral peaks have a thicker cortex, higher mean curvature, more pronounced hub-like features in structural connective networks, and are closer to the borders of structural connectivity-based cortical parcellations. The spatial distribution of gyral peaks was shown to correlate with that of other cortical landmarks, including sulcal pits. These results provide insights into the spatial arrangement and temporal development of gyral peaks as well as their relation to brain structure and function.
Collapse
Affiliation(s)
- Songyao Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Poorya Chavoshnejad
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Xiao Li
- School of Information TechnologyNorthwest UniversityXi'anChina
| | - Lei Guo
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Xi Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Junwei Han
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| | - Li Wang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gang Li
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xianqiao Wang
- College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensGeorgiaUSA
| | - Mir Jalil Razavi
- Department of Mechanical EngineeringState University of New York at BinghamtonNew YorkUSA
| | - Shu Zhang
- Center for Brain and Brain‐Inspired Computing Research, Department of Computer ScienceNorthwestern Polytechnical UniversityXi'anChina
| | - Tuo Zhang
- School of AutomationNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
8
|
Yun HJ, Lee HJ, Lee JY, Tarui T, Rollins CK, Ortinau CM, Feldman HA, Grant PE, Im K. Quantification of sulcal emergence timing and its variability in early fetal life: Hemispheric asymmetry and sex difference. Neuroimage 2022; 263:119629. [PMID: 36115591 PMCID: PMC10011016 DOI: 10.1016/j.neuroimage.2022.119629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/25/2022] Open
Abstract
Human fetal brains show regionally different temporal patterns of sulcal emergence following a regular timeline, which may be associated with spatiotemporal patterns of gene expression among cortical regions. This study aims to quantify the timing of sulcal emergence and its temporal variability across typically developing fetuses by fitting a logistic curve to presence or absence of sulcus. We found that the sulcal emergence started from the central to the temporo-parieto-occipital lobes and frontal lobe, and the temporal variability of emergence in most of the sulci was similar between 1 and 2 weeks. Small variability (< 1 week) was found in the left central and postcentral sulci and larger variability (>2 weeks) was shown in the bilateral occipitotemporal and left superior temporal sulci. The temporal variability showed a positive correlation with the emergence timing that may be associated with differential contributions between genetic and environmental factors. Our statistical analysis revealed that the right superior temporal sulcus emerged earlier than the left. Female fetuses showed a trend of earlier sulcal emergence in the right superior temporal sulcus, lower temporal variability in the right intraparietal sulcus, and higher variability in the right precentral sulcus compared to male fetuses. Our quantitative and statistical approach quantified the temporal patterns of sulcal emergence in detail that can be a reference for assessing the normality of developing fetal gyrification.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, Korea (the Republic of)
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul 04763, Korea (the Republic of)
| | - Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02115, United States
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States; Institutional Centers for Clinical and Translational Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, United States; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
9
|
Nowinski WL. On the definition, construction, and presentation of the human cerebral sulci: A morphology-based approach. J Anat 2022; 241:789-808. [PMID: 35638263 PMCID: PMC9358745 DOI: 10.1111/joa.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Although the term sulcus is known for almost four centuries, its formal, precise, consistent, constructive, and quantitative definition is practically lacking. As the cerebral sulci (and gyri) are vital in cortical anatomy which, in turn, is central in neuroeducation and neuroimage processing, a new sulcus definition is needed. The contribution of this work is threefold, namely to (1) propose a new, morphology-based definition of the term sulcus (and consequently that of gyrus), (2) formulate a constructive method for sulcus calculation, and (3) provide a novel way for the presentation of sulci. The sulcus is defined here as a volumetric region on the cortical mantle between adjacent gyri separated from them at the levels of their gyral white matter crest lines. Consequently, the sulcal inner surface is demarcated by the crest lines of the gyral white matter of its adjacent gyri. Correspondingly, the gyrus is defined as a volumetric region on the cortical mantle separated from its adjacent sulci at the level of its gyral white matter crest line. This volumetric sulcus definition is conceptually simple, anatomy-based, educationally friendly, quantitative, and constructive. Considering the sulcus as a volumetric object is a major differentiation from other works. Based on the introduced sulcus definition, a method for volumetric sulcus construction is proposed in two, conceptually straightforward, steps, namely, sulcal intersection formation followed by its propagation which steps are to be repeated for every sulcal segment. These sulcal and gyral constructions can be automated by applying existing methods and public tools. As a volumetric sulcus forms an imprint into the white matter, this enables prominent sulcus presentation. Since this type of presentation is novel yet unfamiliar to the reader, also a dual surface presentation was proposed here by employing the spatially co-registered white matter and cortical surfaces. The results were presented as dual surface labeled sulci on eight standard orthogonal views, anterior, left lateral, posterior, right lateral, superior, inferior, medial left, and medial right by using a 3D brain atlas. Moreover, additional 108 labeled images were created with sulcus-oriented views for 27 individual left and right sulci forming 54 dual white matter-cortical surface images strengthening in this way the educational value of the proposed approach. These images were included for public use in the NOWinBRAIN neuroimage repository with over 7700 3D images available at www.nowinbrain.org. The results demonstrated the superiority of white matter surface sulci presentation over the standard cortical surface and cross-sectional presentations in terms of sulcal course, continuity, size, shape, width, depth, side branches, and pattern. To my best knowledge, this is the first work ever presenting the labeling of sulci on all cerebral white matter surfaces as well as on dual white matter-cortical surfaces. Additionally to neuroeducation, three other applications of the proposed approach were discussed, sulcal reference maps, sulcus quantification in terms of new parameters introduced here (sulcal volume, wall skewness, and the number of white matter basins), and an atlas-assisted tool for exploration and studying of cerebral sulci and gyri .
Collapse
Affiliation(s)
- Wieslaw L. Nowinski
- School of Medicine, University of Cardinal Stefan WyszynskiWarsawPoland
- Nowinski Brain FoundationLomiankiPoland
| |
Collapse
|
10
|
Demirci N, Holland MA. Cortical thickness systematically varies with curvature and depth in healthy human brains. Hum Brain Mapp 2022; 43:2064-2084. [PMID: 35098606 PMCID: PMC8933257 DOI: 10.1002/hbm.25776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Cortical thickness varies throughout the cortex in a systematic way. However, it is challenging to investigate the patterns of cortical thickness due to the intricate geometry of the cortex. The cortex has a folded nature both in radial and tangential directions which forms not only gyri and sulci but also tangential folds and intersections. In this article, cortical curvature and depth are used to characterize the spatial distribution of the cortical thickness with much higher resolution than conventional regional atlases. To do this, a computational pipeline was developed that is capable of calculating a variety of quantitative measures such as surface area, cortical thickness, curvature (mean curvature, Gaussian curvature, shape index, intrinsic curvature index, and folding index), and sulcal depth. By analyzing 501 neurotypical adult human subjects from the ABIDE-I dataset, we show that cortex has a very organized structure and cortical thickness is strongly correlated with local shape. Our results indicate that cortical thickness consistently increases along the gyral-sulcal spectrum from concave to convex shape, encompassing the saddle shape along the way. Additionally, tangential folds influence cortical thickness in a similar way as gyral and sulcal folds; outer folds are consistently thicker than inner.
Collapse
Affiliation(s)
- Nagehan Demirci
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - Maria A. Holland
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
11
|
Lyu I, Bao S, Hao L, Yao J, Miller JA, Voorhies W, Taylor WD, Bunge SA, Weiner KS, Landman BA. Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training. Neuroimage 2021; 229:117758. [PMID: 33497773 PMCID: PMC8366030 DOI: 10.1016/j.neuroimage.2021.117758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N=60) and adult (N=36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling).
Collapse
Affiliation(s)
- Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA.
| | - Shuxing Bao
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA
| | - Lingyan Hao
- Institute for Computational & Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jewelia Yao
- Department of Psychology, The University of California, Berkeley, CA 94720, USA
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Willa Voorhies
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Warren D Taylor
- Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| | - Silvia A Bunge
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Kevin S Weiner
- Department of Psychology, The University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, The University of California, Berkeley, CA 94720, USA
| | - Bennett A Landman
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, 37235 USA
| |
Collapse
|
12
|
Jiang X, Zhang T, Zhang S, Kendrick KM, Liu T. Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior. PSYCHORADIOLOGY 2021; 1:23-41. [PMID: 38665307 PMCID: PMC10939337 DOI: 10.1093/psyrad/kkab002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 04/28/2024]
Abstract
Folding of the cerebral cortex is a prominent characteristic of mammalian brains. Alterations or deficits in cortical folding are strongly correlated with abnormal brain function, cognition, and behavior. Therefore, a precise mapping between the anatomy and function of the brain is critical to our understanding of the mechanisms of brain structural architecture in both health and diseases. Gyri and sulci, the standard nomenclature for cortical anatomy, serve as building blocks to make up complex folding patterns, providing a window to decipher cortical anatomy and its relation with brain functions. Huge efforts have been devoted to this research topic from a variety of disciplines including genetics, cell biology, anatomy, neuroimaging, and neurology, as well as involving computational approaches based on machine learning and artificial intelligence algorithms. However, despite increasing progress, our understanding of the functional anatomy of gyro-sulcal patterns is still in its infancy. In this review, we present the current state of this field and provide our perspectives of the methodologies and conclusions concerning functional differentiation between gyri and sulci, as well as the supporting information from genetic, cell biology, and brain structure research. In particular, we will further present a proposed framework for attempting to interpret the dynamic mechanisms of the functional interplay between gyri and sulci. Hopefully, this review will provide a comprehensive summary of anatomo-functional relationships in the cortical gyro-sulcal system together with a consideration of how these contribute to brain function, cognition, and behavior, as well as to mental disorders.
Collapse
Affiliation(s)
- Xi Jiang
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Keith M Kendrick
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30605, USA
| |
Collapse
|
13
|
Kaltenmark I, Deruelle C, Brun L, Lefèvre J, Coulon O, Auzias G. Group-level cortical surface parcellation with sulcal pits labeling. Med Image Anal 2020; 66:101749. [PMID: 32877840 DOI: 10.1016/j.media.2020.101749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022]
Abstract
Sulcal pits are the points of maximal depth within the folds of the cortical surface. These shape descriptors give a unique opportunity to access to a rich, fine-scale representation of the geometry and the developmental milestones of the cortical surface. However, using sulcal pits analysis at group level requires new numerical tools to establish inter-subject correspondences. Here, we address this issue by taking advantage of the geometrical information carried by sulcal basins that are the local patches of surfaces surrounding each sulcal pit. Our framework consists in two phases. First, we present a new method to generate a population-specific atlas of this sulcal basins organi- zation as a fold-level parcellation of the cortical surface. Then, we address the labeling of individual sulcal pits and corresponding basins with respect to this atlas. To assess their validity, we applied these methodological advances on two different populations of healthy subjects. The first database of 137 adults allowed us to compare our method to the state-of-the-art and the second database of 209 children, aged between 0 and 18 years, illustrates the adaptability and relevance of our method in the context of pediatric data showing strong variations in cortical volume and folding.
Collapse
Affiliation(s)
- Irène Kaltenmark
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France.
| | - Christine Deruelle
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France
| | - Lucile Brun
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France
| | - Julien Lefèvre
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université, CNRS Faculté de Médecine, 27 boulevard Faculté Jean Moulin, 13005 Marseille, France
| |
Collapse
|
14
|
Le Guen Y, Auzias G, Leroy F, Noulhiane M, Dehaene-Lambertz G, Duchesnay E, Mangin JF, Coulon O, Frouin V. Genetic Influence on the Sulcal Pits: On the Origin of the First Cortical Folds. Cereb Cortex 2019; 28:1922-1933. [PMID: 28444225 DOI: 10.1093/cercor/bhx098] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The influence of genes on cortical structures has been assessed through various phenotypes. The sulcal pits, which are the putative first cortical folds, have for long been assumed to be under tight genetic control, but this was never quantified. We estimated the pit depth heritability in various brain regions using the high quality and large sample size of the Human Connectome Project pedigree cohort. Analysis of additive genetic variance indicated that their heritability ranges between 0.2 and 0.5 and displays a regional genetic control with an overall symmetric pattern between hemispheres. However, a noticeable asymmetry of heritability estimates is observed in the superior temporal sulcus and could thus be related to language lateralization. The heritability range estimated in this study reinforces the idea that cortical shape is determined primarily by nongenetic factors, which is consistent with the important increase of cortical folding from birth to adult life and thus predominantly constrained by environmental factors. Nevertheless, the genetic cues, implicated with various local levels of heritability in the formation of sulcal pits, play a fundamental role in the normal gyral pattern development. Quantifying their influence and identifying the underlying genetic variants would provide insight into neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yann Le Guen
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille 13000, France.,Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix Marseille Université, CNRS, Marseille 13000, France
| | - François Leroy
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Marion Noulhiane
- UNIACT, U1129, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Ghislaine Dehaene-Lambertz
- Cognitive Neuroimaging Unit, U992, INSERM, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Edouard Duchesnay
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jean-François Mangin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille 13000, France.,Laboratoire des Sciences de l'Information et des Systèmes, UMR 7296, Aix Marseille Université, CNRS, Marseille 13000, France
| | - Vincent Frouin
- UNATI, Neurospin, Institut Joliot, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Parvathaneni P, Nath V, McHugo M, Huo Y, Resnick SM, Woodward ND, Landman BA, Lyu I. Improving human cortical sulcal curve labeling in large scale cross-sectional MRI using deep neural networks. J Neurosci Methods 2019; 324:108311. [PMID: 31201823 PMCID: PMC6663093 DOI: 10.1016/j.jneumeth.2019.108311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human cortical primary sulci are relatively stable landmarks and commonly observed across the population. Despite their stability, the primary sulci exhibit phenotypic variability. NEW METHOD We propose a fully automated pipeline that integrates both sulcal curve extraction and labeling. In this study, we use a large normal control population (n = 1424) to train neural networks for accurately labeling the primary sulci. Briefly, we use sulcal curve distance map, surface parcellation, mean curvature and spectral features to delineate their sulcal labels. We evaluate the proposed method with 8 primary sulcal curves in the left and right hemispheres compared to an established multi-atlas curve labeling method. RESULTS Sulcal labels by the proposed method reasonably well agree with manual labeling. The proposed method outperforms the existing multi-atlas curve labeling method. COMPARISON WITH EXISTING METHOD Significantly improved sulcal labeling results are achieved with over 12.5 and 20.6 percent improvement on labeling accuracy in the left and right hemispheres, respectively compared to that of a multi-atlas curve labeling method in eight curves (p≪0.001, two-sample t-test). CONCLUSION The proposed method offers a computationally efficient and robust labeling of major sulci.
Collapse
Affiliation(s)
| | - Vishwesh Nath
- Computer Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Yuankai Huo
- Electrical Engineering, Vanderbilt Universitay, Nashville, TN, USA
| | | | - Neil D Woodward
- Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt Universitay, Nashville, TN, USA; Computer Science, Vanderbilt Universitay, Nashville, TN, USA; Department of Psychiatry and Behavioral Science, Vanderbilt Universitay, Nashville, TN, USA
| | - Ilwoo Lyu
- Computer Science, Vanderbilt Universitay, Nashville, TN, USA.
| |
Collapse
|
16
|
Yun HJ, Chung AW, Vasung L, Yang E, Tarui T, Rollins CK, Ortinau CM, Grant PE, Im K. Automatic labeling of cortical sulci for the human fetal brain based on spatio-temporal information of gyrification. Neuroimage 2019; 188:473-482. [PMID: 30553042 PMCID: PMC6452886 DOI: 10.1016/j.neuroimage.2018.12.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022] Open
Abstract
Accurate parcellation and labeling of primary cortical sulci in the human fetal brain is useful for regional analysis of brain development. However, human fetal brains show large spatio-temporal changes in brain size, cortical folding patterns, and relative position/size of cortical regions, making accurate automatic sulcal labeling challenging. Here, we introduce a novel sulcal labeling method for the fetal brain using spatio-temporal gyrification information from multiple fetal templates. First, spatial probability maps of primary sulci are generated on the templates from 23 to 33 gestational weeks and registered to an individual brain. Second, temporal weights, which determine the level of contribution to the labeling for each template, are defined by similarity of gyrification between the individual and the template brains. We combine the weighted sulcal probability maps from the multiple templates and adopt sulcal basin-wise approach to assign sulcal labels to each basin. Our labeling method was applied to 25 fetuses (22.9-29.6 gestational weeks), and the labeling accuracy was compared to manually assigned sulcal labels using the Dice coefficient. Moreover, our multi-template basin-wise approach was compared to a single-template approach, which does not consider the temporal dynamics of gyrification, and a fully-vertex-wise approach. The mean accuracy of our approach was 0.958 across subjects, significantly higher than the accuracies of the other approaches. This novel approach shows highly accurate sulcal labeling and provides a reliable means to examine characteristics of cortical regions in the fetal brain.
Collapse
Affiliation(s)
- Hyuk Jin Yun
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ai Wern Chung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lana Vasung
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tomo Tarui
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Mother Infant Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA; Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia M Ortinau
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - P Ellen Grant
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
The use of a custom-made virtual template for corrective surgeries of asymmetric patients: proof of principle and a multi-center end-user survey. Int J Comput Assist Radiol Surg 2018; 14:537-544. [PMID: 30250999 DOI: 10.1007/s11548-018-1858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
AIM To evaluate the utility of an individualized template for corrective surgeries for patients suffering from mandibular asymmetry. MATERIALS AND METHOD Twenty patients with history of favorable clinical outcome of the correction of their mandibular asymmetry were chosen. CBCTs were taken before and 6 weeks postoperative using NewTom 3G. Each volume is mirrored and registered on the cranial base. Surface models for the mandible and its registered mirror were used to compute a template using deformable fluid registration. Surgery was simulated based of the resulting template. A multi-center survey using "Qualtrics" was conducted to gain clinical feedback of 20 surgeons/orthodontists comparing treatment outcomes. RESULTS Twenty-three clinicians participated. More clinicians rated simulated outcome to be "Good," whereas the actual surgical outcomes were rated as "fair" and "poor." This was true for regional appraisal for the chin, Rami, and body of the mandible as well as the overall assessment of the outcome of surgeries. The gains of computer-assisted simulation tend to be greater for difficult cases especially for the body of the mandible, then the chin, and then the Ramus correction. CONCLUSIONS This approach has the potential to optimize and increase the predictability of the outcome of craniofacial corrective surgeries for asymmetric patients.
Collapse
|
18
|
Le Guen Y, Leroy F, Auzias G, Riviere D, Grigis A, Mangin JF, Coulon O, Dehaene-Lambertz G, Frouin V. The chaotic morphology of the left superior temporal sulcus is genetically constrained. Neuroimage 2018; 174:297-307. [DOI: 10.1016/j.neuroimage.2018.03.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
|
19
|
Lyu I, Kim SH, Woodward ND, Styner MA, Landman BA. TRACE: A Topological Graph Representation for Automatic Sulcal Curve Extraction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:1653-1663. [PMID: 29969416 PMCID: PMC6889090 DOI: 10.1109/tmi.2017.2787589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A proper geometric representation of the cortical regions is a fundamental task for cortical shape analysis and landmark extraction. However, a significant challenge has arisen due to the highly variable, convoluted cortical folding patterns. In this paper, we propose a novel topological graph representation for automatic sulcal curve extraction (TRACE). In practice, the reconstructed surface suffers from noise influences introduced during image acquisition/surface reconstruction. In the presence of noise on the surface, TRACE determines stable sulcal fundic regions by employing the line simplification method that prevents the sulcal folding pattern from being significantly smoothed out. The sulcal curves are then traced over the connected graph in the determined regions by the Dijkstra's shortest path algorithm. For validation, we used the state-of-the-art surface reconstruction pipelines on a reproducibility data set. The experimental results showed higher reproducibility and robustness to noise in TRACE than the existing method (Li et al. 2010) with over 20% relative improvement in error for both surface reconstruction pipelines. In addition, the extracted sulcal curves by TRACE were well-aligned with manually delineated primary sulcal curves. We also provided a choice of parameters to control quality of the extracted sulcal curves and showed the influences of the parameter selection on the resulting curves.
Collapse
Affiliation(s)
- Ilwoo Lyu
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 USA
| | - Sun Hyung Kim
- Department of Psychiatry, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neil D. Woodward
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37235 USA
| | - Martin A. Styner
- Department of Psychiatry, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bennett A. Landman
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
20
|
Zhang S, Zhao Y, Jiang X, Shen D, Liu T. Joint representation of consistent structural and functional profiles for identification of common cortical landmarks. Brain Imaging Behav 2018; 12:728-742. [PMID: 28597338 PMCID: PMC5722718 DOI: 10.1007/s11682-017-9736-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the brain mapping field, there have been significant interests in representation of structural/functional profiles to establish structural/functional landmark correspondences across individuals and populations. For example, from the structural perspective, our previous studies have identified hundreds of consistent DICCCOL (dense individualized and common connectivity-based cortical landmarks) landmarks across individuals and populations, each of which possess consistent DTI-derived fiber connection patterns. From the functional perspective, a large collection of well-characterized HAFNI (holistic atlases of functional networks and interactions) networks based on sparse representation of whole-brain fMRI signals have been identified in our prior studies. However, due to the remarkable variability of structural and functional architectures in the human brain, it is challenging for earlier studies to jointly represent the connectome-scale structural and functional profiles for establishing a common cortical architecture which can comprehensively encode both structural and functional characteristics across individuals. To address this challenge, we propose an effective computational framework to jointly represent the structural and functional profiles for identification of consistent and common cortical landmarks with both structural and functional correspondences across different brains based on DTI and fMRI data. Experimental results demonstrate that 55 structurally and functionally common cortical landmarks can be successfully identified.
Collapse
Affiliation(s)
- Shu Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Yu Zhao
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina, Chapel Hill, NC, USA.
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Bodin C, Takerkart S, Belin P, Coulon O. Anatomo-functional correspondence in the superior temporal sulcus. Brain Struct Funct 2017; 223:221-232. [DOI: 10.1007/s00429-017-1483-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
|
22
|
Klein A, Ghosh SS, Bao FS, Giard J, Häme Y, Stavsky E, Lee N, Rossa B, Reuter M, Chaibub Neto E, Keshavan A. Mindboggling morphometry of human brains. PLoS Comput Biol 2017; 13:e1005350. [PMID: 28231282 PMCID: PMC5322885 DOI: 10.1371/journal.pcbi.1005350] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023] Open
Abstract
Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle's algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available.
Collapse
Affiliation(s)
- Arno Klein
- Child Mind Institute, New York, New York, United States of America
| | - Satrajit S. Ghosh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Forrest S. Bao
- Department of Electrical and Computer Engineering, University of Akron, Akron, Ohio, United States of America
| | | | - Yrjö Häme
- Columbia University, New York, New York, United States of America
| | - Eliezer Stavsky
- Columbia University, New York, New York, United States of America
| | - Noah Lee
- Columbia University, New York, New York, United States of America
| | - Brian Rossa
- TankThink Labs, Boston, Massachusetts, United States of America
| | - Martin Reuter
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | | | - Anisha Keshavan
- University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
A practical guide for the identification of major sulcogyral structures of the human cortex. Brain Struct Funct 2016; 222:2001-2015. [PMID: 27709299 DOI: 10.1007/s00429-016-1320-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/27/2016] [Indexed: 10/20/2022]
Abstract
The precise sulcogyral localization of cortical lesions is mandatory to improve communication between practitioners and to predict and prevent post-operative deficits. This process, which assumes a good knowledge of the cortex anatomy and a systematic analysis of images, is, nevertheless, sometimes neglected in the neurological and neurosurgical training. This didactic paper proposes a brief overview of the sulcogyral anatomy, using conventional MR-slices, and also reconstructions of the cortical surface after a more or less extended inflation process. This method simplifies the cortical anatomy by removing part of the cortical complexity induced by the folding process, and makes it more understandable. We then reviewed several methods for localizing cortical structures, and proposed a three-step identification: after localizing the lateral, medial or ventro-basal aspect of the hemisphere (step 1), the main interlobar sulci were located to limit the lobes (step 2). Finally, intralobar sulci and gyri were identified (step 3) thanks to the same set of rules. This paper does not propose any new identification method but should be regarded as a set of practical guidelines, useful in daily clinical practice, for detecting the main sulci and gyri of the human cortex.
Collapse
|
24
|
Klein A, Ghosh S. Graph-based clinical diagnosis and prediction using multi-modal neuroimaging data. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e8835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
Klein A. Brain Graph Interface. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e8817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Zhang T, Zhu D, Jiang X, Zhang S, Kou Z, Guo L, Liu T. Group-wise consistent cortical parcellation based on connectional profiles. Med Image Anal 2016; 32:32-45. [PMID: 27054276 DOI: 10.1016/j.media.2016.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
For decades, seeking common, consistent and corresponding anatomical/functional regions across individual brains via cortical parcellation has been a longstanding challenging problem. In our opinion, two major barriers to solve this problem are determining meaningful cortical boundaries that segregate homogeneous regions and establishing correspondences among parcellated regions of multiple brains. To establish a corresponding system across subjects, we recently developed the Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system which possesses group-wise consistent white matter fiber connection patterns across individuals and thus provides a dense map of corresponding cortical landmarks. Despite this useful property, however, the DICCCOL landmarks are still far from covering the whole cerebral cortex and do not provide clear structural/functional cortical boundaries. To address the above limitation while leveraging the advantage of DICCCOL, in this paper, we present a novel approach for group-wise consistent parcellation of the cerebral cortex via a hierarchical scheme. In each hierarchical level, DICCCOLs are used as corresponding samples to automatically determine the cluster number so that other cortical surface vertices are iteratively classified into corresponding clusters across subjects within a group-wise classification framework. Experimental results showed that this approach can achieve consistent fine-granularity cortical parcellation with intrinsically-established structural correspondences across individual brains. Besides, comparisons with resting-state and task-based fMRI datasets demonstrated that the group-wise parcellation boundaries segregate functionally homogeneous areas.
Collapse
Affiliation(s)
- Tuo Zhang
- School of Automation and Brain Decoding Research Center, Northwestern Polytechnical University, Xi'an 710072, China; Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30605, USA
| | - Dajiang Zhu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30605, USA
| | - Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30605, USA
| | - Shu Zhang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30605, USA
| | - Zhifeng Kou
- Departments of Biomedical Engineering and Radiology, Wayne State University, Detroit, MI 48201, USA
| | - Lei Guo
- School of Automation and Brain Decoding Research Center, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30605, USA.
| |
Collapse
|
27
|
Pagnozzi AM, Gal Y, Boyd RN, Fiori S, Fripp J, Rose S, Dowson N. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review. Int J Dev Neurosci 2015; 47:229-46. [DOI: 10.1016/j.ijdevneu.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
- The University of QueenslandSchool of MedicineSt. LuciaBrisbaneAustralia
| | - Yaniv Gal
- The University of QueenslandCentre for Medical Diagnostic Technologies in QueenslandSt. LuciaBrisbaneAustralia
| | - Roslyn N. Boyd
- The University of QueenslandQueensland Cerebral Palsy and Rehabilitation Research CentreSchool of MedicineBrisbaneAustralia
| | - Simona Fiori
- Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
| | - Jurgen Fripp
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Stephen Rose
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Nicholas Dowson
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| |
Collapse
|
28
|
Tardif CL, Schäfer A, Waehnert M, Dinse J, Turner R, Bazin PL. Multi-contrast multi-scale surface registration for improved alignment of cortical areas. Neuroimage 2015; 111:107-22. [DOI: 10.1016/j.neuroimage.2015.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 11/30/2022] Open
|
29
|
Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits. Neuroimage 2015; 111:12-25. [DOI: 10.1016/j.neuroimage.2015.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
|
30
|
Jiang X, Zhang T, Zhu D, Li K, Chen H, Lv J, Hu X, Han J, Shen D, Guo L, Liu T. Anatomy-guided Dense Individualized and Common Connectivity-based Cortical Landmarks (A-DICCCOL). IEEE Trans Biomed Eng 2015; 62:1108-19. [PMID: 25420253 PMCID: PMC5307947 DOI: 10.1109/tbme.2014.2369491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Establishment of structural and functional correspondences of human brain that can be quantitatively encoded and reproduced across different subjects and populations is one of the key issues in brain mapping. As an attempt to address this challenge, our recently developed Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system reported 358 connectional landmarks, each of which possesses consistent DTI-derived white matter fiber connection pattern that is reproducible in over 240 healthy brains. However, the DICCCOL system can be substantially improved by integrating anatomical and morphological information during landmark initialization and optimization procedures. In this paper, we present a novel anatomy-guided landmark discovery framework that defines and optimizes landmarks via integrating rich anatomical, morphological, and fiber connectional information for landmark initialization, group-wise optimization and prediction, which are formulated and solved as an energy minimization problem. The framework finally determined 555 consistent connectional landmarks. Validation studies demonstrated that the 555 landmarks are reproducible, predictable, and exhibited reasonably accurate anatomical, connectional, and functional correspondences across individuals and populations and thus are named anatomy-guided DICCCOL or A-DICCCOL. This A-DICCCOL system represents common cortical architectures with anatomical, connectional, and functional correspondences across different subjects and would potentially provide opportunities for various applications in brain science.
Collapse
Affiliation(s)
- Xi Jiang
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Dajiang Zhu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Kaiming Li
- School of Automation, Northwestern Polytechnical University, Xi’an 710072 China
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Hanbo Chen
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Jinglei Lv
- School of Automation, Northwestern Polytechnical University, Xi’an 710072 China
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi’an 710072 China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi’an 710072 China
| | - Dinggang Shen
- Department of Radiology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi’an 710072 China
| | - Tianming Liu
- T. Liu is with the Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602 USA ()
| |
Collapse
|
31
|
Meng Y, Li G, Gao Y, Shen D. AUTOMATIC PARCELLATION OF CORTICAL SURFACES USING RANDOM FORESTS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2015; 2015:810-813. [PMID: 26405505 DOI: 10.1109/isbi.2015.7163995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Automatic and accurate parcellation of cortical surfaces into anatomically and functionally meaningful regions is of fundamental importance in brain mapping. In this paper, we propose a new method leveraging random forests and graph cuts methods to parcellate cortical surfaces into a set of gyral-based regions, using multiple surface atlases with manual labels by experts. Specifically, our method first takes advantage of random forests and auto-context methods to learn the optimal utilization of cortical features for rough parcellation and then the graph cuts method to further refine the parcellation for improved accuracy and spatial consistency. Particularly, to capitalize on random forests, we propose a novel definition of Haar-like features on cortical surfaces based on spherical mapping. The proposed method has been validated on cortical surfaces from 39 adult brain MR images, each with 35 regions manually labeled by a neuroanatomist, achieving the average Dice ratio of 0.902, higher than the-state-of-art methods.
Collapse
Affiliation(s)
- Yu Meng
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA ; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Yaozong Gao
- Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA ; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
32
|
Li G, Wang L, Shi F, Lin W, Shen D. Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants. Med Image Anal 2014; 18:1274-89. [PMID: 25066749 PMCID: PMC4162754 DOI: 10.1016/j.media.2014.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/06/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023]
Abstract
The human cerebral cortex develops extremely dynamically in the first 2years of life. Accurate and consistent parcellation of longitudinal dynamic cortical surfaces during this critical stage is essential to understand the early development of cortical structure and function in both normal and high-risk infant brains. However, directly applying the existing methods developed for the cross-sectional studies often generates longitudinally-inconsistent results, thus leading to inaccurate measurements of the cortex development. In this paper, we propose a new method for accurate, consistent, and simultaneous labeling of longitudinal cortical surfaces in the serial infant brain MR images. The proposed method is explicitly formulated as a minimization problem with an energy function that includes a data fitting term, a spatial smoothness term, and a temporal consistency term. Specifically, inspired by multi-atlas based label fusion, the data fitting term is designed to integrate the contributions from multi-atlas surfaces adaptively, according to the similarities of their local cortical folding with that of the subject cortical surface. The spatial smoothness term is then designed to adaptively encourage label smoothness based on the local cortical folding geometries, i.e., allowing label discontinuity at sulcal bottoms (which often are the boundaries of cytoarchitecturally and functionally distinct regions). The temporal consistency term is to adaptively encourage the label consistency among the temporally-corresponding vertices, based on their similarity of local cortical folding. Finally, the entire energy function is efficiently minimized by a graph cuts method. The proposed method has been applied to the parcellation of longitudinal cortical surfaces of 13 healthy infants, each with 6 serial MRI scans acquired at 0, 3, 6, 9, 12 and 18months of age. Qualitative and quantitative evaluations demonstrated both accuracy and longitudinal consistency of the proposed method. By using our method, for the first time, we reveal several hitherto unseen properties of the dynamic and regionally heterogeneous development of the cortical surface area in the first 18months of life.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Feng Shi
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Local analysis of human cortex in MRI brain volume. ScientificWorldJournal 2014; 2014:983871. [PMID: 24688452 PMCID: PMC3929192 DOI: 10.1155/2014/983871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/29/2013] [Indexed: 11/17/2022] Open
Abstract
This paper describes a method for subcortical identification and labeling of 3D medical MRI images. Indeed, the ability to identify similarities between the most characteristic subcortical structures such as sulci and gyri is helpful for human brain mapping studies in general and medical diagnosis in particular. However, these structures vary greatly from one individual to another because they have different geometric properties. For this purpose, we have developed an efficient tool that allows a user to start with brain imaging, to segment the border gray/white matter, to simplify the obtained cortex surface, and to describe this shape locally in order to identify homogeneous features. In this paper, a segmentation procedure using geometric curvature properties that provide an efficient discrimination for local shape is implemented on the brain cortical surface. Experimental results demonstrate the effectiveness and the validity of our approach.
Collapse
|
34
|
A functional model of cortical gyri and sulci. Brain Struct Funct 2013; 219:1473-91. [PMID: 23689502 DOI: 10.1007/s00429-013-0581-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) have been broadly used in the neuroimaging field to investigate the macro-scale fiber connection patterns in the cerebral cortex. Our recent analyses of DTI and HARDI data demonstrated that gyri are connected by denser, streamlined fibers than sulci are. Inspired by this finding and motivated by the fact that DTI-derived fibers provide the structural substrates for functional connectivity, we hypothesize that gyri are global functional connection centers and sulci are local functional units. To test this functional model of gyri and sulci, we examined the structural and functional connectivity among the landmarks on the selected gyral/sulcal areas in the frontal/parietal lobe and in the whole cerebral cortex via multimodal DTI and resting state fMRI (R-fMRI) datasets. Our results demonstrate that functional connectivity is strong among gyri, weak among sulci, and moderate between gyri and sulci. These results suggest that gyri are functional connection centers that exchange information among remote structurally connected gyri and neighboring sulci, while sulci communicate directly with their neighboring gyri and indirectly with other cortical regions through gyri. This functional model of gyri and sulci has been supported by a series of experiments, and provides novel perspectives on the functional architecture of the cerebral cortex.
Collapse
|
35
|
Yang JJ, Yoon U, Yun HJ, Im K, Choi YY, Lee KH, Park H, Hough MG, Lee JM. Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience 2013; 246:351-61. [PMID: 23643979 DOI: 10.1016/j.neuroscience.2013.04.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 11/17/2022]
Abstract
A number of imaging studies have reported neuroanatomical correlates of human intelligence with various morphological characteristics of the cerebral cortex. However, it is not yet clear whether these morphological properties of the cerebral cortex account for human intelligence. We assumed that the complex structure of the cerebral cortex could be explained effectively considering cortical thickness, surface area, sulcal depth and absolute mean curvature together. In 78 young healthy adults (age range: 17-27, male/female: 39/39), we used the full-scale intelligence quotient (FSIQ) and the cortical measurements calculated in native space from each subject to determine how much combining various cortical measures explained human intelligence. Since each cortical measure is thought to be not independent but highly inter-related, we applied partial least square (PLS) regression, which is one of the most promising multivariate analysis approaches, to overcome multicollinearity among cortical measures. Our results showed that 30% of FSIQ was explained by the first latent variable extracted from PLS regression analysis. Although it is difficult to relate the first derived latent variable with specific anatomy, we found that cortical thickness measures had a substantial impact on the PLS model supporting the most significant factor accounting for FSIQ. Our results presented here strongly suggest that the new predictor combining different morphometric properties of complex cortical structure is well suited for predicting human intelligence.
Collapse
Affiliation(s)
- J-J Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Automated sulcal depth measurement on cortical surface reflecting geometrical properties of sulci. PLoS One 2013; 8:e55977. [PMID: 23418488 PMCID: PMC3572156 DOI: 10.1371/journal.pone.0055977] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
Sulcal depth that is one of the quantitative measures of cerebral cortex has been widely used as an important marker for brain morphological studies. Several studies have employed Euclidean (EUD) or geodesic (GED) algorithms to measure sulcal depth, which have limitations that ignore sulcal geometry in highly convoluted regions and result in under or overestimated depth. In this study, we proposed an automated measurement for sulcal depth on cortical surface reflecting geometrical properties of sulci, which named the adaptive distance transform (ADT). We first defined the volume region of cerebrospinal fluid between the 3D convex hull and the cortical surface, and constructed local coordinates for that restricted region. Dijkstra's algorithm was then used to compute the shortest paths from the convex hull to the vertices of the cortical surface based on the local coordinates, which may be the most proper approach for defining sulcal depth. We applied our algorithm to both a clinical dataset including patients with mild Alzheimer's disease (AD) and 25 normal controls and a simulated dataset whose shape was similar to a single sulcus. The mean sulcal depth in the mild AD group was significantly lower than controls (p = 0.007, normal [mean±SD]: 7.29±0.23 mm, AD: 7.11±0.29) and the area under the receiver operating characteristic curve was relatively high, showing the value of 0.818. Results from clinical dataset that were consistent with former studies using EUD or GED demonstrated that ADT was sensitive to cortical atrophy. The robustness against inter-individual variability of ADT was highlighted through simulation dataset. ADT showed a low and constant normalized difference between the depth of the simulated data and the calculated depth, whereas EUD and GED had high and variable differences. We suggest that ADT is more robust than EUD or GED and might be a useful alternative algorithm for measuring sulcal depth.
Collapse
|
37
|
Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D. Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. ACTA ACUST UNITED AC 2013; 24:1289-300. [PMID: 23307634 DOI: 10.1093/cercor/bhs413] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mapping cortical hemispheric asymmetries in infants would increase our understanding of the origins and developmental trajectories of hemispheric asymmetries. We analyze longitudinal cortical hemispheric asymmetries in 73 healthy subjects at birth, 1, and 2 years of age using surface-based morphometry of magnetic resonance images with a specific focus on the vertex position, sulcal depth, mean curvature, and local surface area. Prominent cortical asymmetries are found around the peri-Sylvian region and superior temporal sulcus (STS) at birth that evolve modestly from birth to 2 years of age. Sexual dimorphisms of cortical asymmetries are present at birth, with males having the larger magnitudes and sizes of the clusters of asymmetries than females that persist from birth to 2 years of age. The left supramarginal gyrus (SMG) is significantly posterior to the right SMG, and the maximum position difference increases from 10.2 mm for males (6.9 mm for females) at birth to 12.0 mm for males (8.4 mm for females) by 2 years of age. The right STS and parieto-occipital sulcus are significantly larger and deeper than those in the left hemisphere, and the left planum temporale is significantly larger and deeper than that in the right hemisphere at all 3 ages. Our results indicate that early hemispheric structural asymmetries are inherent and gender related.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC and
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Le Troter A, Auzias G, Coulon O. Automatic sulcal line extraction on cortical surfaces using geodesic path density maps. Neuroimage 2012; 61:941-9. [DOI: 10.1016/j.neuroimage.2012.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/29/2012] [Accepted: 04/07/2012] [Indexed: 11/30/2022] Open
|
39
|
Yang Z, Carass A, Prince JL. Automatic Sulcal Curve Extraction with MRF Based Shape Prior. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2012; 2012:418-421. [PMID: 27303593 DOI: 10.1109/isbi.2012.6235573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Extracting and labeling sulcal curves on the human cerebral cortex is important for many neuroscience studies, however manually annotating the sulcal curves is a time-consuming task. In this paper, we present an automatic sulcal curve extraction method by registering a set of dense landmark points representing the sulcal curves to the subject cortical surface. A Markov random field is used to model the prior distribution of these landmark points, with short edges in the graph preserving the curve structure and long edges modeling the global context of the curves. Our approach is validated using a leave-one-out strategy of training and evaluation on fifteen cortical surfaces, and a quantitative error analysis on the extracted major sulcal curves.
Collapse
Affiliation(s)
- Zhen Yang
- Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| | - Aaron Carass
- Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| | - Jerry L Prince
- Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| |
Collapse
|
40
|
Yang Z, Carass A, Chen C, Prince JL. Simultaneous Cortical Surface Labeling and Sulcal Curve Extraction. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2012; 8314. [PMID: 27471339 DOI: 10.1117/12.910552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Automatic labeling of the gyri and sulci on the cortical surface is important for studying cortical morphology and brain functions within populations. A method to simultaneously label gyral regions and extract sulcal curves is proposed. Assuming that the gyral regions parcellate the whole cortical surface into contiguous regions with certain fixed topology, the proposed method labels the subject cortical surface by deformably registering a network of curves that form the boundary of gyral regions to the subject cortical surface. In the registration process, the curves are encouraged to follow the fine details of the sulcal geometry and to observe the shape statistics learned from training data. Using the framework of probabilistic point set registration methods, the proposed algorithm finds the sulcal curve network that maximizes the posterior probability by Expectation-Maximization (EM). The automatic labeling method was evaluated on 15 cortical surfaces using a leave-one-out strategy. Quantitative error analysis is carried out on both labeled regions and major sulcal curves.
Collapse
Affiliation(s)
- Zhen Yang
- Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| | - Aaron Carass
- Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| | - Chen Chen
- Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| | - Jerry L Prince
- Electrical and Computer Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218; Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, USA 21218
| |
Collapse
|
41
|
3D Rigid Registration of Intraoperative Ultrasound and Preoperative MR Brain Images Based on Hyperechogenic Structures. Int J Biomed Imaging 2012; 2012:531319. [PMID: 22315583 PMCID: PMC3270552 DOI: 10.1155/2012/531319] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
The registration of intraoperative ultrasound (US) images with preoperative magnetic resonance (MR) images is a challenging problem due to the difference of
information contained in each image modality. To overcome this difficulty, we
introduce a new probabilistic function based on the matching of cerebral hyperechogenic structures. In brain imaging, these structures are the liquid interfaces such as the cerebral falx and the sulci, and the lesions when the corresponding tissue is hyperechogenic. The registration procedure is achieved by maximizing the joint probability for a voxel to be included in hyperechogenic structures in both modalities. Experiments were carried out on real datasets acquired during neurosurgical procedures. The proposed validation framework is based on (i) visual assessment, (ii) manual expert estimations , and (iii) a robustness study. Results show that the proposed method (i) is visually efficient, (ii) produces no statistically different registration accuracy compared to manual-based expert registration, and (iii) converges robustly. Finally, the computation time required by our method is compatible with intraoperative use.
Collapse
|
42
|
Bao FS, Giard J, Tourville J, Klein A. Automated extraction of nested sulcus features from human brain MRI data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2012:4429-33. [PMID: 23366910 DOI: 10.1109/embc.2012.6346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extracting objects related to a fold in the cerebral cortex ("sulcus features") from human brain magnetic resonance imaging data has applications in morphometry, landmark-based registration, and anatomical labeling. In prior work, sulcus features such as surfaces, fundi and pits have been extracted separately. Here we define and extract nested sulcus features in a hierarchical manner from a cortical surface mesh having curvature or depth values. Our experimental results show that the nested features are comparable to features extracted separately using other methods, and that they are consistent across subjects and with manual label boundaries. Our open source feature extraction software will be made freely available as part of the Mindboggle project (http://www.mindboggle.info).
Collapse
Affiliation(s)
- Forrest Sheng Bao
- Department of Computer Science and Electrical Engineering, Texas Tech University, Lubbock, Texas, USA.
| | | | | | | |
Collapse
|
43
|
Cho Y, Seong JK, Shin SY, Jeong Y, Kim JH, Qiu A, Im K, Lee JM, Na DL. A multi-resolution scheme for distortion-minimizing mapping between human subcortical structures based on geodesic construction on Riemannian manifolds. Neuroimage 2011; 57:1376-92. [DOI: 10.1016/j.neuroimage.2011.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/20/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022] Open
|
44
|
Li G, Shen D. Consistent sulcal parcellation of longitudinal cortical surfaces. Neuroimage 2011; 57:76-88. [PMID: 21473919 DOI: 10.1016/j.neuroimage.2011.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022] Open
Abstract
Automated accurate and consistent sulcal parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains, since longitudinal cortical changes are normally very subtle, especially in aging brains. However, applying the existing methods (which were typically developed for cortical sulcal parcellation of a single cortical surface) independently to longitudinal cortical surfaces might generate longitudinally-inconsistent results. To overcome this limitation, this paper presents a novel energy function based method for accurate and consistent sulcal parcellation of longitudinal cortical surfaces. Specifically, both spatial and temporal smoothness are imposed in the energy function to obtain consistent longitudinal sulcal parcellation results. The energy function is efficiently minimized by a graph cut method. The proposed method has been successfully applied to sulcal parcellation of both real and simulated longitudinal inner cortical surfaces of human brain MR images. Both qualitative and quantitative evaluation results demonstrate the validity of the proposed method.
Collapse
Affiliation(s)
- Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
45
|
Hao X, Xu D, Bansal R, Liu J, Peterson BS. An improved representation of regional boundaries on parcellated morphological surfaces. Comput Med Imaging Graph 2011; 35:206-19. [PMID: 21144708 PMCID: PMC3059377 DOI: 10.1016/j.compmedimag.2010.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 09/17/2010] [Accepted: 11/08/2010] [Indexed: 11/23/2022]
Abstract
Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects.
Collapse
Affiliation(s)
- Xuejun Hao
- MRI Unit, Psychiatry Department, Columbia University & the New York State Psychiatric Institute, USA.
| | | | | | | | | |
Collapse
|
46
|
Le Troter A, Auzias G, Coulon O. Automatic extraction of sulcal lines on the cortical surface using shortest path probability maps. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:5165-5168. [PMID: 22255502 DOI: 10.1109/iembs.2011.6091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper describes an automatic procedure for extracting sulcal lines from cortical surface meshes of the human brain, which will serve as a tool for landmark extraction as well as for investigating the morphometry of sulci. The procedure consists in a sequence of steps, including sulcal basin segmentation based on local curvature information, estimating a bundle of depth-constrained geodesic paths and determining a robust probability map of sulcal lines crossing. In this experiment, we present quantitative validations on two main sulci to observe the agreement of our method with manually traced curves.
Collapse
Affiliation(s)
- Arnaud Le Troter
- Laboratoire des Sciences de l’Information et des Systèmes, UMR CNRS 6168, Marseille, France.
| | | | | |
Collapse
|
47
|
Clarkson MJ, Malone IB, Modat M, Leung KK, Ryan N, Alexander DC, Fox NC, Ourselin S. A framework for using diffusion weighted imaging to improve cortical parcellation. ACTA ACUST UNITED AC 2010; 13:534-41. [PMID: 20879272 DOI: 10.1007/978-3-642-15705-9_65] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Cortical parcellation refers to anatomical labelling of every point in the cortex. An accurate parcellation is useful in many analysis techniques including the study of regional changes in cortical thickness or volume in ageing and neurodegeneration. Parcellation is also key to anatomic apportioning of functional imaging changes. We present preliminary work on a novel algorithm that takes an entire cortical parcellation and iteratively updates it to better match connectivity information derived from diffusion weighted imaging. We demonstrate the algorithm on a cohort of 17 healthy controls. Initial results show the algorithm recovering artificially induced mis-registrations of the parcellation and also converging to a group-wise average. This work introduces a framework to investigate the relationship between structure and function, with no a-priori knowledge of specific regions of interest.
Collapse
Affiliation(s)
- Matthew J Clarkson
- Centre for Medical Image Computing, University College London, WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Saha PK, Xu Y, Duan H, Heiner A, Liang G. Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:1821-1838. [PMID: 20562041 PMCID: PMC3113685 DOI: 10.1109/tmi.2010.2050779] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Trabecular bone (TB) is a complex quasi-random network of interconnected plates and rods. TB constantly remodels to adapt to the stresses to which it is subjected (Wolff's Law). In osteoporosis, this dynamic equilibrium between bone formation and resorption is perturbed, leading to bone loss and structural deterioration. Both bone loss and structural deterioration increase fracture risk. Bone's mechanical behavior can only be partially explained by variations in bone mineral density, which led to the notion of bone structural quality. Previously, we developed digital topological analysis (DTA) which classifies plates, rods, profiles, edges, and junctions in a TB skeletal representation. Although the method has become quite popular, a major limitation of DTA is that it provides only hard classifications of different topological entities, failing to distinguish between narrow and wide plates. Here, we present a new method called volumetric topological analysis (VTA) for regional quantification of TB topology. At each TB location, the method uniquely classifies its topology on the continuum between perfect plates and perfect rods, facilitating early detections of TB alterations from plates to rods according to the known etiology of osteoporotic bone loss. Several new ideas, including manifold distance transform, manifold scale, and feature propagation have been introduced here and combined with existing DTA and distance transform methods, leading to the new VTA technology. This method has been applied to multidetector computed tomography (CT) and micro-computed tomography ( μCT) images of four cadaveric distal tibia and five distal radius specimens. Both intra- and inter-modality reproducibility of the method has been examined using repeat CT and μCT scans of distal tibia specimens. Also, the method's ability to predict experimental biomechanical properties of TB via CT imaging under in vivo conditions has been quantitatively examined and the results found are very encouraging.
Collapse
Affiliation(s)
- Punam K Saha
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
49
|
Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 2010; 53:1-15. [PMID: 20547229 DOI: 10.1016/j.neuroimage.2010.06.010] [Citation(s) in RCA: 1959] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/15/2022] Open
Abstract
Precise localization of sulco-gyral structures of the human cerebral cortex is important for the interpretation of morpho-functional data, but requires anatomical expertise and is time consuming because of the brain's geometric complexity. Software developed to automatically identify sulco-gyral structures has improved substantially as a result of techniques providing topologically correct reconstructions permitting inflated views of the human brain. Here we describe a complete parcellation of the cortical surface using standard internationally accepted nomenclature and criteria. This parcellation is available in the FreeSurfer package. First, a computer-assisted hand parcellation classified each vertex as sulcal or gyral, and these were then subparcellated into 74 labels per hemisphere. Twelve datasets were used to develop rules and algorithms (reported here) that produced labels consistent with anatomical rules as well as automated computational parcellation. The final parcellation was used to build an atlas for automatically labeling the whole cerebral cortex. This atlas was used to label an additional 12 datasets, which were found to have good concordance with manual labels. This paper presents a precisely defined method for automatically labeling the cortical surface in standard terminology.
Collapse
Affiliation(s)
- Christophe Destrieux
- Inserm U930, Tours, France; Université François Rabelais de Tours, Faculté de Médecine, IFR 135 Imagerie fonctionnelle , Tours, France.
| | | | | | | |
Collapse
|
50
|
Nie J, Guo L, Li G, Faraco C, Stephen Miller L, Liu T. A computational model of cerebral cortex folding. J Theor Biol 2010; 264:467-78. [PMID: 20167224 PMCID: PMC2856813 DOI: 10.1016/j.jtbi.2010.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/16/2010] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex.
Collapse
Affiliation(s)
- Jingxin Nie
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|