1
|
Abstract
Enzyme-mediated esterification reactions can be a promising alternative to produce esters of commercial interest, replacing conventional chemical processes. The aim of this work was to verify the potential of an esterase for ester synthesis. For that, recombinant lipolytic enzyme EST5 was purified and presented higher activity at pH 7.5, 45 °C, with a Tm of 47 °C. Also, the enzyme remained at least 50% active at low temperatures and exhibited broad substrate specificity toward p-nitrophenol esters with highest activity for p-nitrophenyl valerate with a Kcat/Km of 1533 s−1 mM−1. This esterase exerted great properties that make it useful for industrial applications, since EST5 remained stable in the presence of up to 10% methanol and 20% dimethyl sulfoxide. Also, preliminary studies in esterification reactions for the synthesis of methyl butyrate led to a specific activity of 127.04 U·mg−1. The enzyme showed higher esterification activity compared to other literature results, including commercial enzymes such as LIP4 and CL of Candida rugosa assayed with butyric acid and propanol which showed esterification activity of 86.5 and 15.83 U·mg−1, respectively. In conclusion, EST5 has potential for synthesis of flavor esters, providing a concept for its application in biotechnological processes.
Collapse
|
2
|
Álvarez-Cao ME, González R, Pernas MA, Rúa ML. Contribution of the Oligomeric State to the Thermostability of Isoenzyme 3 from Candida rugosa. Microorganisms 2018; 6:E108. [PMID: 30347699 PMCID: PMC6313406 DOI: 10.3390/microorganisms6040108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
Thermophilic proteins have evolved different strategies to maintain structure and function at high temperatures; they have large, hydrophobic cores, and feature increased electrostatic interactions, with disulfide bonds, salt-bridging, and surface charges. Oligomerization is also recognized as a mechanism for protein stabilization to confer a thermophilic adaptation. Mesophilic proteins are less thermostable than their thermophilic homologs, but oligomerization plays an important role in biological processes on a wide variety of mesophilic enzymes, including thermostabilization. The mesophilic yeast Candida rugosa contains a complex family of highly related lipase isoenzymes. Lip3 has been purified and characterized in two oligomeric states, monomer (mLip3) and dimer (dLip3), and crystallized in a dimeric conformation, providing a perfect model for studying the effects of homodimerization on mesophilic enzymes. We studied kinetics and stability at different pHs and temperatures, using the response surface methodology to compare both forms. At the kinetic level, homodimerization expanded Lip3 specificity (serving as a better catalyst on soluble substrates). Indeed, dimerization increased its thermostability by more than 15 °C (maximum temperature for dLip3 was out of the experimental range; >50 °C), and increased the pH stability by nearly one pH unit, demonstrating that oligomerization is a viable strategy for the stabilization of mesophilic enzymes.
Collapse
Affiliation(s)
- María-Efigenia Álvarez-Cao
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - Roberto González
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María A Pernas
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| | - María Luisa Rúa
- Department of Food and Analytical Chemistry, Sciences Faculty of Ourense, University of Vigo, As Lagoas s/n, 32004 Ourense, Spain.
| |
Collapse
|
3
|
Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnol Adv 2016; 34:874-885. [DOI: 10.1016/j.biotechadv.2016.05.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 11/23/2022]
|
4
|
Heterologous expression of a fungal sterol esterase/lipase in different hosts: Effect on solubility, glycosylation and production. J Biosci Bioeng 2015; 120:637-43. [PMID: 25939548 DOI: 10.1016/j.jbiosc.2015.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/21/2022]
Abstract
Ophiostoma piceae secretes a versatile sterol-esterase (OPE) that shows high efficiency in both hydrolysis and synthesis of triglycerides and sterol esters. This enzyme produces aggregates in aqueous solutions, but the recombinant protein, expressed in Komagataella (synonym Pichia) pastoris, showed higher catalytic efficiency because of its higher solubility. This fact owes to a modification in the N-terminal sequence of the protein expressed in Pichia pastoris, which incorporated 4-8 additional amino acids, affecting its aggregation behavior. In this study we present a newly engineered P. pastoris strain with improved protein production. We also produced the recombinant protein in the yeast Saccharomyces cerevisiae and in the prokaryotic host Escherichia coli, corroborating that the presence of these N-terminal extra amino acids affected the protein's solubility. The OPE produced in the new P. pastoris strain presented the same physicochemical properties than the old one. An inactive form of the enzyme was produced by the bacterium, but the recombinant esterase from both yeasts was active even after its enzymatic deglycosylation, suggesting that the presence of N-linked carbohydrates in the mature protein is not essential for enzyme activity. Although the yield in S. cerevisiae was lower than that obtained in P. pastoris, this work demonstrates the importance of the choice of the heterologous host for successful production of soluble and active recombinant protein. In addition, S. cerevisiae constitutes a good engineering platform for improving the properties of this biocatalyst.
Collapse
|
5
|
High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer. Bioprocess Biosyst Eng 2013; 36:1527-43. [DOI: 10.1007/s00449-013-0943-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022]
|
6
|
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities. Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, EE. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Lan DM, Yang N, Wang WK, Shen YF, Yang B, Wang YH. A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme. Int J Mol Sci 2011; 12:3950-65. [PMID: 21747717 PMCID: PMC3131601 DOI: 10.3390/ijms12063950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 11/16/2022] Open
Abstract
A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86-34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15-35 °C and pH 5-9, with the optimal conditions being 15-25 °C and pH 5-6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 °C, suggesting that Lip5-DM was a cold-active lipase. Its activity was found to increase in the presence of Zn(2+), but it was strongly inhibited by Fe(2+), Fe(3+), Hg(2+) and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short-and medium-chain length p-nitrophenyl (C4 and C8 acyl group) esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group) with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil.
Collapse
Affiliation(s)
- Dong-Ming Lan
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mails: (D.-M.L.); (N.Y.); (W.-K.W.); (Y.-F.S.)
| | - Ning Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mails: (D.-M.L.); (N.Y.); (W.-K.W.); (Y.-F.S.)
| | - Wen-Kai Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mails: (D.-M.L.); (N.Y.); (W.-K.W.); (Y.-F.S.)
| | - Yan-Fei Shen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mails: (D.-M.L.); (N.Y.); (W.-K.W.); (Y.-F.S.)
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; E-Mails: (D.-M.L.); (N.Y.); (W.-K.W.); (Y.-F.S.)
- Authors to whom correspondence should be addressed; E-Mails: (B.Y.); (Y.-H.W.); Tel./Fax: +86-020-87113842
| | - Yong-Hua Wang
- Key Lab of Fermentation and Enzyme Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
- Authors to whom correspondence should be addressed; E-Mails: (B.Y.); (Y.-H.W.); Tel./Fax: +86-020-87113842
| |
Collapse
|
8
|
Hung KS, Chen SY, Liu HF, Tsai BR, Chen HW, Huang CY, Liao JL, Sun KH, Tang SJ. C-terminal region of Candida rugosa lipases affects enzyme activity and interfacial activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5396-5401. [PMID: 21504227 DOI: 10.1021/jf104721a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Candida rugosa contains several lipase (CRLs) genes, and CRLs show diverse enzyme activity despite being highly homologous across their entire protein family. Previous studies found that LIP4 has a high esterase activity and a low lipolytic activity and lacks interfacial activation. To investigate whether the C-terminal region of the CRLs mediates enzymatic activity, chimeras were generated in which the C-terminus of LIP4 from either residue 374, 396, 417, or 444 to residue 534 was swapped with the corresponding peptide from the isoform LIP1. A chimeric lipase containing the C-terminus from 396 to 534 of LIP1 on a LIP4 scaffold showed activity similar to that of commercial CRL on triolein, and lipolytic activity increased 2-6-fold over that of LIP4. Moreover, interfacial activation was also observed in the chimeric lipase. To improve its enzymatic properties, a novel glycosylation site was added at residue 314. The new glycosylated lipase showed improved thermostability and enhancement in enzymatic activity, indicating its potential for use in further application.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Benaiges MD, Alarcón M, Fuciños P, Ferrer P, Rua M, Valero F. Recombinant Candida rugosa lipase 2 from Pichia pastoris: Immobilization and use as biocatalyst in a stereoselective reaction. Biotechnol Prog 2010; 26:1252-8. [DOI: 10.1002/btpr.444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Ferrer P, Alarcón M, Ramón R, Dolors Benaiges M, Valero F. Recombinant Candida rugosa LIP2 expression in Pichia pastoris under the control of the AOX1 promoter. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Krügener S, Zelena K, Zorn H, Nimtz M, Berger RG. Heterologous expression of an extra-cellular lipase from the basidiomycete Pleurotus sapidus. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Peisley AA, Gooley PR. High-level expression of a soluble and functional fibronectin type II domain from MMP-2 in the Escherichia coli cytoplasm for solution NMR studies. Protein Expr Purif 2006; 53:124-31. [PMID: 17251038 DOI: 10.1016/j.pep.2006.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 11/16/2022]
Abstract
We report a method for the expression in Escherichia coli of the isolated second type II fibronectin domain from MMP-2 (FNII-2). FNII-2 was expressed as a His(6)thioredoxin-tagged fusion protein in the thioredoxin reductase deficient E. coli strain BL21trxB(DE3), thus allowing disulfide-bond formation. When cultured at 37 degrees C, the expressed protein is located exclusively in the soluble fraction of the E. coli lysate. The fusion protein from the soluble fraction was purified and the His(6)thioredoxin-tag was cleaved by thrombin, resulting in a yield of approximately 40 mg/L. The recombinant FNII-2 was demonstrated to be functional by its ability to bind to gelatin-Sepharose, correct folding of the purified protein was confirmed by NMR spectroscopy. This approach may generally be applicable to all FNII domains and is a significant simplification relative to existing techniques involving refolding from inclusion bodies or expression in the eukaryotic host, Pichia pastoris.
Collapse
Affiliation(s)
- Alys A Peisley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic. 3010, Australia
| | | |
Collapse
|
13
|
Domínguez de María P, Sánchez-Montero JM, Sinisterra JV, Alcántara AR. Understanding Candida rugosa lipases: an overview. Biotechnol Adv 2005; 24:180-96. [PMID: 16288844 DOI: 10.1016/j.biotechadv.2005.09.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Candida rugosa lipase (CRL) is one of the enzymes most frequently used in biotransformations. However, there are some irreproducibility problems inherent to this biocatalyst, attributed either to differences in lipase loading and isoenzymatic profile or to other medium-engineering effects (temperature, a(w), choice of solvent, etc.). In addition, some other properties (influence of substrate and reaction conditions on the lid movement, differences in the glycosylation degree, post-translational modifications) should not be ruled out. In the present paper the recent developments published in the CRL field are overviewed, focusing on: (a) comparison of structural and biochemical data among isoenzymes (Lip1-Lip5), and their influence in the biocatalytical performance; (b) developments in fermentation technology to achieve new crude C. rugosa lipases; (c) biocatalytical reactivity of each isoenzyme, and methods for characterising them in crude CRL; (d) state-of-the-art of new applications performed with recombinant CRLs, both in CRL-second generation (wild-type recombinant enzymes), as well as in CRL-third generation, (mutants of the wt-CRL).
Collapse
Affiliation(s)
- Pablo Domínguez de María
- Biotransformations Group, Organic and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Complutense University, Pza. Ramón y Cajal s/n. E-28040, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Sun KH, Sun GH, Tsai CY, Wang HH, Chung-I C, Lin G, Lin WW, Tang SJ. Expression, purification, refolding, and characterization of recombinant human soluble-Fas ligand from Escherichia coli. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Abstract
Commercial preparations of Candida rugosa lipase (CRL) are mixtures of lipase isoforms used for the hydrolysis and synthesis of various esters. The presence of variable isoforms and the amount of lipolytic protein in the crude lipase preparations lead to a lack of reproducibility of biocatalytic reactions. Purification of crude CRL improve their substrate specificity, enantioselectivity, stability, and specific activities. The expression of the isoforms is governed by culture or fermentation conditions. Unfortunately, the nonsporogenic yeast C. rugosa does not utilize the universal codon CTG for leucine; therefore, most of the CTG codons were converted to universal serine triplets by site-directed mutagenesis to gain expression of functional lipase in heterologous hosts. Recombinant expressions by multiple-site mutagenesis or complete synthesis of the lipase gene are other possible ways of obtaining pure and different CRL isoforms, in addition to culture engineering. Protein engineering of purified CRL isoforms allows the tailoring of enzyme function. This involves computer modeling based on available 3-D structures of lipase isoforms. Lid swapping and DNA shuffling techniques can be used to improve the enantioselectivity, thermostability, and substrate specificity of CRL isoforms and increase their biotechnological applications. Lid swapping can result in chimera proteins with new functions. The sequence of the lid can affect the activity and specificity of recombinant CRL isoforms. Candida rugosa lipase is toxicologically safe for food applications. Protein engineering through lid swapping and rationally designed site-directed mutagenesis will continue to lead to the production of CRL isoforms with improved catalytic power, thermostability, enantioselectivity, and substrate specificity, while providing evidence for the mechanisms of actions of the various isoforms.
Collapse
Affiliation(s)
- Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, Georgia 30602-7610, USA
| | | | | |
Collapse
|
16
|
Tang SJ, Sun KH, Sun GH, Chang TY, Wu WL, Lee GC. A transformation system for the nonuniversal CUG(Ser) codon usage species Candida rugosa. J Microbiol Methods 2003; 52:231-8. [PMID: 12459243 DOI: 10.1016/s0167-7012(02)00182-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since Candida rugosa utilizes a nonuniversal serine codon CUG rather than leucine, no vectors have been constructed to transform this organism. Moreover, it is difficult to design a new transformation system because no selection markers and promoters are available. In this study, Zeocin (400 microg/ml) was demonstrated to inhibit the growth of C. rugosa. The dominant selectable marker bleomycin-resistant determinant (ble) gene containing five CUG codons in an open-reading frame of 375 bp was synthesized by replacing its CUG codons into leucine codons (zeo-n). This marker conferred resistance to Zeocin. GAL1 promoter, transcription elongation factor 1 (TEF1) promoter from Saccharomyces cerevisiae and LIP3 promoter from C. rugosa were then used to drive zeo-n and to examine the function of promoter in C. rugosa. The resulting vectors enabled selection of Zeocin-resistant clones after transformation by LiCl method and electroporation. These results demonstrate that transformation into C. rugosa is feasible under the operation of GAL1, TEF1, and LIP3 promoters. The development of the transformation system for C. rugosa is essential to the genetic analysis of gene regulation and biochemical features of this fungal species and the expression of recombinant proteins in C. rugosa.
Collapse
Affiliation(s)
- Shye-Jye Tang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
17
|
Lee GC, Lee LC, Sava V, Shaw JF. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochem J 2002; 366:603-11. [PMID: 12020350 PMCID: PMC1222792 DOI: 10.1042/bj20020404] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 05/15/2002] [Accepted: 05/21/2002] [Indexed: 11/17/2022]
Abstract
The 17 non-universal serine codons (CTG) in the Candida rugosa LIP2 gene have been converted into universal serine codons (TCT) by overlap extension PCR-based multiple site-directed mutagenesis. An active recombinant LIP2 lipase was overexpressed in Pichia pastoris and secreted into the culture medium. The recombinant LIP2 showed distinguishing catalytic activities when compared with recombinant LIP4 and commercial C. rugosa lipase. The purified enzyme showed optimum activity at pH 7 and a broad temperature optimum in the range 30-50 degrees C. The enzyme retained 80% of residual activity after being heated at 70 degrees C for 10 min. Recombinant LIP2 demonstrated high esterase activity towards long-chain (C12-C16) p-nitrophenyl esters. Tributyrin was the preferred substrate among all triacylglycerols tested for lipolysis. Among cholesteryl esters, LIP2 showed highest lipolytic activity towards cholesteryl laurate. The esterification of myristic acid with alcohols of various chain lengths showed that the long-chain n-octadecanol (C18) was the preferred substrate. In contrast, the esterification of n-propanol with fatty acids of various chain lengths showed that the short-chain butyric acid was the best substrate. From comparative modelling analysis, it appears that several amino acid substitutions resulting in greater hydrophobicity in the substrate-binding site might play an important role in the substrate specificity of LIP2.
Collapse
Affiliation(s)
- Guan-Chiun Lee
- Institute of Botany, Academia, Sinica, Nankang, Taipei, Taiwan 11529
| | | | | | | |
Collapse
|
18
|
Tang SJ, Shaw JF, Sun KH, Sun GH, Chang TY, Lin CK, Lo YC, Lee GC. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Arch Biochem Biophys 2001; 387:93-8. [PMID: 11368188 DOI: 10.1006/abbi.2000.2235] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although Candida rugosa utilizes a nonuniversal serine codon (CUG) for leucine, it is possible to express lipase genes (LIP) in heterologous systems. After replacing the 19 CUG codons in LIP4 with serine codons by site-directed mutagenesis, a recombinant LIP4 was functionally overexpressed in Pichia pastoris in this study. This recombinant glycosylated lipase was secreted into the culture medium with a high purity of 100 mg/liter in a culture broth. Purified recombinant LIP4 had a molecular mass of 60 kDa, showing a range similar to that of lipase in a commercial preparation. Since LIP4 has only a glycosylation site at position Asn-351, this position may also be the major glycosylation site in C. rugosa lipases. Although the thermal stability of recombinant LIP4 significantly increased from 52 to 58 degrees C after glycosylation, there were no significant differences in the catalytic properties of recombinant glycosylated lipase from P. pastoris and the unglycosylated one from Escherichia coil. These two recombinant LIP4s showed higher esterase activities toward long-chain ester (C16 and C18) and exhibited higher lipase activities toward unsaturated and long-chain lipids. In addition, LIP4 does not show interfacial activation as compared with LIP1 toward lipid substrates of tributyrin and triolein. These observations demonstrated that LIP4 shows distinguished catalytic activities with LIP1 in spite of their high sequence homology.
Collapse
Affiliation(s)
- S J Tang
- Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|