1
|
Tsai SC, Wu WC, Yang JS. Tetrandrine Inhibits Epithelial-Mesenchymal Transition in IL-6-Induced HCT116 Human Colorectal Cancer Cells. Onco Targets Ther 2021; 14:4523-4536. [PMID: 34456573 PMCID: PMC8387317 DOI: 10.2147/ott.s324552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Patients with colorectal cancer (CRC) often develop distant metastases, which significantly reduces the 5-year survival rate. Epithelial-mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of cancer cells. Tetrandrine has been reported to inhibit the viability and EMT of CRC cells; however, to the best of our knowledge, the molecular mechanism remains undetermined. Methods The MTT assay was used to determine HCT116 cell viability. Wound healing and Transwell assays were used to determine that cell migration and invasion, respectively. Western blotting analysis was performed to detect the expression of migration-related genes. Four different lengths of the E-cadherin gene promoter were constructed and cloned into pGL3 reporter plasmids to evaluate E-cadherin gene promoter activity. Results The results of the MTT assay revealed that tetrandrine inhibited HCT116 cell viability, with an IC50 value of 7.2 μM following 24 h of treatment. Tetrandrine inhibited IL-6-induced cell migration and invasion, respectively. Tetrandrine regulates the expression of migration-related genes in IL-6-stimulated HCT116 cells. Tetrandrine significantly downregulated the expression and enzyme activity of MMP-2 in IL-6-stimulated HCT116 cells. In addition, tetrandrine restored E-cadherin gene promoter activity. Conclusion The findings of the present study suggested that tetrandrine may inhibit EMT in IL-6-stimulated HCT116 cells; therefore, it may represent a potential drug for CRC.
Collapse
Affiliation(s)
- Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
| | - Wei-Chei Wu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
2
|
Zheng W, Wang Z, Jiang X, Zhao Q, Shen J. Targeted Drugs for Treatment of Pulmonary Arterial Hypertension: Past, Present, and Future Perspectives. J Med Chem 2020; 63:15153-15186. [PMID: 33314936 DOI: 10.1021/acs.jmedchem.0c01093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that can lead to right ventricular failure and premature death. Although approved drugs have been shown to be safe and effective, PAH remains a severe clinical condition, and the long-term survival of patients with PAH is still suboptimal. Thus, potential therapeutic targets and new agents to treat PAH are urgently needed. In recent years, a variety of related pathways and potential therapeutic targets have been found, which brings new hope for PAH therapy. In this perspective, not only are the marketed drugs used to treat PAH summarized but also the recently developed novel pharmaceutical therapies currently in clinical trials are discussed. Furthermore, the advances in natural products as potential treatment for PAH are also updated.
Collapse
Affiliation(s)
- Wei Zheng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiangrui Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingjie Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingshan Shen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Xiang L, Li Y, Deng X, Kosanovic D, Schermuly RT, Li X. Natural plant products in treatment of pulmonary arterial hypertension. Pulm Circ 2018; 8:2045894018784033. [PMID: 29869936 PMCID: PMC6055327 DOI: 10.1177/2045894018784033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by
progressive remodeling of distal pulmonary arteries and persistent elevation of
pulmonary vascular resistance (PVR), which leads to right ventricular
dysfunction, heart failure, and eventually death. Although treatment
responsiveness for this disease is improving, it continues to be a
life-threatening condition. With the clinical efficacy of natural plant products
being fully confirmed by years of practice, more and more recognition and
attention have been obtained from the international pharmaceutical industry.
Moreover, studies over the past decades have demonstrated that drugs derived
from natural plants show unique advantages and broad application prospects in
PAH treatment, not to mention the historical application of Chinese traditional
medicine in cardiopulmonary diseases. In this review, we focus on summarizing
natural plant compounds with therapeutic properties in PAH, according to the
extracts, fractions, and pure compounds from plants into categories, hoping it
to be helpful for basic research and clinical application.
Collapse
Affiliation(s)
- Lili Xiang
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Ying Li
- 2 Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Xu Deng
- 4 Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Djuro Kosanovic
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Ralph Theo Schermuly
- 5 Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research, Giessen, Germany
| | - Xiaohui Li
- 1 Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China.,3 Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
4
|
Lin CF, Huang HL, Peng CY, Lee YC, Wang HP, Teng CM, Pan SL. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis. Toxicol Appl Pharmacol 2016; 305:194-202. [PMID: 27312871 DOI: 10.1016/j.taap.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/17/2016] [Accepted: 06/08/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. METHODS Cell proliferation was determined using [(3)H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. RESULTS TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. CONCLUSION The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chao-Feng Lin
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Yu Peng
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Po Wang
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Che-Ming Teng
- College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan.
| |
Collapse
|
5
|
Jain M, Singh A, Singh V, Maurya P, Barthwal MK. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation. J Cardiovasc Pharmacol Ther 2015; 21:187-200. [DOI: 10.1177/1074248415598003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
Purpose: Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Method and Results: Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27Kip1 downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27Kip1 downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27Kip1 downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Conclusion: Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases.
Collapse
Affiliation(s)
- Manish Jain
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ankita Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Vishal Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Preeti Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
The potential of tetrandrine as a protective agent for ischemic stroke. Molecules 2011; 16:8020-32. [PMID: 21926947 PMCID: PMC6264536 DOI: 10.3390/molecules16098020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022] Open
Abstract
Stroke is one of the leading causes of mortality, with a high incidence of severe morbidity in survivors. The treatment to minimize tissue injury after stroke is still unsatisfactory and it is mandatory to develop effective treatment strategies for stroke. The pathophysiology of ischemic stroke is complex and involves many processes including energy failure, loss of ion homeostasis, increased intracellular calcium level, platelet aggregation, production of reactive oxygen species, disruption of blood brain barrier, and inflammation and leukocyte infiltration, etc. Tetrandrine, a bisbenzylisoquinoline alkaloid, has many pharmacologic effects including anti-inflammatory and cytoprotective effects. In addition, tetrandrine has been found to protect the liver, heart, small bowel and brain from ischemia/reperfusion injury. It is a calcium channel blocker, and can inhibit lipid peroxidation, reduce generation of reactive oxygen species, suppress the production of cytokines and inflammatory mediators, inhibit neutrophil recruitment and platelet aggregation, which are all devastating factors during ischemia/reperfusion injury of the brain. Because tetrandrine can counteract these important pathophysiological processes of ischemic stroke, it has the potential to be a protective agent for ischemic stroke.
Collapse
|
7
|
Chen Y, Wu JM, Lin TY, Wu CC, Chiu KM, Chang BF, Tseng SH, Chu SH. Tetrandrine ameliorated reperfusion injury of small bowel transplantation. J Pediatr Surg 2009; 44:2145-52. [PMID: 19944224 DOI: 10.1016/j.jpedsurg.2009.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 05/29/2009] [Accepted: 06/01/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE In small bowel transplantation, the bowel graft is susceptible to reperfusion injury. This study investigated the effects of tetrandrine, a bisbenzylisoquinoline alkaloid, on the development of intestinal reperfusion injury in small bowel transplantation in pigs. MATERIALS AND METHODS Pigs underwent small bowel transplantation and were treated with tetrandrine or a vehicle. Blood and small bowel specimens were harvested at 1, 3, and 24 hours after reperfusion. Histopathologic analysis of the small bowel was assessed for tissue damage. Serum levels of tumor necrosis factor-alpha, interleukin-1beta (IL-1beta), and IL-6 were measured by enzyme-linked immunosorbent assay. Reverse-transcriptase polymerase chain reaction analysis was performed to analyze the expression of proinflammatory cytokines, and immunohistochemical analysis was used to study the expression of intercellular adhesion molecule-1 (ICAM-1) in the small bowel. Myeloperoxidase staining detected neutrophil infiltration in the small bowel and the number of myeloperoxidase positively stained cells was counted. RESULTS Pigs receiving small bowel transplantation had elevated serum proinflammatory cytokine levels. The transplanted small bowel showed mucosal damage, increased expression of proinflammatory cytokines and ICAM-1, and prominent neutrophil infiltration. Tetrandrine administration reduced mucosal damage, serum and tissue proinflammatory cytokine levels, ICAM-1 expression, and neutrophil accumulation in the transplanted small bowel. CONCLUSIONS Tetrandrine reduced the reperfusion injury in porcine intestinal transplantation during the first 24 hours after the procedure.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, Taipei 220, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Baicalein attenuates intimal hyperplasia after rat carotid balloon injury through arresting cell-cycle progression and inhibiting ERK, Akt, and NF-κB activity in vascular smooth-muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:579-88. [DOI: 10.1007/s00210-008-0328-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/25/2008] [Indexed: 02/01/2023]
|
9
|
Fang LH, Zhang YH, Ma JJ, Du GH, Ku BS, Yao HY, Yun YP, Kim TJ. Inhibitory effects of tetrandrine on the serum- and platelet-derived growth factor-BB-induced proliferation of rat aortic smooth muscle cells through inhibition of cell cycle progression, DNA synthesis, ERK1/2 activation and c-fos expression. Atherosclerosis 2004; 174:215-23. [PMID: 15136051 DOI: 10.1016/j.atherosclerosis.2004.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 01/12/2004] [Accepted: 01/22/2004] [Indexed: 11/30/2022]
Abstract
Tetrandrine (TET) is a well known naturally occurred nonspecific Ca(2+) channel blocker. It has long been used for the treatment of arrhythmia, hypertension, and occlusive cardiovascular disorders. The objective of the present study was to investigate the effect of TET on the proliferation of primary cultured rat aortic smooth muscle cells (RASMCs). TET significantly inhibited both 10% fetal bovine serum (FBS) and 50 ng/ml platelet-derived growth factor (PDGF)-BB-induced proliferation, [(3) H] ]thymidine incorporation into DNA, and p42/p44 mitogen-activated protein kinase (ERK1/2) phosphorylation at the concentration of 1.0 and 5.0 microM. Flow cytometry analysis of DNA content in synchronized cells revealed blocking of the FBS-inducible cell cycle progression by TET. In accordance with these findings, TET 5 microM caused a 48% decrease in the early elevation of c-fos expression induced after 10% FBS addition. Furthermore, in contrast to its distinguishable higher potency of Ca(2+) antagonistic activity, verapamil showed lower potent antiproliferative activities than TET. These results suggest that TET can exert antiproliferative effects against mitogenic stimuli for RASMCs in vitro by a mechanism that involves the MAPK pathway, altering cell cycle progression, and the inhibitory action cannot be limited to its Ca(2+) modulation.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Analysis of Variance
- Animals
- Aorta/cytology
- Becaplermin
- Benzylisoquinolines/pharmacology
- Blotting, Western
- Cell Cycle/drug effects
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- DNA/biosynthesis
- Enzyme Activation/drug effects
- Male
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/drug effects
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Polymerase Chain Reaction
- Probability
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-sis
- Rats
- Rats, Sprague-Dawley
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Lian-Hua Fang
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 XianNongTan St, Beijing 100050, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang YH, Fang LH, Ku BS. Fangchinoline inhibits rat aortic vascular smooth muscle cell proliferation and cell cycle progression through inhibition of ERK1/2 activation and c-fos expression. Biochem Pharmacol 2003; 66:1853-60. [PMID: 14563495 DOI: 10.1016/s0006-2952(03)00550-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fangchinoline (FAN; a plant alkaloid isolated from Stephania tetrandrae) is a nonspecific Ca(2+) channel blocker. The objective of the present study was to investigate the effect of FAN on the growth factor-induced proliferation of primary cultured rat aortic smooth muscle cells (RASMCs). FAN significantly inhibited both 5% fetal bovine serum (FBS)- and 50ng/mL platelet-derived growth factor (PDGF)-BB-induced proliferation, [3H]thymidine incorporation into DNA and phosphorylation of extracellular signal-regulated kinase 1/2. In accordance with these findings, FAN revealed blocking of the FBS-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells and caused a 62% decrease in the early elevation of c-fos expression induced after 5% FBS addition. Furthermore, significant antiproliferative activity of FAN is observed at concentrations below those required to achieve significant inhibition of Ca(2+) channels by FAN. These results suggest that FAN reduced both FBS- and PDGF-BB-induced RASMCs proliferation by perturbing cell cycle progression. This antiproliferative effect of FAN is dependent on the MAP kinase pathway, but cannot be limited to its Ca(2+) modulation.
Collapse
Affiliation(s)
- Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, PR China.
| | | | | |
Collapse
|
11
|
Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 2002; 45:173-202. [PMID: 12525995 DOI: 10.1053/pcad.2002.130041] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical pulmonary hypertension is characterized by a sustained elevation in pulmonary arterial pressure. Pulmonary vascular remodeling involves structural changes in the normal architecture of the walls of pulmonary arteries. The process of vascular remodeling can occur as a primary response to injury, or stimulus such as hypoxia, within the resistance vessels of the lung. Alternatively, the changes seen in more proximal vessels may arise secondary to a sustained increase in intravascular pressure. To withstand the chronic increase in intraluminal pressure, the vessel wall becomes thickened and stronger. This "armouring" of the vessel wall with extra-smooth muscle and extracellular matrix leads to a decrease in lumen diameter and reduced capacity for vasodilatation. This maladaptive response results in increased pulmonary vascular resistance and consequently, sustained pulmonary hypertension. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by the finding that cellular heterogeneity exists within the traditional compartments of the vascular wall: intima, media, and adventitia. In addition, the developmental stage of the organism greatly modifies the response of the pulmonary circulation to injury. This review focuses on the latest advances in our knowledge of these processes as they relate to specific forms of pulmonary hypertension and particularly in the light of recent genetic studies that have identified specific pathways involved in the pathogenesis of severe pulmonary hypertension.
Collapse
Affiliation(s)
- T K Jeffery
- Respiratory Medicine Unit, Department of Medicine, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
12
|
Jin Q, Kang C, Soh Y, Sohn NW, Lee J, Cho YH, Baik HH, Kang I. Tetrandrine cytotoxicity and its dual effect on oxidative stress-induced apoptosis through modulating cellular redox states in Neuro 2a mouse neuroblastoma cells. Life Sci 2002; 71:2053-66. [PMID: 12175898 DOI: 10.1016/s0024-3205(02)01989-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrandrine (TET), a plant alkaloid, is known primarily as a non-selective Ca(2+) channel blocker. On the contrary to the cytoprotective effect on ischemia/reperfusion injury, TET has also been reported to cause cytotoxicity. In this study, we wished to understand the apparently disparate effects of this potential drug and thus investigated molecular mechanisms on proliferation and apoptosis and its effect on oxidative stress-induced apoptosis in Neuro 2a mouse neuroblastoma cells. We showed that TET, at high concentrations, induced cell cycle arrest and apoptosis through oxidative stress with following observations. Firstly, 10 microM TET elevated the reactive oxygen species (ROS) level and accordingly depleted glutathione (GSH) content. Secondly, pretreatment with antioxidants (NAC or GSH) protected cells from TET-induced apoptosis. We also demonstrated that treatment with 10 microM TET caused not only induction of p53, p21(waf1), and Bax, but also nuclear translocation of p53 and hypo-phosphorylation of pRb concurrently. Our important finding is that the concentration-dependent dual effect of TET, either inhibiting or promoting cell death induced by H(2)O(2) was observed, probably through regulating redox balance, which was well reflected on the GSH content in each condition. Besides, inhibition of Ca(2+) influx protected cells from H(2)O(2)-induced apoptosis even in the presence of 10 microM TET. Taken together, our data suggest that TET regulation of cellular redox states may play a major role in its dual action of cytotoxicity and cytoprotection.
Collapse
Affiliation(s)
- Quanri Jin
- Department of Biochemistry, School of Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Liang XC, Hagino N, Guo SS, Tsutsumi T, Kobayashi S. Therapeutic efficacy of Stephania tetrandra S. Moore for treatment of neovascularization of retinal capillary (retinopathy) in diabetes--in vitro study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2002; 9:377-384. [PMID: 12222655 DOI: 10.1078/09447110260571599] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present study was designed to examine therapeutic efficacy of the root extract of Stephania Tetrandra S. Moore (STMS) (traditional Chinese medicine; Han Fang Ji) for treatment of neovascularization of the retinal capillary (retinopathy) in streptozotocin (STZ)-induced diabetic rats (STZ diabetic rats) in culture. Recently we have established the culture system in which fetal bovine serum (FBS) in Dulbecco modified Eagle medium (DMEM) induced neovascularization of the retinal capillary and choroidal capillary in normal rats in culture. STZ diabetic rats showed more neovascularization of the retinal capillary and choroidal capillary than did normal rats in culture. In this study, the retinal tissue was removed for the posterior ocular region and cultured in DMEM containing FBS. The choroidal tissue of the posterior ocular region was also removed and cultured as an internal reference. Administration of STSM (0.91, 9.1 and 91 microg/ml) significantly suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary; administration of STSM suppressed neovascularization of the choroidal capillary in both STZ diabetic rats and normal rats. In order to determine the component of STSM inhibiting neovascularization of the retinal capillary, tetrandrine (a major chemical constituent of STSM) was administered and neovascularization of the retinal capillary was examined in culture. The effect of tetrandrine on the choroidal capillary was also examined as an internal reference. Administration of tetrandrine (0.1, 1.0 and 10 microM) suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary of both STZ diabetic rats and normal rats. We infer, therefore, that STSM has a direct effect on the retinal capillary of posterior ocular region and suppresses neovascularization of retinal capillary in STZ diabetic rats through the activation of tetrandrine. These results suggest that STSM may prevent for delay the progression of retinopathy in diabetic patients.
Collapse
Affiliation(s)
- Xiao-chun Liang
- The Peking Union Medical College Hospital, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Jeffery TK, Wanstall JC. Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther 2001; 92:1-20. [PMID: 11750034 DOI: 10.1016/s0163-7258(01)00157-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Pulmonary vascular remodelling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodelling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodelling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodelling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+ -channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodelling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodelling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodelling therapy in the clinic will require a range of different drug options.
Collapse
MESH Headings
- Animals
- Endothelium, Vascular/physiology
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy/drug therapy
- Hypertrophy/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Veins/drug effects
- Pulmonary Veins/metabolism
- Pulmonary Veins/pathology
Collapse
Affiliation(s)
- T K Jeffery
- Department of PhysiologyPharmacology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|