1
|
Carvalho MC, Santos JM, Brandão ML. Dorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats. Neurobiol Learn Mem 2015; 121:52-8. [PMID: 25883049 DOI: 10.1016/j.nlm.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Electrical stimulation of the dorsal periaqueductal gray (dPAG) in rats generates defensive responses that are characterized by freezing and escape behaviors, followed by post-stimulation freezing that resembles symptoms of panic attacks. dPAG post-stimulation freezing involves the processing of ascending aversive information to prosencephalic centers, including the amygdala, which allows the animal to evaluate the consequences of stressful situations. The basolateral nucleus of the amygdala (BLA) is thought to act as a filter for innate and learned aversive information that is transmitted to higher structures. The central (CeA) and medial (MeA) nuclei of the amygdala constitute an output for the expression of fear reactions through projections to limbic and brainstem regions. Neurokinin (NK) receptors are abundant in the CeA, MeA, and BLA, but their role in the expression of defensive responses and processing of aversive information that is evoked by electrical stimulation of the dPAG is still unclear. In the present study, we examined the role of NK1 receptors in these amygdala nuclei in the expression of defensive responses induced by electrical stimulation of the dPAG in rats and fear memory of this aversive stimulation. Rats were implanted with an electrode into the dPAG for electrical stimulation and one cannula in the CeA, MeA, or BLA for injections of vehicle (phosphate-buffered saline) or the NK1 receptor antagonist spantide (SPA; 100 pmol/0.2 μl). Injections of SPA into the CeA but not BLA or MeA reduced the duration of post-stimulation freezing evoked by electrical stimulation of the dPAG, without changing the aversive thresholds of freezing or escape. Twenty-four hours later, exploratory behavior was evaluated in the elevated plus maze test (EPM) in the CeA group of rats. Electrical stimulation of the dPAG rats that received vehicle exhibited higher aversion to the open arms of the EPM than sham rats that did not receive any dPAG stimulation. SPA injections into the CeA prevented the proaversive effects of electrical stimulation of the dPAG assessed in the EPM 24 h later. The present results suggest that neurokininergic modulation via NK1 receptors in the CeA but not BLA or MeA is involved in the processing of aversive information derived from dPAG stimulation. The long-lasting consequences of electrical stimulation of the dPAG may be prevented by NK1 receptor antagonism in the CeA.
Collapse
Affiliation(s)
- M C Carvalho
- Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - J M Santos
- Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP, Brazil; Faculdade de Educação Física e Fisioterapia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - M L Brandão
- Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP, Brazil; Laboratório de Neuropsicofarmacologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Borbély E, Scheich B, Helyes Z. Neuropeptides in learning and memory. Neuropeptides 2013; 47:439-50. [PMID: 24210137 DOI: 10.1016/j.npep.2013.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
Dementia conditions and memory deficits of different origins (vascular, metabolic and primary neurodegenerative such as Alzheimer's and Parkinson's diseases) are getting more common and greater clinical problems recently in the aging population. Since the presently available cognitive enhancers have very limited therapeutical applications, there is an emerging need to elucidate the complex pathophysiological mechanisms, identify key mediators and novel targets for future drug development. Neuropeptides are widely distributed in brain regions responsible for learning and memory processes with special emphasis on the hippocampus, amygdala and the basal forebrain. They form networks with each other, and also have complex interactions with the cholinergic, glutamatergic, dopaminergic and GABA-ergic pathways. This review summarizes the extensive experimental data in the well-established rat and mouse models, as well as the few clinical results regarding the expression and the roles of the tachykinin system, somatostatin and the closely related cortistatin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate-cyclase activating polypeptide (PACAP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), opioid peptides and galanin. Furthermore, the main receptorial targets, mechanisms and interactions are described in order to highlight the possible therapeutical potentials. Agents not only symptomatically improving the functional impairments, but also inhibiting the progression of the neurodegenerative processes would be breakthroughs in this area. The most promising mechanisms determined at the level of exploratory investigations in animal models of cognitive disfunctions are somatostatin sst4, NPY Y2, PACAP-VIP VPAC1, tachykinin NK3 and galanin GALR2 receptor agonisms, as well as delta opioid receptor antagonism. Potent and selective non-peptide ligands with good CNS penetration are needed for further characterization of these molecular pathways to complete the preclinical studies and decide if any of the above described targets could be appropriate for clinical investigations.
Collapse
Affiliation(s)
- Eva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | | | | |
Collapse
|
3
|
Wang C, Shu SY, Guo Z, Cai YF, Bao X, Zeng C, Wu B, Hu Z, Liu X. Immunohistochemical localization of mu opioid receptor in the marginal division with comparison to patches in the neostriatum of the rat brain. J Biomed Sci 2011; 18:34. [PMID: 21631922 PMCID: PMC3123621 DOI: 10.1186/1423-0127-18-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/01/2011] [Indexed: 11/17/2022] Open
Abstract
Background Mu opioid receptor (MOR), which plays key roles in analgesia and also has effects on learning and memory, was reported to distribute abundantly in the patches of the neostriatum. The marginal division (MrD) of the neostriatum, which located at the caudomedial border of the neostriatum, was found to stain for enkephalin and substance P immunoreactivities and this region was found to be involved in learning and memory in our previous study. However, whether MOR also exists in the MrD has not yet been determined. Methods In this study, we used western blot analysis and immunoperoxidase histochemical methods with glucose oxidase-DAB-nickel staining to investigate the expression of MOR in the MrD by comparison to the patches in the neostriatum. Results The results from western blot analyses revealed that the antibody to MOR detected a 53 kDa protein band, which corresponded directly to the molecular weight of MOR. Immunohistochemical results showed that punctate MOR-immunoreacted fibers were observed in the "patch" areas in the rostrodorsal part of the neostriatum but these previous studies showed neither labelled neuronal cell bodies, nor were they shown in the caudal part of the neostriatum. Dorsoventrally oriented dark MOR-immunoreactive nerve fibers with individual labelled fusiform cell bodies were firstly observed in the band at the caudomedial border, the MrD, of the neostriatum. The location of the MOR-immunoreactivity was in the caudomedial border of the neostriatum. The morphology of the labelled fusiform neuronal somatas and the dorsoventrally oriented MOR-immunoreacted fibers in the MrD was distinct from the punctate MOR-immunoreactive diffuse mosaic-patterned patches in the neostriatum. Conclusions The results indicated that MOR was expressed in the MrD as well as in patches in the neostriatum of the rat brain, but with different morphological characteristics. The punctate MOR-immunoreactive and diffuse mosaic-patterned patches were located in the rostrodorsal part of the neostriatum. By contrast, in the MrD, the dorsoventrally parallel oriented MOR-immunoreactive fibers with individual labelled fusiform neuronal somatas were densely packed in the caudomedial border of the neostriatum. The morphological difference in MOR immunoreactivity between the MrD and the patches indicated potential functional differences between them. The MOR most likely plays a role in learning and memory associated functions of the MrD.
Collapse
Affiliation(s)
- Chuanxing Wang
- College of Biophotonics, South China Normal University, Guangzhou, GD 510631, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Costa JC, Costa KM, do Nascimento JLM. Scopolamine- and diazepam-induced amnesia are blocked by systemic and intraseptal administration of substance P and choline chloride. Peptides 2010; 31:1756-60. [PMID: 20600432 DOI: 10.1016/j.peptides.2010.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 06/12/2010] [Accepted: 06/14/2010] [Indexed: 11/30/2022]
Abstract
Systemic (IP) and/or intraseptal (IS) administration of scopolamine (SCP) and diazepam (DZP) induce amnesia, whereas IP injection of the neuropeptide substance P (SP) and choline chloride (ChCl) produce memory facilitation. The septohippocampal cholinergic system has been pointed out as a possible site of SCP and DZP-induced amnesia as well as for the mnemonic effects induced by SP and ChCl. We performed a series of experiments in order to investigate the interactions between cholinergic and GABA/benzodiazepine (GABA/BZD) systems with the SPergic system on inhibitory avoidance retention. Male Wistar rats were trained and tested in a step-down inhibitory avoidance task (1.0 mA footshock). Animals received, pre-training, IP (1.0 mg/kg) or IS (1.0 nM/0.5 microl) injection of DZP, SCP (SCP; 1.0 mg/kg - IP or 0.5 microM/0.5 microl--IS) or vehicle (VEH). Immediately after training they received an IP or IS injections of SP 1-11 (50 microg/kg--IP or 1.0 nM/0.5 microl--IS), SP 1-7 (167 microg/kg--IP or 1.0 nM/0.5 microl--IS), ChCl (20 mg/kg--IP or 0.3 microM/0.5 microl--IS) or VEH. Rats pretreated with SCP and DZP showed amnesia. Post-trial treatments with SP 1-11, SP 1-7 or ChCl blocked the amnesic effects of SCP and DZP. These findings suggest an interaction between SPergic and cholinergic mechanisms with GABAergic systems in the modulation of inhibitory avoidance retention and that the effects of these treatments are mediated, at least in part, by interactions in the septohippocampal pathway.
Collapse
Affiliation(s)
- Joseane Carvalho Costa
- Laboratory of Psychobiology, Department of Physiology, Institute for Biological Sciences, Federal University of Pará, CEP: 66.075-110 Belém, PA, Brazil.
| | | | | |
Collapse
|
5
|
Maia CDSF, Lucena GMRDS, Corrêa PBF, Serra RB, Matos RWDM, Menezes FDC, Santos SND, Sousa JBD, Costa ETD, Ferreira VMM. Interference of ethanol and methylmercury in the developing central nervous system. Neurotoxicology 2008; 30:23-30. [PMID: 19100288 DOI: 10.1016/j.neuro.2008.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 01/20/2023]
Abstract
Studies involving alcohol and its interactions with other neurotoxicants represent the focus of several works of research due to the fact that the use of alcohol can sometimes leads to serious health problems. Fetal exposure to alcohol and mercury has a high incidence in some regions of Brazil, where there are pregnant women who are alcoholics and live in mining areas. This work was conducted to examine the effects of combined exposure to ethanol (EtOH) and methylmercury (MeHg) in rats during the development of the central nervous system (CNS). Experimental behavioral animal models/tests were used in order to examine locomotion, anxiety, depression and memory. Pregnant rats received tap water or EtOH 22.5% w/v (6.5 g/kg per day), by gavage) during pregnancy and breast-feeding. On the 15th day of pregnancy, some groups received 8 mg/kg of MeHg (by gavage). The groups were as follows: control, EtOH, MeHg and EtOH+MeHg. The experimental results showed that the EtOH, MeHg and EtOH+MeHg groups reduced the percentage of frequency and time spent in the open arms entries of the elevated plus-maze (EPM) test, when compared to the control group. This result suggests an anxiogenic behavioral response. The MeHg group increased locomotor activity in the arena and the immobility time in the forced swimming test, suggestive of depression-like behavior. The EtOH+MeHg group showed greater reductions in the percentages of frequency and time spent in the open arms entries in the EPM test, suggesting a sedative-behavior since the frequency of enclosed arm entries was affected. In the inhibitory avoidance task, the EtOH+MeHg group reduced the latency of the step-down response onto the grid floor, suggesting a cognitive and behavior dysfunctions. Taken together, the results suggest that EtOH and/or MeHg intoxication during the developing CNS may be a risk for deficits related to locomotor impairment, anxiety, depression and neurocognitive functions. There is a possibility that EtOH may prevent some of the MeHg responses, but the precise mechanism of action involved in this process needs to be considered for future research.
Collapse
|
6
|
Duzzioni M, Calixto AV, Duarte FS, De Lima TC. Modulation of anxiety in rats evaluated in the elevated T-maze: Evidence of the relationship between substance P and diazepam. Behav Brain Res 2008; 187:140-5. [DOI: 10.1016/j.bbr.2007.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 09/01/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
|
7
|
Shu SY, Wu YM, Bao XM, Wen ZB, Huang FH, Li SX, Fu QZ, Ning Q. A new area in the human brain associated with learning and memory: immunohistochemical and functional MRI analysis. Mol Psychiatry 2003; 7:1018-22. [PMID: 12399957 DOI: 10.1038/sj.mp.4001155] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 03/12/2002] [Accepted: 04/03/2002] [Indexed: 11/09/2022]
Abstract
Previous studies identified a new brain area, the marginal division (MrD), at the caudomedial border of the neostriatum in the brain of the rat, cat and monkey. The MrD was distinguishable from the rest of the striatum by the presence of spindle-shaped neurons, specific connections, and dense immunoreactivity for neuropeptides and monoamines in fibers, terminals and neuronal somata. Behavioral testing demonstrated that the MrD contributes to learning and memory in the rat. In the present study, the structure and the function of the MrD were investigated in the human brain. The presence of spindle-shaped neurons and the distribution of neurotransmitters in the MrD were evaluated by immunocytochemical methods. The function of the MrD was identified with functional magnetic resonance imaging (fMRI) of healthy volunteers tested with an auditory digital working memory task. Highly active areas were observed in the prefrontal cortex and MrD with left sided predominance during performance of the task, but other parts of the neostriatum were not excited and the MrD was not activated in a control test of non-working memory. The results of the present investigation therefore indicate the existence of a new area associated with learning and memory function in the human brain. The MrD probably plays an important role in the execution of digital working memory and appears to link the limbic system and the basal nucleus of Meynert. The MrD may also be involved in the mechanism of Alzheimer's disease.
Collapse
Affiliation(s)
- S Y Shu
- Institute for Neuroscience of the First Military Medical University, Zhu-Jiang Hospital, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shu SY, Wu YM, Bao XM, Leonard B. Interactions among memory-related centers in the brain. J Neurosci Res 2003; 71:609-16. [PMID: 12584720 DOI: 10.1002/jnr.10545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The structures associated with learning and memory have been widely studied for over 100 years. The idea of the famous neuropsychologist K.S. Lashley, that learning and memory are stored diffusely in the brain, dominated neuroscience in the early half of Twentieth Century. Since Scoville reported in 1957 a persistent impairment of recent memory caused by bilateral medial temporal lobe resection in a patient, the concept that different brain structures play different roles in learning and memory has been established, but the structures were thought to work separately. The connections and functional influences between hippocampus and prefrontal cortex, thalamus and hippocampus, prefrontal cortex and thalamus, amygdala and hippocampus, basal nucleus of Meynert and medial temporal lobe system, and amygdala and thalamus were successively reported. The marginal division (MrD) is a pan-shaped structure consisting of spindle-shaped neurons at the caudal margin of the neostriatum in the mammalian brain. The MrD has been shown to contribute to associative learning and declarative memory by behavioral study in rats and by functional magnetic resonance image study in humans. Lesions in the MrD influenced the learning and memory function of the basal nucleus of Meynert and attenuated hippocampal long-term potentiation. The MrD is likely, based on its position, advanced development in higher mammalian brains, abundant and swift blood supply, and complex connections, to be an important subcortical memory center in the brain. The above-mentioned studies demonstrated that memory-related centers could influence each other and play different roles. Therefore, we propose that there are very possibly hierachical memory centers in the brain.
Collapse
Affiliation(s)
- Si Yun Shu
- Institute for Neuroscience, First Military Medical University, Zhu-jiang Hospital, Guangzhou, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Shu SY. Marginal division of the neostriatum: a subcortical memory center. J Biomed Sci 2003; 10:14-29. [PMID: 12566982 DOI: 10.1007/bf02255993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2002] [Accepted: 06/25/2002] [Indexed: 10/25/2022] Open
Abstract
The marginal division (MrD) is a pan-shaped subdivision in the caudal margin of the neostriatum newly discovered in the brains of the rat, cat, monkey and humans. A variety of intensely expressed neuropeptides and monoamines and their receptors were identified in the fibers, terminals and neuronal somata in the MrD with immunohistochemical and patch clamp methods. The MrD was shown to be involved in learning and memory by double-blind studies of Y-maze learning and long-term potentiation in rats. c-Fos expression and tract-tracing techniques with immunoelectronmicroscopy indicated that the MrD is a new component of the limbic system and is a key linking area between the limbic system and the basal nucleus of Meynert. Functional magnetic resonance image (fMRI) studies illustrated that the MrD and the prefrontal cortex are involved in digital working memory in the human brain. A cerebral hemorrhage case report confirmed the findings with fMRI. In conclusion, based on the position of the MrD, its advanced development in higher mammalian brains, abundant blood supply and diverse connections with other memory-related structures, MrD is likely to be an important subcortical center of learning and memory.
Collapse
Affiliation(s)
- Si Yun Shu
- Institute for Neuroscience of the First Military Medical University, Zhu-jiang Hospital, Guangzhou, China.
| |
Collapse
|
10
|
Shu SY, Bao X, Li S, Niu D, Xu Z, Li Y. A new subdivision of mammalian neostriatum with functional implications to learning and memory. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991015)58:2<242::aid-jnr4>3.0.co;2-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|