1
|
Yuan M, Nie L, Huang Z, Xu S, Qiu X, Han L, Kang Y, Li F, Yao J, Li Q, Li H, Li D, Zhu X, Li Z. Capture of armA by a novel ISCR element, ISCR28. Int J Antimicrob Agents 2024; 64:107250. [PMID: 38908532 DOI: 10.1016/j.ijantimicag.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
ISCR28 is a fully functional and active member of the IS91-like family of insertion sequences. ISCR28 is 1,708-bp long and contains a 1,293-bp long putative open reading frame that codes a transposase. Sixty ISCR28-containing sequences from GenBank generated 27 non-repeat genetic contexts, all of which represented naturally occurring biological events that had occurred in a wide range of gram-negative organisms. Insertion of ISCR28 into target DNA preferred the presence of a 5'-GXXT-3' sequence at its terIS (replication terminator) end. Loss of the first 4 bp of its oriIS (origin of replication) likely caused ISCR28 to be trapped in ISApl1-based transposons or similar structures. Loss of terIS and fusion with a mobile element upstream likely promoted co-transfer of ISCR28 and the downstream resistance genes. ArmA and its downstream intact ISCR28 can be excised from recombinant pKD46 plasmids forming circular intermediates, further elucidating its activity as a transposase.
Collapse
Affiliation(s)
- Min Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Nie
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lichao Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qixin Li
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Li
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China.
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Ma K, Feng Y, McNally A, Zong Z. Hijacking a small plasmid to confer high-level resistance to aztreonam-avibactam and ceftazidime-avibactam. Int J Antimicrob Agents 2023; 62:106985. [PMID: 37769749 DOI: 10.1016/j.ijantimicag.2023.106985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Acquired β-lactamase-encoding genes are typically carried by large plasmids in Gram-negative bacteria, which also commonly carry multi-copy small plasmids. This study found that mobile genetic elements carrying antimicrobial resistance genes are capable of hijacking small plasmids. This study focused on aztreonam-avibactam (ATM-AVI) as this combination can be used to effectively counter almost all β-lactamases produced by bacteria, and has been recommended against carbapenem-resistant Enterobacterales. A clinical strain (085003) of carbapenem-resistant Escherichia coli was investigated, and mutants (085003R32 and 085003R512) able to grow under 32/4 and 512/4 mg/L of ATM-AVI were obtained as representatives of low- and high-level resistance, respectively, by induction. Comparative genomics showed that 085003R32 and 085003R512 had a single nucleotide mutation of β-lactamase gene blaCMY-2, encoding a novel CMY with a Thr319Ile substitution, assigned 'CMY-2R'. Cloning and enzyme kinetics were used to verify that CMY-2R conferred ATM-AVI resistance by compromising binding of AVI and subsequent protection of ATM. Mechanisms for the discrepant resistance between 085003R32 and 085003R512 were investigated. Three tandem copies of blaCMY-2R were identified on a self-transmissible IncP1 plasmid of 085003R32 due to IS1294 misrecognizing its end terIS and rolling-circle replication. 085003R512 had only a single copy of blaCMY-2R on the IncP1 plasmid, but possessed anther blaCMY-2R on an already present 4-kb small plasmid. IS1294-mediated mobilization on to this multi-copy small plasmid increased the copy number of blaCMY-2R significantly, rendering higher resistance. This study shows that bacteria can employ multiple approaches to accommodate selection pressures imposed by exposure to varied concentrations of antimicrobial agents.
Collapse
Affiliation(s)
- Ke Ma
- Centre of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China; Department of Infectious Diseases, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Yu Feng
- Centre for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Centre of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Centre for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| |
Collapse
|
3
|
Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, Jiang Y, Du X, Zhou Z, Yu Y. A Novel CMY Variant Confers Transferable High-Level Resistance to Ceftazidime-Avibactam in Multidrug-Resistant Escherichia coli. Microbiol Spectr 2023; 11:e0334922. [PMID: 36786629 PMCID: PMC10100771 DOI: 10.1128/spectrum.03349-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Here, our objective was to explore the molecular mechanism underlying ceftazidime-avibactam resistance in a novel CMY-178 variant produced by the clinical Escherichia coli strain AR13438. The antibiotic susceptibility of the clinical isolate, its transconjugants, and its transformants harboring transferable blaCMY were determined by the agar dilution method. S1-PFGE, cloning experiments, and whole-genome sequencing (WGS) were performed to investigate the molecular characteristics of ceftazidime-avibactam resistance genes. Kinetic parameters were compared among the purified CMY variants. Structural modeling and molecular docking were performed to assess the affinity between the CMYs and drugs. The horizontal transferability of the plasmid was evaluated by a conjugation experiment. The fitness cost of the plasmid was analyzed by determining the maximal growth rate, the maximum optical density at 600 nm (OD600), and the duration of the lag phase. AR13438, a sequence type 457 E. coli strain, was resistant to multiple cephalosporins, piperacillin-tazobactam, and ceftazidime-avibactam at high levels and was susceptible to carbapenems. WGS and cloning experiments indicated that a novel CMY gene, blaCMY-178, was responsible for ceftazidime-avibactam resistance. Compared with the closely related CMY-172, CMY-178 had a nonsynonymous amino acid substitution at position 70 (Asn70Thr). CMY-178 increased the MICs of multiple cephalosporins and ceftazidime-avibactam compared with CMY-172. The kinetic constant Ki values of CMY-172 and CMY-178 against tazobactam were 2.12 ± 0.34 and 2.49 ± 0.51 μM, respectively. Structural modeling and molecular docking indicated a narrowing of the CMY-178 ligand-binding pocket and its entrance and a stronger positive charge at the pocket entrance compared with those observed with CMY-172. blaCMY-178 was located in a 96.9-kb IncI1-type plasmid, designated pAR13438_2, which exhibited high transfer frequency without a significant fitness cost. In conclusion, CMY-178 is a novel CMY variant that mediates high-level resistance to ceftazidime-avibactam by enhancing the ability to hydrolyze ceftazidime and reducing the affinity for avibactam. Notably, blaCMY-178 could be transferred horizontally at high frequency without fitness costs. IMPORTANCE Ceftazidime-avibactam is a novel β-lactam-β-lactamase inhibitor (BLBLI) combination with powerful activity against Enterobacterales isolates producing AmpC, such as CMY-like cephalosporinase. However, in recent years, CMY variants have been reported to confer ceftazidime-avibactam resistance. We reported a novel CMY variant, CMY-178, that confers high-level ceftazidime-avibactam resistance with potent transferability. Therefore, this resistance gene is a tremendous potential menace to public health and needs attention of clinicians.
Collapse
Affiliation(s)
- Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Liang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiqi Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Castro-Gutierrez V, Fuller E, Garcillán-Barcia MP, Helgason T, Hassard F, Moir J. Dissemination of metaldehyde catabolic pathways is driven by mobile genetic elements in Proteobacteria. Microb Genom 2022; 8. [DOI: 10.1099/mgen.0.000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders
Acinetobacter calcoaceticus
E1 and
Sphingobium
CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In
A. calcoaceticus
E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading β- and γ-Proteobacteria, indicating horizontal gene transfer (HGT). For
Sphingobium
CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in
Escherichia coli
alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, β and γ-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.
Collapse
Affiliation(s)
- Víctor Castro-Gutierrez
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
- Department of Biology, University of York, Heslington, York, UK
| | - Edward Fuller
- Department of Biology, University of York, Heslington, York, UK
| | - María Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Cantabria, Spain
| | | | - Francis Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - James Moir
- Department of Biology, University of York, Heslington, York, UK
| |
Collapse
|
5
|
Lipszyc A, Szuplewska M, Bartosik D. How Do Transposable Elements Activate Expression of Transcriptionally Silent Antibiotic Resistance Genes? Int J Mol Sci 2022; 23:8063. [PMID: 35897639 PMCID: PMC9330008 DOI: 10.3390/ijms23158063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The rapidly emerging phenomenon of antibiotic resistance threatens to substantially reduce the efficacy of available antibacterial therapies. Dissemination of resistance, even between phylogenetically distant bacterial species, is mediated mainly by mobile genetic elements, considered to be natural vectors of horizontal gene transfer. Transposable elements (TEs) play a major role in this process-due to their highly recombinogenic nature they can mobilize adjacent genes and can introduce them into the pool of mobile DNA. Studies investigating this phenomenon usually focus on the genetic load of transposons and the molecular basis of their mobility. However, genes introduced into evolutionarily distant hosts are not necessarily expressed. As a result, bacterial genomes contain a reservoir of transcriptionally silent genetic information that can be activated by various transposon-related recombination events. The TEs themselves along with processes associated with their transposition can introduce promoters into random genomic locations. Thus, similarly to integrons, they have the potential to convert dormant genes into fully functional antibiotic resistance determinants. In this review, we describe the genetic basis of such events and by extension the mechanisms promoting the emergence of new drug-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.L.); (M.S.)
| |
Collapse
|
6
|
Pan Y, Zhang T, Yu L, Zong Z, Zhao S, Li R, Wang Q, Yuan L, Hu G, He D. IS 1294 Reorganizes Plasmids in a Multidrug-Resistant Escherichia coli Strain. Microbiol Spectr 2021; 9:e0050321. [PMID: 34612694 PMCID: PMC8510248 DOI: 10.1128/spectrum.00503-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
The aims of this study were to elucidate the role of IS1294 in plasmid reorganization and to analyze biological characteristics of cointegrates derived from different daughter plasmids. The genetic profiles of plasmids in Escherichia coli strain C21 and its transconjugants were characterized by conjugation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern hybridization, whole-genome sequencing (WGS) analysis, and PCR. The traits of cointegrates were characterized by conjugation and stability assays. blaCTX-M-55-bearing IncI2 pC21-1 and nonresistant IncI1 pC21-3, as conjugative helper plasmids, were fused with nonconjugative rmtB-bearing IncN-X1 pC21-2, generating cointegrates pC21-F1 and pC21-F2. Similarly, pC21-1 and pC21-3 were fused with nonconjugative IncF33:A-:B- pHB37-2 from another E. coli strain to generate cointegrates pC21-F3 and pC21-F4 under experimental conditions. Four cointegrates were further conjugated into the E. coli strain J53 recipient at high conjugation frequencies, ranging from 2.8 × 10-3 to 3.2 × 10-2. The formation of pC21-F1 and pC21-F4 was the result of host- and IS1294-mediated reactions and occurred at high fusion frequencies of 9.9 × 10-4 and 2.1 × 10-4, respectively. Knockout of RecA resulted in a 100-fold decrease in the frequency of plasmid reorganization. The phenomenon of cointegrate pC21-F2 and its daughter plasmids coexisting in transconjugants was detected for the first time in plasmid stability experiments. IS26-orf-oqxAB was excised from cointegrate pC21-F2 through a circular intermediate at a very low frequency, which was experimentally observed. To the best of our knowledge, this is the first report of IS1294-mediated fusion between plasmids with different replicons. This study provides insight into the formation and evolution of cointegrate plasmids under different drug selection pressures, which can promote the dissemination of MDR plasmids. IMPORTANCE The increasing resistance to β-lactams and aminoglycoside antibiotics, mainly due to extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylase genes, is becoming a serious problem in Gram-negative bacteria. Plasmids, as the vehicles for resistance gene capture and horizontal gene transfer, serve a key role in terms of antibiotic resistance emergence and transmission. IS26, present in many antibiotic-resistant plasmids from Gram-negative bacteria, plays a critical role in the spread, clustering, and reorganization of resistance determinant-encoding plasmids and in plasmid reorganization through replicative transposition mechanisms and homologous recombination. However, the role of IS1294, present in many MDR plasmids, in the formation of cointegrates remains unclear. Here, we investigated experimentally the intermolecular recombination of IS1294, which occurred with high frequencies and led to the formation of conjugative MDR cointegrates and facilitated the cotransfer of blaCTX-M-55 and rmtB, and we further uncovered the significance of IS1294 in the formation of cointegrates and the common features of IS1294-driven cointegration of plasmids.
Collapse
Affiliation(s)
- Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhiyong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| | - Qianqian Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Yasugi M, Hatoya S, Motooka D, Matsumoto Y, Shimamura S, Tani H, Furuya M, Mie K, Miyake M, Nakamura S, Shimada T. Whole-genome analyses of extended-spectrum or AmpC β-lactamase-producing Escherichia coli isolates from companion dogs in Japan. PLoS One 2021; 16:e0246482. [PMID: 33544781 PMCID: PMC7864471 DOI: 10.1371/journal.pone.0246482] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
The emergence and global spread of extended-spectrum or AmpC β-lactamase (ESBL/AmpC)-producing Enterobacteriaceae in companion animals have led to the hypothesis that companion animals might be reservoirs for cross-species transmission because of their close contact with humans. However, current knowledge in this field is limited; therefore, the role of companion animals in cross-species transmission remains to be elucidated. Herein, we studied ESBL/AmpC-producing Enterobacteriaceae, Escherichia coli in particular, isolated from extraintestinal sites and feces of companion dogs. Whole-genome sequencing analysis revealed that (i) extraintestinal E. coli isolates were most closely related to those isolated from feces from the same dog, (ii) chromosomal sequences in the ST131/C1-M27 clade isolated from companion dogs were highly similar to those in the ST131/C1-M27 clade of human origin, (iii) certain plasmids, such as IncFII/pMLST F1:A2:B20/blaCTX-M-27, IncI1/pMLST16/blaCTX-M-15, or IncI1/blaCMY-2 from dog-derived E. coli isolates, shared high homology with those from several human-derived Enterobacteriaceae, (iv) chromosomal blaCTX-M-14 was identified in the ST38 isolate from a companion dog, and (v) eight out of 14 tested ESBL/AmpC-producing E. coli isolates (i.e., ST131, ST68, ST405, and ST998) belonged to the human extraintestinal pathogenic E. coli (ExPEC) group. All of the bla-coding plasmids that were sequenced genome-wide were capable of horizontal transfer. These results suggest that companion dogs can spread ESBL/AmpC-producing ExPEC via their feces. Furthermore, at least some ESBL/AmpC-producing ExPECs and bla-coding plasmids can be transmitted between humans and companion dogs. Thus, companion dogs can act as an important reservoir for ESBL/AmpC-producing E. coli in the community.
Collapse
Affiliation(s)
- Mayo Yasugi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- Asian Health Science Research Institiute, Osaka Prefecture University, Izumisano, Osaka, Japan
- * E-mail:
| | - Shingo Hatoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yuki Matsumoto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shunsuke Shimamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Hiroyuki Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Masaru Furuya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Keiichiro Mie
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Masami Miyake
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Terumasa Shimada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- Asian Health Science Research Institiute, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
8
|
Characterization of an IncR Plasmid with Two Copies of IS CR-Linked qnrB6 from ST 968 Klebsiella pneumoniae. Int J Genomics 2020; 2020:3484328. [PMID: 33299848 PMCID: PMC7707992 DOI: 10.1155/2020/3484328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.
Collapse
|
9
|
Carattoli A, Carretto E, Brovarone F, Sarti M, Villa L. Comparative analysis of an mcr-4 Salmonella enterica subsp. enterica monophasic variant of human and animal origin. J Antimicrob Chemother 2019; 73:3332-3335. [PMID: 30137382 DOI: 10.1093/jac/dky340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/31/2018] [Indexed: 11/14/2022] Open
Abstract
Objectives In this study we compared the recently described mcr-4-positive Salmonella enterica monophasic variant, isolated in 2016 in two Italian patients affected by gastroenteritis, with the first mcr-4-positive Salmonella isolate identified in 2013 in a pig at slaughter in Italy. Methods WGS of the two Salmonella isolates of human origin was performed using a MiSeq instrument (Illumina). The phylogenetic analysis was performed by SNP analysis, comparing genomes of the mcr-4-positive isolates of swine and human origin with 82 Salmonella genomes downloaded from the EnteroBase Salmonella database. Complete sequences of plasmids carrying mcr-4.2 were obtained and compared. Transformation experiments were performed to transfer the mcr-4 plasmids into a colistin-susceptible Escherichia coli recipient strain. Results Comparative genomics demonstrated that the Salmonella of swine origin did not cluster with the isolates of human origin. The mcr-4.2 gene variant identified in the Salmonella of human origin was located on a ColE-like plasmid. This plasmid showed different replication and mobilization genes with respect to those previously described in the ColE plasmid carrying the mcr-4.1 variant, identified in Salmonella of swine origin. Conclusions The divergence in genomes, plasmids and gene variants demonstrated that there was not a unique mcr-4-positive, monophasic Salmonella lineage circulating in animals and causing gastroenteritis in humans in Italy. There was no horizontal transfer of the same plasmid among Salmonella strains of animal and human origin, but the mcr-4 gene and a fragment of the plasmid identified in the animal strain were mobilized by an IS1294 into a different ColE plasmid.
Collapse
Affiliation(s)
| | - Edoardo Carretto
- Clinical Microbiology Laboratory, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Flavia Brovarone
- Clinical Microbiology Laboratory, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, S. Agostino-Estense Hospital, Baggiovara, Italy
| | - Laura Villa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Lallement C, Pasternak C, Ploy MC, Jové T. The Role of IS CR1-Borne P OUT Promoters in the Expression of Antibiotic Resistance Genes. Front Microbiol 2018; 9:2579. [PMID: 30425694 PMCID: PMC6218425 DOI: 10.3389/fmicb.2018.02579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Abstract
The ISCR1 (Insertion sequence Common Region) element is the most widespread member of the ISCR family, and is frequently present within γ-proteobacteria that occur in clinical settings. ISCR1 is always associated with the 3'Conserved Segment (3'CS) of class 1 integrons. ISCR1 contains outward-oriented promoters POUT, that may contribute to the expression of downstream genes. In ISCR1, there are two POUT promoters named PCR1-1 and PCR1-2. We performed an in silico analysis of all publically available ISCR1 sequences and identified numerous downstream genes that mainly encode antibiotic resistance genes and that are oriented in the same direction as the POUT promoters. Here, we showed that both PCR1-1 and PCR1-2 significantly increase the expression of the downstream genes bla CTX-M-9 and dfrA19. Our data highlight the role of ISCR1 in the expression of antibiotic resistance genes, which may explain why ISCR1 is so frequent in clinical settings.
Collapse
Affiliation(s)
- Claire Lallement
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Cécile Pasternak
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Marie-Cécile Ploy
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, U1092, University of Limoges, Limoges, France
| |
Collapse
|
11
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1368] [Impact Index Per Article: 195.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Evolution and Comparative Genomics of F33:A-:B- Plasmids Carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae Isolated from Animals, Food Products, and Humans in China. mSphere 2018; 3:3/4/e00137-18. [PMID: 30021873 PMCID: PMC6052338 DOI: 10.1128/msphere.00137-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. To understand the underlying evolution process of F33:A−:B− plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A−:B− plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A−:B− plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A−B− plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A−B− plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A−B− plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294. IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes.
Collapse
|
13
|
Snesrud E, McGann P, Chandler M. The Birth and Demise of the IS Apl1- mcr-1-IS Apl1 Composite Transposon: the Vehicle for Transferable Colistin Resistance. mBio 2018; 9:e02381-17. [PMID: 29440577 PMCID: PMC5821093 DOI: 10.1128/mbio.02381-17] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 11/20/2022] Open
Abstract
The origin and mobilization of the ~2,609-bp DNA segment containing the mobile colistin resistance gene mcr-1 continue to be sources of uncertainty, but recent evidence suggests that the gene originated in Moraxella species. Moreover mcr-1 can be mobilized as an ISApl1-flanked composite transposon (Tn6330), but many sequences have been identified without ISApl1 or with just a single copy (single ended). To further clarify the origins and mobilization of mcr-1, we employed the Geneious R8 software suite to comprehensively analyze the genetic environment of every complete mcr-1 structure deposited in GenBank as of this writing (September 2017) both with and without associated ISApl1 (n = 273). This revealed that the 2,609-bp mcr-1 structure was likely mobilized from a close relative of a novel species of Moraxella containing a chromosomal region sharing >96% nucleotide identity with the canonical sequence. This chromosomal region is bounded by AT and CG dinucleotides, which have been described on the inside ends (IE) of all intact Tn6330 described to date and represent the ancestral 2-bp target site duplications (TSDs) generated by ISApl1 transposition. We further demonstrate that all mcr-1 structures with just one ISApl1 copy or with no ISApl1 copies were formed by deletion of ISApl1 from the ancestral Tn6330, likely by a process related to the "copy-out-paste-in" transposition mechanism. Finally, we show that only the rare examples of single-ended structures that have retained a portion of the excised downstream ISApl1 including the entire inverted right repeat might be capable of mobilization.IMPORTANCE A comprehensive analysis of all intact mcr-1 sequences in GenBank was used to identify a region on the chromosome of a novel Moraxella species with remarkable homology to the canonical mcr-1 structure and that likely represents the origin of this important gene. These data also demonstrate that all mcr-1 structures lacking one or both flanking ISApl1 were formed from ancestral composite transposons that subsequently lost the insertion sequences by a process of abortive transposition. This observation conclusively shows that mobilization of mcr-1 occurs as part of a composite transposon and that structures lacking the downstream ISApl1 are not capable of mobilization.
Collapse
Affiliation(s)
- Erik Snesrud
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Patrick McGann
- Multidrug-Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael Chandler
- Laboratoire de Microbiologie et Genetique Moleculaires, Centre National de la Recherche Scientifique, Toulouse, France
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
14
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
15
|
Tokajian S, Salloum T, Eisen JA, Jospin G, Farra A, Mokhbat JE, Coil DA. Genomic attributes of extended-spectrum β-lactamase-producing Escherichia coli isolated from patients in Lebanon. Future Microbiol 2017; 12:213-226. [DOI: 10.2217/fmb-2017-0171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Extended-spectrum β-lactamase-producing (ESBL) Escherichia coli are a public threat worldwide. This study aimed at analyzing the genomic and functional attributes of nine ESBLs taken from rectal swabs. Materials & methods: Samples were isolated from patients admitted for gastrointestinal and urological procedures at the University Medical Center-Rizk Hospital (UMCRH) in Lebanon. Illumina paired-end libraries were prepared and sequenced. Results: The isolates were distributed into five lineages: ST131, ST648, ST405, ST73 and ST38, and harbored bla OXA-1, bla TEM-1B, bla TEM-1C and aac(6′)Ib-cr. ST131 isolates were carriers of stx2 converting I phage. Conclusion: This is the first comprehensive genomic analysis performed on ESBLs in Lebanon.
Collapse
Affiliation(s)
- Sima Tokajian
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- School of Arts & Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Guillaume Jospin
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| | - Anna Farra
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - David A Coil
- Department of Evolution and Ecology, University of California Davis Genome Center, Davis, CA 95616, USA
| |
Collapse
|
16
|
Chen W, Fang T, Zhou X, Zhang D, Shi X, Shi C. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates. Front Microbiol 2016; 7:1566. [PMID: 27746775 PMCID: PMC5043248 DOI: 10.3389/fmicb.2016.01566] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6')-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid replicons.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunlei Shi
- Ministry of Science and Technology–United States Department of Agriculture Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
17
|
Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers. Int J Food Microbiol 2016; 232:95-102. [PMID: 27289192 DOI: 10.1016/j.ijfoodmicro.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023]
Abstract
The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and class 1 integrons (p<0.01). Additional conjugation experiments confirmed this relationship (p<0.01) in transconjugants by finding that a high percentage of PMQR genes (74.0%) and class 1 integrons (73.7%) were co-transferred with ESBL genes. Finally, multilocus sequence typing (MLST) was performed, and it revealed that the isolates from chickens are widely distributed in humans, and that antimicrobial resistance is not only disseminated by clonal spreading, but largely by horizontal gene transfer. These results suggest that horizontal transfer of antimicrobial resistance genes by mobile genetic elements, such as integrons, plays a major role in the spread of antimicrobial resistance. Therefore, elucidating the structures of drug resistance integrons is of great importance to the commercial broiler slaughter plant in Shandong, China.
Collapse
|
18
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
19
|
Stoesser N, Mathers AJ, Moore CE, Day NPJ, Crook DW. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. THE LANCET. INFECTIOUS DISEASES 2016; 16:285-6. [PMID: 26774239 DOI: 10.1016/s1473-3099(16)00010-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Nicole Stoesser
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | - Catrin E Moore
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Derrick W Crook
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
20
|
Abstract
Enterobacteriaceae are responsible for a large proportion of serious, life-threatening infections and resistance to multiple antibiotics in these organisms is an increasing global public health problem. Mutations in chromosomal genes contribute to antibiotic resistance, but Enterobacteriaceae are adapted to sharing genetic material and much important resistance is due to 'mobile' resistance genes. Different mobile genetic elements, which have different characteristics, are responsible for capturing these genes from the chromosomes of a variety of bacterial species and moving them between DNA molecules. If transferred to plasmids, these resistance genes are then able to be transferred 'horizontally' between different bacterial cells, including different species, and well as being transferred 'vertically' during cell division. Carriage of several resistance genes on the same plasmid enables a bacterial cell to acquire multi-resistance in a single step and means that spread of one resistance gene may be co-selected for by use of antibiotics other than those to which it confers resistance. Many different mobile genes conferring resistance to each class of antibiotic have been identified, complicating detection of the factors responsible for a particular resistance phenotype, especially when changes in chromosomal genes may also confer or contribute to resistance. Understanding the mechanisms of antibiotic resistance, and the means by which these mechanisms can evolve and disseminate, is important for developing ways to efficiently track the spread of resistance and to optimise treatment.
Collapse
|
21
|
Differential pre-mRNA Splicing Alters the Transcript Diversity of Helitrons Between the Maize Inbred Lines. G3-GENES GENOMES GENETICS 2015; 5:1703-11. [PMID: 26070844 PMCID: PMC4528327 DOI: 10.1534/g3.115.018630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The propensity to capture and mobilize gene fragments by the highly abundant Helitron family of transposable elements likely impacts the evolution of genes in Zea mays. These elements provide a substrate for natural selection by giving birth to chimeric transcripts by intertwining exons of disparate genes. They also capture flanking exons by read-through transcription. Here, we describe the expression of selected Helitrons in different maize inbred lines. We recently reported that these Helitrons produce multiple isoforms of transcripts in inbred B73 via alternative splicing. Despite sharing high degrees of sequence similarity, the splicing profile of Helitrons differed among various maize inbred lines. The comparison of Helitron sequences identified unique polymorphisms in inbred B73, which potentially give rise to the alternatively spliced sites utilized by transcript isoforms. Some alterations in splicing, however, do not have obvious explanations. These observations not only add another level to the creation of transcript diversity by Helitrons among inbred lines but also provide novel insights into the cis-acting elements governing splice-site selection during pre-mRNA processing.
Collapse
|
22
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
23
|
Wei DD, Wan LG, Yu Y, Xu QF, Deng Q, Cao XW, Liu Y. Characterization of extended-spectrum beta-lactamase, carbapenemase, and plasmid quinolone determinants in Klebsiella pneumoniae isolates carrying distinct types of 16S rRNA methylase genes, and their association with mobile genetic elements. Microb Drug Resist 2014; 21:186-93. [PMID: 25469905 DOI: 10.1089/mdr.2014.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eighty-four multidrug-resistant Klebsiella pneumoniae (MDR-KP) isolates from a Chinese hospital from January to October 2012 were evaluated to characterize the coexistence of 16S rRNA methylase, extended-spectrum β-lactamase, carbapenemase, and plasmid-mediated quinolone resistance determinants and their association with mobile genetic elements. Among the 84 MDR-KP isolates studied, 19 isolates exhibited high-level resistance to amikacin mediated by the production of the 16S rRNA methylase. They carried 19 armA genes (22.9%) and three rmtB genes (3.6%). CTX-M genes were found in all of the isolates. Among these armA- or rmtB/CTX-M-producing K. pneumoniae isolates, 31.6% carried the carbapenemase genes (blaKPC-2 [26.3%], blaIMP-4 [10.5%], and blaNDM-1 [5.3%]), which made them resistant to imipenem (minimum inhibitory concentration [MIC] ≥16 mg/L). All positive strains possessed qnr-like genes (16 qnrA1, 10 qnrS1, and 7 qnrB4 genes) and 18 harbored an aac(6')-Ib-cr gene. Mobile elements ISEcp1, IS26, ISCR1, ISAba125, and sul-1 integrons were detected in 19/19 (100%), 16/19 (84.2%), 18/19 (94.7%), 9/19 (47.4%), and 18/19 (94.7%) isolates, respectively. The mobilizing elements occurred in different combinations in the study isolates. Majority of armA and qnr genes were in MDR-KP strains carrying integrons containing the ISCR1. Close to 80% of blaTEM-1 and blaSHV-12 were linked to IS26 while ≥90% of blaCTX-Ms and blaCMYs were linked to ISEcp1. ISAba125 was located upstream of blaNDM-1 and some blaCMY-2 genes. In addition, seven transconjugants were available for further analysis, and armA, qnrS1, acc(6')-Ib-cr, blaCTX-M-15, blaTEM-1, and blaNDM-1 were cotransferred. This study points to the dissemination of 16S rRNA methylase genes and the prevalence of selected elements implicated in evolution of resistance determinants in collection of clinical K. pneumoniae in China.
Collapse
Affiliation(s)
- Dan-Dan Wei
- 1 Department of Bacteriology, First Affiliated Hospital of Nanchang University, Nanchang University , Nanchang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Yassine H, Bientz L, Cros J, Goret J, Bébéar C, Quentin C, Arpin C. Experimental evidence for IS1294b-mediated transposition of the blaCMY-2 cephalosporinase gene in Enterobacteriaceae. J Antimicrob Chemother 2014; 70:697-700. [DOI: 10.1093/jac/dku472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
25
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|
26
|
Tagg KA, Iredell JR, Partridge SR. Complete sequencing of IncI1 sequence type 2 plasmid pJIE512b indicates mobilization of blaCMY-2 from an IncA/C plasmid. Antimicrob Agents Chemother 2014; 58:4949-52. [PMID: 24890591 PMCID: PMC4135994 DOI: 10.1128/aac.02773-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/27/2014] [Indexed: 11/20/2022] Open
Abstract
Sequencing of pJIE512b, a 92.3-kb IncI1 sequence type 2 (ST2) plasmid carrying bla(CMY-2), revealed a bla(CMY-2) context that appeared to have been mobilized from an IncA/C plasmid by the insertion sequence IS1294. A comparison with published plasmids suggests that bla(CMY-2) has been mobilized from IncA/C to IncI1 plasmids more than once by IS1294-like elements. Alignment of pJIE512b with the only other available IncI1 ST2 plasmid revealed differences across the backbones, indicating variability within this sequence type.
Collapse
Affiliation(s)
- Kaitlin A Tagg
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, and The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
27
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
28
|
Pan YS, Yuan L, Zong ZY, Liu JH, Wang LF, Hu GZ. A multidrug-resistance region containing bla
CTX-M-65, fosA3 and rmtB on conjugative IncFII plasmids in Escherichia coli ST117 isolates from chicken. J Med Microbiol 2014; 63:485-488. [PMID: 24430253 DOI: 10.1099/jmm.0.070664-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yu-Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Li Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhi-Yong Zong
- West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jian-Hua Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ling-Fei Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
29
|
Complete nucleotide sequences of virulence-resistance plasmids carried by emerging multidrug-resistant Salmonella enterica Serovar Typhimurium isolated from cattle in Hokkaido, Japan. PLoS One 2013; 8:e77644. [PMID: 24155970 PMCID: PMC3796477 DOI: 10.1371/journal.pone.0077644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022] Open
Abstract
In the present study, we have shown that virulence-resistance plasmids from emerging multidrug-resistant isolates of Salmonella enterica serovar Typhimurium were derived from a virulence-associated plasmid, essential for systematic invasiveness of S. Typhimurium in mice (pSLT), through acquisition of a large insert containing a resistance island flanked by IS1294 elements. A blaCMY-2-carrying plasmid from a cefotaxime-resistant isolate comprised a segment of Escherichia coli plasmid pAR060302 and the replication region (IncFIB) of a virulence-resistance plasmid. These results provide insights into the evolution of drug resistance in emerging clones of S. Typhimurium.
Collapse
|
30
|
Quiroga MP, Arduino SM, Merkier AK, Quiroga C, Petroni A, Roy PH, Centrón D. “Distribution and functional identification of complex class 1 integrons”. INFECTION GENETICS AND EVOLUTION 2013; 19:88-96. [DOI: 10.1016/j.meegid.2013.06.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
31
|
Xia R, Ren Y, Xu H. Identification of plasmid-mediated quinolone resistance qnr genes in multidrug-resistant Gram-negative bacteria from hospital wastewaters and receiving waters in the Jinan area, China. Microb Drug Resist 2013; 19:446-56. [PMID: 23844849 DOI: 10.1089/mdr.2012.0210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) qnr genes by the polymerase chain reaction (PCR) in antibiotic-resistant bacteria isolates collected from aquatic environments in Jinan during 2 years (2008.3-2009.11). Genes were identified to variant level by PCR restriction fragment length polymorphism analysis or sequencing. qnrA1, qnrB2, qnrB4, qnrB6, qnrB9, qnrS1, and the new qnrB variant qnrB26 were detected in 31 strains from six genera (Klebsiella spp., Escherichia coli, Enterobacter spp., Proteus spp., Shigella spp., and Citrobacter spp.), four of which contained double qnr genes. Other PMQR genes, aac(6')-Ib-cr and qepA, were found in 12 (38.7%) and 5 (16.1%) of 31 isolates, respectively; while qepA was found in Shigella spp. for the first time. Eight types of β-lactamase genes and eight other types of resistance genes were also present in the 31 qnr-positive isolates. The detection rate for five β-lactamase genes (blaTEM, blaCTX, ampR, blaDHA, and blaSHV) was >45%. Class 1 integrons and complex class 1 integrons were prevalent in these strains, which contained 15 different gene cassette arrays and 5 different insertion sequence common region 1 (ISCR1)-mediated downstream structures. qnrA1, qnrB2, and qnrB6 were present in three ISCR1-mediated downstream structures: qnrA1-ampR, sapA-like-qnrB2, and sdr-qnrB6. We also analyzed the horizontal transferability of PMQR genes and other resistance determinants. The qnr genes and some integrons and resistance genes from 18 (58.1%) of the 31 qnr-positive strains could be transferred to E. coli J53 Azi(R) or E. coli DH5α recipient strains using conjugation or transformation methods. The results showed that a high number of qnr genes were associated with other resistance genes in aquatic environments in Jinan. This suggests that we should avoid over-using antibiotics and monitor aquatic environments to control the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University , Jinan, China
| | | | | |
Collapse
|
32
|
Kiiru J, Butaye P, Goddeeris BM, Kariuki S. Analysis for prevalence and physical linkages amongst integrons, ISEcp1, ISCR1, Tn21 and Tn7 encountered in Escherichia coli strains from hospitalized and non-hospitalized patients in Kenya during a 19-year period (1992-2011). BMC Microbiol 2013; 13:109. [PMID: 23682924 PMCID: PMC3663672 DOI: 10.1186/1471-2180-13-109] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/10/2013] [Indexed: 11/10/2022] Open
Abstract
Background We determined the prevalence and evidence for physical linkage amongst integrons, insertion sequences, Tn21 and Tn7 transposons in a collection of 1327 E. coli obtained over a 19-year period from patients in Kenya. Results The prevalence of class 1 integrons was 35%, class 2 integrons were detected in 3 isolates but no isolate contained a class 3 integron. Integron lacking the 3’-CS or those linked to sul3 gene or IS26 or those containing the ISCR1 were only detected in multidrug resistant (MDR) strains. The dfrAs were the most common cassettes and their prevalence was: - dfrA1(28%), dfrA12(20%), dfA17(9%), dfrA7(9%), and dfrA16(5%). The aadA were the second most abundant cassettes and their prevalence was: - aadA1(25%), aadA2(21%), and aadA5(14%). Other cassettes occurred in lower prevalence of below 5%. Prevalence of Tn21, ISEcp1, ISCR1 and IS26 was 22%, 10%, 15%, and 7% respectively. Majority of Tn21 containing integrons carried a complete set of transposition genes while class 2 integrons were borne on Tn7 transposon. The qnrA genes were detected in 34(3%) isolates while 19(1%) carried qnrB. All qnr genes were in MDR strains carrying integrons containing the ISCR1. Close to 88% of blaTEM-52 were linked to IS26 while ≥ 80% of blaCTX-Ms and blaCMYs were linked to ISEcp1. Only a few studies have identified a blaCTX-M-9 containing an ISEcp1 element as reported in this study. Multiple genetic elements, especially those borne on incIl, incFII, and incL/M plasmids, and their associated resistance genes were transferrable en bloc to E. coli strain J53 in mating experiments. Conclusions This is the first detailed study on the prevalence of selected elements implicated in evolution of resistance determinants in a large collection of clinical E. coli in Africa. Proliferation of such strains carrying multiple resistance elements is likely to compromise the use of affordable and available treatment options for majority of poor patients in Africa. There is therefore a need to monitor the spread of these highly resistant strains in developing countries through proper infection control and appropriate use of antimicrobials.
Collapse
Affiliation(s)
- John Kiiru
- Centre for Microbiology Research, Kenya Medical Research Institute, PO Box 19464-00202, Nairobi, Kenya.
| | | | | | | |
Collapse
|
33
|
Pan YS, Liu JH, Hu H, Zhao JF, Yuan L, Wu H, Wang LF, Hu GZ. Novel arrangement of theblaCTX-M-55gene in anEscherichia coliisolate coproducing 16S rRNA methylase. J Basic Microbiol 2013; 53:928-33. [DOI: 10.1002/jobm.201200318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/18/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Yu-Shan Pan
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Jian-Hua Liu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Han Hu
- Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou China
| | - Jin-Feng Zhao
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Li Yuan
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Hua Wu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Ling-Fei Wang
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine; Henan Agricultural University; Zhengzhou China
| |
Collapse
|
34
|
Ilyina TS. Mobile ISCR elements: Structure, functions, and role in emergence, increase, and spread of blocks of bacterial multiple antibiotic resistance genes. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416812040040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Garcillán-Barcia MP, de la Cruz F. Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications. FEMS Microbiol Ecol 2012; 42:303-13. [PMID: 19709290 DOI: 10.1111/j.1574-6941.2002.tb01020.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
IS91 is the prototype element of a family of bacterial insertion sequences that transpose by a rolling-circle mechanism. Although previously considered a rarity among IS elements, many new examples have been identified by sequence analysis of bacterial genomes. In this work we provide a summary of occurrences of IS91-like sequences in the GenBank database, characterise the genetic organisation of adjacent sequences, and analyse IS91 ecological significance under the light of current transposition mechanisms. Interestingly, IS91 family elements were usually found adjacent to pathogenicity- and virulence-related genes. Thus, this might constitute the niche for IS91 and IS91 family elements to play an important role in the dissemination and evolution of virulence and pathogenicity types of genes.
Collapse
Affiliation(s)
- M Pilar Garcillán-Barcia
- Departamento de Biología Molecular (Unidad Asociada al C.I.B., C.S.I.C.), Universidad de Cantabria, C/Herrera Oria s/n, 39011 Santander, Spain
| | | |
Collapse
|
36
|
Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. INFECTION GENETICS AND EVOLUTION 2012; 12:883-93. [DOI: 10.1016/j.meegid.2012.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 02/01/2023]
|
37
|
Novel variants of AbaR resistance islands with a common backbone in Acinetobacter baumannii isolates of European clone II. Antimicrob Agents Chemother 2012; 56:1969-73. [PMID: 22290980 DOI: 10.1128/aac.05678-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the genetic organization of three novel genomic antibiotic resistance islands (AbaRs) in Acinetobacter baumannii isolates belonging to group of European clone II (EC II) comM integrated sequences of 18-, 21-, and 23-kb resistance islands were determined. These resistance islands carry the backbone of AbaR-type transposon structures, which are composed of the transposition module coding for potential transposition proteins and other genes coding for the intact universal stress protein (uspA), sulfate permease (sul), and proteins of unknown function. The antibiotic resistance genes strA, strB, tetB, and tetR and insertion sequence CR2 element were found to be inserted into the AbaR transposons. GenBank homology searches indicated that they are closely related to the AbaR sequences found integrated in comM in strains of EC II (A. baumannii strains 1656-2 and TCDC-AB0715) and AbaR4 integrated in another location of A. baumannii AB0057 (EC I). All of the AbaRs showed structural similarity to the previously described AbaR4 island and share a 12,008-bp backbone. AbaRs contain Tn1213, Tn2006, and the multiple fragments which could be derived from transposons Tn3, Tn10, Tn21, Tn1000, Tn5393, and Tn6020, the insertion sequences IS26, ISAba1, ISAba14, and ISCR2, and the class 1 integron. Moreover, chromosomal DNA was inserted into distinct regions of the AbaR backbone. Sequence analysis suggested that the AbaR-type transposons have evolved through insertions, deletions, and homologous recombination. AbaR islands, sharing the core structure similar to AbaR4, appeared to be distributed in isolates of EC I and EC II via integration into distinct genomic sites, i.e., pho and comM, respectively.
Collapse
|
38
|
Skippington E, Ragan MA. Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 2011; 35:707-35. [DOI: 10.1111/j.1574-6976.2010.00261.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
39
|
Toleman MA, Walsh TR. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35:912-35. [DOI: 10.1111/j.1574-6976.2011.00294.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
41
|
ISCR elements are key players in IncA/C plasmid evolution. Antimicrob Agents Chemother 2010; 54:3534; author reply 3534. [PMID: 20634542 DOI: 10.1128/aac.00383-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Hurst MRH, Becher SA, O'Callaghan M. Nucleotide sequence of the Serratia entomophila plasmid pADAP and the Serratia proteamaculans pU143 plasmid virulence associated region. Plasmid 2010; 65:32-41. [PMID: 20950642 DOI: 10.1016/j.plasmid.2010.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 10/19/2022]
Abstract
Some strains of Serratia entomophila and S. proteamaculans cause amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The disease determinants of S. entomophila, are encoded on a 153,404-bp plasmid, termed pADAP for amber disease associated plasmid. The S. proteamaculans strain 143 (Sp143) exhibits an unusual pathotype, where only 60-70% of C. zealandica larvae infected with the bacterium succumb to disease. DNA sequence analysis of the Sp143 pU143 virulence associated region identified high DNA similarity to the pADAP sep virulence associated region, with DNA sequence variation in the sepA gene and the variable region of the sepC component. No pADAP anti-feeding prophage orthologue was detected in the Sp143 genome. The region of pADAP replication was cloned and found to replicate in S. entomophila but not in Escherichia coli. DNA sequence analysis of the plasmid pSG348 repA gene from the French isolate of Serratia grimesii, identified 93% DNA identity to the pADAP repA gene. A comparison of the pU143 virulence associated region with the completed pADAP nucleotide sequence is given.
Collapse
Affiliation(s)
- Mark R H Hurst
- Biocontrol and Biosecurity, AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, New Zealand.
| | | | | |
Collapse
|
43
|
Sáenz Y, Vinué L, Ruiz E, Somalo S, Martínez S, Rojo-Bezares B, Zarazaga M, Torres C. Class 1 integrons lacking qacEΔ1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet Microbiol 2010; 144:493-7. [DOI: 10.1016/j.vetmic.2010.01.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
44
|
Structural characterization of ISCR8, ISCR22, and ISCR23, subgroups of IS91-like insertion elements. Antimicrob Agents Chemother 2010; 54:4321-8. [PMID: 20625149 DOI: 10.1128/aac.00006-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of ISCR8 (ISPps1) revealed that this group of insertion elements has to be subdivided into three subgroups: ISCR8, ISCR22, and ISCR23. The distinction of three subgroups is supported by phylogenetic analysis of the transposase open reading frames (ORFs). Comparison of over 20 complete and partial ISCR8/22/23 elements identified oriIS candidate sequences for all groups and a terIS candidate sequence for ISCR8. The oriIS sequences, their distance to the transposase ORFs, and the sequence of this intervening region are group specific, further supporting the definition of two new ISCR elements. ISCR8/22/23 have a very broad host range, including Gram-positive and Gram-negative bacteria, among which are several (opportunistic) pathogens. The IS often resides on plasmids or in the vicinity of other mobile elements and is mostly associated with genes for the degradation of halo- or nitro-aromatics. However, in one case ISCR8 was found in the neighborhood of an antibiotic resistance determinant in Klebsiella pneumoniae. ISCR8 resembles other IS91 family elements in mediating genetic rearrangements by homologous recombination between two copies. In Delftia acidovorans this led to the loss of the genes encoding dichlorprop cleavage. In conclusion, this study shows that ISCR8 could be a fully functional and active member of the IS91 family of insertion elements.
Collapse
|
45
|
Association of the extended-spectrum beta-lactamase gene blaTLA-1 with a novel ISCR element, ISCR20. Antimicrob Agents Chemother 2010; 54:4026-8. [PMID: 20585120 DOI: 10.1128/aac.00075-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bla(TLA-1) gene encoding an extended-spectrum beta-lactamase was identified in 11 enterobacterial isolates from Mexico City, Mexico. This gene was located on different plasmids and plasmid types with different sizes and incompatibility groups. It was associated with a novel insertion sequence, ISCR20, encoding a putative transposase that shared only 20% amino acid identity with the most closely related transposase of ISCR1. The ISCR20 element provided specific promoter sequences for expression of the bla(TLA-1) gene.
Collapse
|
46
|
Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Haesebrouck F, Butaye P. Broad-spectrum β-lactamases amongEnterobacteriaceaeof animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 2010; 34:295-316. [DOI: 10.1111/j.1574-6976.2009.00198.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Abstract
New concepts have emerged in the past few years that help us to better understand the emergence and spread of antimicrobial resistance (AMR). These include, among others, the discovery of the mutator state and the concept of mutant selection window for resistances emerging primarily through mutations in existing genes. Our understanding of horizontal gene transfer has also evolved significantly in the past few years, and important new mechanisms of AMR transfer have been discovered, including, among others, integrative conjugative elements and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale studies have helped us to start comprehending the immense and yet untapped reservoir of both AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and DNA sequencing-based techniques are being developed that will allow us to better understand the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a more global and systematic way.
Collapse
|
48
|
Li H, Walsh TR, Toleman MA. Molecular analysis of the sequences surrounding blaOXA-45 reveals acquisition of this gene by Pseudomonas aeruginosa via a novel ISCR element, ISCR5. Antimicrob Agents Chemother 2009; 53:1248-51. [PMID: 19064894 PMCID: PMC2650518 DOI: 10.1128/aac.00480-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/06/2008] [Accepted: 11/28/2008] [Indexed: 11/20/2022] Open
Abstract
The bla(OXA-45) gene of Pseudomonas aeruginosa 07-406 is driven by a promoter found within a truncated ISPme1 insertion sequence. The gene is located between nonidentical repeats of a new ISCR element, ISCR5, which is likely responsible for its acquisition. Sequence analysis indicates that ISCR5 is a chimera of ISCR3 and ISCR16.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Medical Microbiology, School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | | | | |
Collapse
|
49
|
Abstract
The DNA sequences of two IncHI2 plasmids, pEC-IMP and pEC-IMPQ, from metallo-beta-lactamase-producing Enterobacter cloacae clinical isolates were determined. The two conjugative plasmids are almost identical, but pEC-IMPQ carries an additional segment containing an orf513 (ISCR1), a truncated 3' conserved sequence, and a qnrB2. Comparative analyses provide support for the proposed ISCR1-mediated gene mobilization.
Collapse
|
50
|
Sweredoski M, DeRose-Wilson L, Gaut BS. A comparative computational analysis of nonautonomous helitron elements between maize and rice. BMC Genomics 2008; 9:467. [PMID: 18842139 PMCID: PMC2575219 DOI: 10.1186/1471-2164-9-467] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 10/08/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helitrons are DNA transposable elements that are proposed to replicate via a rolling circle mechanism. Non-autonomous helitron elements have captured gene fragments from many genes in maize (Zea mays ssp. mays) but only a handful of genes in Arabidopsis (Arabidopsis thaliana). This observation suggests very different histories for helitrons in these two species, but it is unclear which species contains helitrons that are more typical of plants. RESULTS We performed computational searches to identify helitrons in maize and rice genomic sequence data. Using 12 previously identified helitrons as a seed set, we identified 23 helitrons in maize, five of which were polymorphic among a sample of inbred lines. Our total sample of maize helitrons contained fragments of 44 captured genes. Twenty-one of 35 of these helitrons did not cluster with other elements into closely related groups, suggesting substantial diversity in the maize element complement. We identified over 552 helitrons in the japonica rice genome. More than 70% of these were found in a collinear location in the indica rice genome, and 508 clustered as a single large subfamily. The japonica rice elements contained fragments of only 11 genes, a number similar to that in Arabidopsis. Given differences in gene capture between maize and rice, we examined sequence properties that could contribute to differences in capture rates, focusing on 3' palindromes that are hypothesized to play a role in transposition termination. The free energy of folding for maize helitrons were significantly lower than those in rice, but the direction of the difference differed from our prediction. CONCLUSION Maize helitrons are clearly unique relative to those of rice and Arabidopsis in the prevalence of gene capture, but the reasons for this difference remain elusive. Maize helitrons do not seem to be more polymorphic among individuals than those of Arabidopsis; they do not appear to be substantially older or younger than the helitrons in either species; and our analyses provided little evidence that the 3' hairpin plays a role.
Collapse
Affiliation(s)
- Michael Sweredoski
- Institute for Genomics and Bioinformatics, UC Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|