1
|
Vahle JL, Dybowski J, Graziano M, Hisada S, Lebron J, Nolte T, Steigerwalt R, Tsubota K, Sistare FD. ICH S1 prospective evaluation study and weight of evidence assessments: commentary from industry representatives. FRONTIERS IN TOXICOLOGY 2024; 6:1377990. [PMID: 38845817 PMCID: PMC11153695 DOI: 10.3389/ftox.2024.1377990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Industry representatives on the ICH S1B(R1) Expert Working Group (EWG) worked closely with colleagues from the Drug Regulatory Authorities to develop an addendum to the ICH S1B guideline on carcinogenicity studies that allows for a weight-of-evidence (WoE) carcinogenicity assessment in some cases, rather than conducting a 2-year rat carcinogenicity study. A subgroup of the EWG composed of regulators have published in this issue a detailed analysis of the Prospective Evaluation Study (PES) conducted under the auspices of the ICH S1B(R1) EWG. Based on the experience gained through the Prospective Evaluation Study (PES) process, industry members of the EWG have prepared the following commentary to aid sponsors in assessing the standard WoE factors, considering how novel investigative approaches may be used to support a WoE assessment, and preparing appropriate documentation of the WoE assessment for presentation to regulatory authorities. The commentary also reviews some of the implementation challenges sponsors must consider in developing a carcinogenicity assessment strategy. Finally, case examples drawn from previously marketed products are provided as a supplement to this commentary to provide additional examples of how WoE criteria may be applied. The information and opinions expressed in this commentary are aimed at increasing the quality of WoE assessments to ensure the successful implementation of this approach.
Collapse
Affiliation(s)
- John L. Vahle
- Lilly Research Laboratories, Indianapolis, IN, United States
| | - Joe Dybowski
- Alnylam Pharmaceuticals, Cambridge, MA, United States
| | | | - Shigeru Hisada
- Formerly ASKA Pharmaceutical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | - Jose Lebron
- Merck & Co., Inc., Rahway, NJ, United States
| | - Thomas Nolte
- Development NCE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | |
Collapse
|
2
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Villa RE, Woutersen R, Brantom P, Chesson A, Schlatter J, Westendorf J, Dirven Y, Manini P, Dusemund B. Safety and efficacy of a feed additive consisting of a dry extract obtained from the leaves of Ginkgo biloba L. (ginkgo extract) for horses, dogs, cats, rabbits and guinea pigs (FEFANA asbl). EFSA J 2024; 22:e8733. [PMID: 38601873 PMCID: PMC11004906 DOI: 10.2903/j.efsa.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a feed additive obtained from the dried leaves of Ginkgo biloba L. (ginkgo extract) when used as a sensory additive in feed for horses, dogs, cats, rabbits and guinea pigs. Ginkgo extract contains ≥ 24% total flavonoids, ≥ 6% total terpene lactones and ≤ 1 mg/kg ginkgolic acids. The EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that ginkgo extract is safe for the target species at the following concentrations in complete feed: 2.8 mg/kg for horses and cats, 1.1 mg/kg for rabbits and guinea pigs, and 3.3 mg/kg for dogs. No safety concern would arise for the consumers from the use of ginkgo extract up to the highest level in feed which is considered safe for food-producing species (horses and rabbits). The additive should be considered as irritant to skin and eyes, and as a dermal and respiratory sensitiser. The use of the additive at the proposed level in feed for the target species is not considered to be a risk to the environment. While the available data indicate that Ginkgo preparations have a distinctive flavour profile, there is no evidence that the ginkgo extract would impart flavour to a food or feed matrix. Therefore, the FEEDAP Panel cannot conclude on the efficacy of the additive.
Collapse
|
3
|
Keller DA, Bassan A, Amberg A, Burns Naas LA, Chambers J, Cross K, Hall F, Jahnke GD, Luniwal A, Manganelli S, Mestres J, Mihalchik-Burhans AL, Woolley D, Tice RR. In silico approaches in carcinogenicity hazard assessment: case study of pregabalin, a nongenotoxic mouse carcinogen. FRONTIERS IN TOXICOLOGY 2023; 5:1234498. [PMID: 38026843 PMCID: PMC10679394 DOI: 10.3389/ftox.2023.1234498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
In silico toxicology protocols are meant to support computationally-based assessments using principles that ensure that results can be generated, recorded, communicated, archived, and then evaluated in a uniform, consistent, and reproducible manner. We investigated the availability of in silico models to predict the carcinogenic potential of pregabalin using the ten key characteristics of carcinogens as a framework for organizing mechanistic studies. Pregabalin is a single-species carcinogen producing only one type of tumor, hemangiosarcomas in mice via a nongenotoxic mechanism. The overall goal of this exercise is to test the ability of in silico models to predict nongenotoxic carcinogenicity with pregabalin as a case study. The established mode of action (MOA) of pregabalin is triggered by tissue hypoxia, leading to oxidative stress (KC5), chronic inflammation (KC6), and increased cell proliferation (KC10) of endothelial cells. Of these KCs, in silico models are available only for selected endpoints in KC5, limiting the usefulness of computational tools in prediction of pregabalin carcinogenicity. KC1 (electrophilicity), KC2 (genotoxicity), and KC8 (receptor-mediated effects), for which predictive in silico models exist, do not play a role in this mode of action. Confidence in the overall assessments is considered to be medium to high for KCs 1, 2, 5, 6, 7 (immune system effects), 8, and 10 (cell proliferation), largely due to the high-quality experimental data. In order to move away from dependence on animal data, development of reliable in silico models for prediction of oxidative stress, chronic inflammation, immunosuppression, and cell proliferation will be critical for the ability to predict nongenotoxic compound carcinogenicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jordi Mestres
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
4
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
5
|
Evaluation of an imaging-based in vitro screening platform for estrogenic activity with OECD reference chemicals. Toxicol In Vitro 2022; 81:105348. [DOI: 10.1016/j.tiv.2022.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
|
6
|
Duijndam B, Goudriaan A, van den Hoorn T, van der Stel W, Le Dévédec S, Bouwman P, van der Laan JW, van de Water B. Physiologically Relevant Estrogen Receptor Alpha Pathway Reporters for Single-Cell Imaging-Based Carcinogenic Hazard Assessment of Estrogenic Compounds. Toxicol Sci 2021; 181:187-198. [PMID: 33769548 PMCID: PMC8163057 DOI: 10.1093/toxsci/kfab037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) belongs to the nuclear hormone receptor family of ligand-inducible transcription factors and regulates gene networks in biological processes such as cell growth and proliferation. Disruption of these networks by chemical compounds with estrogenic activity can result in adverse outcomes such as unscheduled cell proliferation, ultimately culminating in tumor formation. To distinguish disruptive activation from normal physiological responses, it is essential to quantify relationships between different key events leading to a particular adverse outcome. For this purpose, we established fluorescent protein MCF7 reporter cell lines for ERα-induced proliferation by bacterial artificial chromosome-based tagging of 3 ERα target genes: GREB1, PGR, and TFF1. These target genes are inducible by the non-genotoxic carcinogen and ERα agonist 17β-estradiol in an ERα-dependent manner and are essential for ERα-dependent cell-cycle progression and proliferation. The 3 GFP reporter cell lines were characterized in detail and showed different activation dynamics upon exposure to 17β-estradiol. In addition, they demonstrated specific activation in response to other established reference estrogenic compounds of different potencies, with similar sensitivities as validated OECD test methods. This study shows that these fluorescent reporter cell lines can be used to monitor the spatial and temporal dynamics of ERα pathway activation at the single-cell level for more mechanistic insight, thereby allowing a detailed assessment of the potential carcinogenic activity of estrogenic compounds in humans.
Collapse
Affiliation(s)
- Britt Duijndam
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands.,Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Annabel Goudriaan
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Tineke van den Hoorn
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Wanda van der Stel
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Sylvia Le Dévédec
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Jan Willem van der Laan
- Section on Pharmacology, Toxicology and Kinetics, Medicines Evaluation Board, Utrecht 3531AH, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
7
|
Early Life Exposure to Aflatoxin B1 in Rats: Alterations in Lipids, Hormones, and DNA Methylation among the Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020589. [PMID: 33445757 PMCID: PMC7828191 DOI: 10.3390/ijerph18020589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/30/2023]
Abstract
Aflatoxins are toxic compounds produced by molds of the Aspergillus species that contaminate food primarily in tropical countries. The most toxic aflatoxin, aflatoxin B1 (AFB1), is a major cause of hepatocellular carcinoma (HCC) in these countries. In sub-Saharan Africa, aflatoxin contamination is common, and perinatal AFB1 exposure has been linked to the early onset of HCC. Epigenetic programming, including changes to DNA methylation, is one mechanism by which early life exposures can lead to adult disease. This study aims to elucidate whether perinatal AFB1 exposure alters markers of offspring health including weight, lipid, and hormone profiles as well as epigenetic regulation that may later influence cancer risk. Pregnant rats were exposed to two doses of AFB1 (low 0.5 and high 5 mg/kg) before conception, throughout pregnancy, and while weaning and compared to an unexposed group. Offspring from each group were followed to 3 weeks or 3 months of age, and their blood and liver samples were collected. Body weights and lipids were assessed at 3 weeks and 3 months while reproductive, gonadotropic, and thyroid hormones were assessed at 3 months. Prenatal AFB1 (high dose) exposure resulted in significant 16.3%, 31.6%, and 7.5% decreases in weight of the offspring at birth, 3 weeks, and 3 months, respectively. Both doses of exposure altered lipid and hormone profiles. Pyrosequencing was used to quantify percent DNA methylation at tumor suppressor gene Tp53 and growth-regulator H19 in DNA from liver and blood. Results were compared between the control and AFB1 exposure groups in 3-week liver samples and 3-week and 3-month blood samples. Relative to controls, Tp53 DNA methylation in both low- and high-dose exposed rats was significantly decreased in liver samples and increased in the blood (p < 0.05 in linear mixed models). H19 methylation was higher in the liver from low- and high-exposed rats and decreased in 3-month blood samples from the high exposure group (p < 0.05). Further research is warranted to determine whether such hormone, lipid, and epigenetic alterations from AFB1 exposure early in life play a role in the development of early-onset HCC.
Collapse
|
8
|
Harris KL, Walia V, Gong B, McKim KL, Myers MB, Xu J, Parsons BL. Quantification of cancer driver mutations in human breast and lung DNA using targeted, error-corrected CarcSeq. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:872-889. [PMID: 32940377 PMCID: PMC7756507 DOI: 10.1002/em.22409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 05/14/2023]
Abstract
There is a need for scientifically-sound, practical approaches to improve carcinogenicity testing. Advances in DNA sequencing technology and knowledge of events underlying cancer development have created an opportunity for progress in this area. The long-term goal of this work is to develop variation in cancer driver mutation (CDM) levels as a metric of clonal expansion of cells carrying CDMs because these important early events could inform carcinogenicity testing. The first step toward this goal was to develop and validate an error-corrected next-generation sequencing method to analyze panels of hotspot cancer driver mutations (hCDMs). The "CarcSeq" method that was developed uses unique molecular identifier sequences to construct single-strand consensus sequences for error correction. CarcSeq was used for mutational analysis of 13 amplicons encompassing >20 hotspot CDMs in normal breast, normal lung, ductal carcinomas, and lung adenocarcinomas. The approach was validated by detecting expected differences related to tissue type (normal vs. tumor and breast vs. lung) and mutation spectra. CarcSeq mutant fractions (MFs) correlated strongly with previously obtained ACB-PCR mutant fraction (MF) measurements from the same samples. A reconstruction experiment, in conjunction with other analyses, showed CarcSeq accurately quantifies MFs ≥10-4 . CarcSeq MF measurements were correlated with tissue donor age and breast cancer risk. CarcSeq MF measurements were correlated with deviation from median MFs analyzed to assess clonal expansion. Thus, CarcSeq is a promising approach to advance cancer risk assessment and carcinogenicity testing practices. Paradigms that should be investigated to advance this strategy for carcinogenicity testing are proposed.
Collapse
Affiliation(s)
- Kelly L. Harris
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Vijay Walia
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
- Present address:
USA
| | - Binsheng Gong
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Karen L. McKim
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Meagan B. Myers
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| | - Joshua Xu
- US Food and Drug AdministrationNational Center for Toxicological Research, Division of Bioinformatics and BiostatisticsJeffersonArkansasUSA
| | - Barbara L. Parsons
- US Food and Drug Administration, National Center for Toxicological ResearchDivision of Genetic and Molecular ToxicologyJeffersonArkansasUSA
| |
Collapse
|
9
|
Braakhuis HM, Slob W, Olthof ED, Wolterink G, Zwart EP, Gremmer ER, Rorije E, van Benthem J, Woutersen R, van der Laan JW, Luijten M. Is current risk assessment of non-genotoxic carcinogens protective? Crit Rev Toxicol 2018; 48:500-511. [PMID: 29745287 DOI: 10.1080/10408444.2018.1458818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.
Collapse
Affiliation(s)
- Hedwig M Braakhuis
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Wout Slob
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Gerrit Wolterink
- b Centre for Nutrition, Prevention and Health services , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Edwin P Zwart
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Eric R Gremmer
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Emiel Rorije
- c Centre for Safety of Substances and Products , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Jan van Benthem
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - Ruud Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , The Netherlands
| | | | - Mirjam Luijten
- a Centre for Health Protection , National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| |
Collapse
|
10
|
Stem cell proliferation patterns as an alternative for in vivo prediction and discrimination of carcinogenic compounds. Sci Rep 2017; 7:45616. [PMID: 28466856 PMCID: PMC5413882 DOI: 10.1038/srep45616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/28/2017] [Indexed: 02/08/2023] Open
Abstract
One of the major challenges in the development of alternative carcinogenicity assays is the prediction of non-genotoxic carcinogens. The variety of non-genotoxic cancer pathways complicates the search for reliable parameters expressing their carcinogenicity. As non-genotoxic and genotoxic carcinogens have different cancer risks, the objective of this study was to develop a concept for an in vivo test, based on flatworm stem cell dynamics, to detect and classify carcinogenic compounds. Our methodology entails an exposure to carcinogenic compounds during the animal's regeneration process, which revealed differences in proliferative responses between non-genotoxic and genotoxic carcinogens during the initial stages of the regeneration process. A proof of concept was obtained after an extensive study of proliferation dynamics of a genotoxic and a non-genotoxic compound. A pilot validation with a limited set of compounds showed that the proposed concept not only enabled a simple prediction of genotoxic and non-genotoxic carcinogens, but also had the power to discriminate between both. We further optimized this discrimination by combining stem cell proliferation responses with a phenotypic screening and by using specific knockdowns. In the future, more compounds will be tested to further validate and prove this concept.
Collapse
|
11
|
Changing the field of carcinogenicity testing of human pharmaceuticals by emphasizing mode of action. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Seidel SD, Stott WT, Kan HL, Sparrow BR, Gollapudi BB. Gene Expression Dose-Response of Liver with a Genotoxic and Nongenotoxic Carcinogen. Int J Toxicol 2016; 25:57-64. [PMID: 16510358 DOI: 10.1080/10915810500488429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tumorigenic mechanisms due to chemical exposure are broadly classified as either genotoxic or nongenotoxic. Genotoxic mechanisms are generally well defined; however nongenotoxic modes of tumorgenesis are less straightforward. This study was undertaken to help elucidate dose-response changes in gene expression (transcriptome) in the liver of rats in response to administration of known genotoxic or nongenotoxic liver carcinogens. Male Big Blue Fischer 344 rats were treated for 28-days with 0, 0.1, 0.3, 1.0, or 3.0 mg/kg/day of the genotoxin 2-acetylaminofluorene (AAF) or 0, 10, 30, 60, or 100 mg/kg/day of the nongenotoxin phenobarbital (PB). Transcriptome analysis was performed using the relatively focused Clontech Rat Toxicology II microarray (465 genes) and hybridized with 32P-labeled cDNA target. The analysis indicated that after 28 days of treatment, AAF altered the expression of 14 genes (9 up-and 5 down-regulated) and PB altered the expression of 18 genes (10 up- and 8 down-regulated). Of the limited genes whose expression was altered by AAF and PB, four were altered in common, two up-regulated, and two down-regulated. Several of the genes that show modulation of transcriptional activity following AAF and PB treatment display an atypical dose-response relationship such that the expression at the higher doses tended to be similar to that of control. This high-dose effect could potentially be caused by adaptation, toxicity, or tissue remodeling. These results suggest that the transcriptional response of the cells to higher doses of a toxic agent is likely to be different from that of a low-dose exposure.
Collapse
Affiliation(s)
- Shawn D Seidel
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, USA.
| | | | | | | | | |
Collapse
|
13
|
Fischer BM, Neumann D, Piberger AL, Risnes SF, Köberle B, Hartwig A. Use of high-throughput RT-qPCR to assess modulations of gene expression profiles related to genomic stability and interactions by cadmium. Arch Toxicol 2016; 90:2745-2761. [PMID: 26525392 PMCID: PMC5065590 DOI: 10.1007/s00204-015-1621-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/20/2015] [Indexed: 01/21/2023]
Abstract
Predictive test systems to assess the mode of action of chemical carcinogens are urgently required. Within the present study, we applied the Fluidigm dynamic array on the BioMark™ HD System for quantitative high-throughput RT-qPCR analysis of 95 genes and 96 samples in parallel, selecting genes crucial for maintaining genomic stability, including stress response as well as DNA repair, cell cycle control, apoptosis and mitotic signaling. The specificity of each individually designed sequence-specific primer pair and their respective target amplicons were evaluated via melting curve analysis as part of qPCR and size verification via agarose gel electrophoresis. For each gene, calibration curves displayed high efficiencies and correlation coefficients in the identified linear dynamic range as well as low intra-assay variations. Data were processed via Fluidigm real-time PCR analysis and GenEx software, and results were depicted as relative gene expression according to the ΔΔC q method. Subsequently, gene expression analyses were conducted in cadmium-treated adenocarcinoma A549 and epithelial bronchial BEAS-2B cells. They revealed distinct dose- and time-dependent and also cell-type-specific gene expression patterns, including the induction of genes coding for metallothioneins, the oxidative stress response, cell cycle control, mitotic signaling and apoptosis. Interestingly, while genes coding for the DNA damage response were induced, distinct DNA repair genes were down-regulated at the transcriptional level. Thus, this approach provided a comprehensive overview on the interaction by cadmium with distinct signaling pathways, also reflecting molecular modes of action in cadmium-induced carcinogenicity. Therefore, the test system appears to be a promising tool for toxicological risk assessment.
Collapse
Affiliation(s)
- Bettina Maria Fischer
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Daniel Neumann
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Ann Liza Piberger
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Sarah Fremgaard Risnes
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
14
|
van der Laan JW, Buitenhuis WHW, Wagenaar L, Soffers AEMF, van Someren EP, Krul CAM, Woutersen RA. Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties. Front Med (Lausanne) 2016; 3:45. [PMID: 27790617 PMCID: PMC5063850 DOI: 10.3389/fmed.2016.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023] Open
Abstract
In an exercise designed to reduce animal use, we analyzed the results of rat subchronic toxicity studies from 289 pharmaceutical compounds with the aim to predict the tumor outcome of carcinogenicity studies in this species. The results were obtained from the assessment reports available at the Medicines Evaluation Board of the Netherlands for 289 pharmaceutical compounds that had been shown to be non-genotoxic. One hundred forty-three of the 239 compounds not inducing putative preneoplastic lesions in the subchronic study did not induce tumors in the carcinogenicity study [true negatives (TNs)], whereas 96 compounds were categorized as false negatives (FNs) because tumors were observed in the carcinogenicity study. Of the remaining 50 compounds, 31 showed preneoplastic lesions in the subchronic study and tumors in the carcinogenicity study [true positives (TPs)], and 19 only showed preneoplastic lesions in subchronic studies but no tumors in the carcinogenicity study [false positives (FPs)]. In addition, we then re-assessed the prediction of the tumor outcome by integrating the pharmacological properties of these compounds. These pharmacological properties were evaluated with respect to the presence or absence of a direct or indirect proliferative action. We found support for the absence of cellular proliferation for 204 compounds (TN). For 67 compounds, the presence of cellular hyperplasia as evidence for proliferative action could be found (TP). Therefore, this approach resulted in an ability to predict non-carcinogens at a success rate of 92% and the ability to detect carcinogens at 98%. The combined evaluation of pharmacological and histopathological endpoints eventually led to only 18 unknown outcomes (17 categorized as FN and 1 as FP), thereby enhancing both the negative and positive predictivity of an evaluation based upon histopathological evaluation only. The data show the added value of a consideration of the pharmacological properties of compounds in relation to potential class effects, both in the negative and positive direction. A high negative and a high positive predictivity will both result in waiving the need for conducting 2-year rat carcinogenicity studies, if this is accepted by Regulatory Authorities, which will save large numbers of animals and reduce drug development costs and time.
Collapse
Affiliation(s)
- Jan Willem van der Laan
- Medicines Evaluation Board, Utrecht, Netherlands
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden, Netherlands
| | | | | | - Ans E. M. F. Soffers
- Division of Toxicology, Wageningen University and Research Centre, Wageningen, Netherlands
| | | | | | - Ruud A. Woutersen
- Division of Toxicology, Wageningen University and Research Centre, Wageningen, Netherlands
- TNO Innovation for Life, Zeist, Netherlands
| |
Collapse
|
15
|
Papamokos G, Silins I. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action. Front Pharmacol 2016; 7:284. [PMID: 27625608 PMCID: PMC5003827 DOI: 10.3389/fphar.2016.00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens.
Collapse
Affiliation(s)
- George Papamokos
- Department of Physics and School of Engineering and Applied Sciences, Harvard UniversityCambridge, MA, USA; Department of Physics, University of IoanninaIoannina, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology Foundation for Research and TechnologyHeraklion, Greece
| | - Ilona Silins
- Institute of Environmental Medicine, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
16
|
Petkov PI, Schultz TW, Donner EM, Honma M, Morita T, Hamada S, Wakata A, Mishima M, Maniwa J, Todorov M, Kaloyanova E, Kotov S, Mekenyan OG. Integrated approach to testing and assessment for predicting rodent genotoxic carcinogenicity. J Appl Toxicol 2016; 36:1536-1550. [DOI: 10.1002/jat.3338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Petko I. Petkov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Terry W. Schultz
- College of Veterinary Medicine; The University of Tennessee; Knoxville TN 37996-4500 USA
| | - E. Maria Donner
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark; DE USA
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis; National Institute of Health Sciences; Tokyo Japan
| | - Takeshi Morita
- Division of Risk Assessment; National Institute of Health Sciences; Tokyo Japan
| | | | | | - Masayuki Mishima
- Chugai Pharmaceutical Co., Ltd., Fuji Gotemba Research Labs; Shizuoka Japan
| | - Jiro Maniwa
- Clinical Science Division, Research & Development AstraZeneca KK; Osaka Japan
| | - Milen Todorov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Elena Kaloyanova
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Stefan Kotov
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| | - Ovanes G. Mekenyan
- Laboratory of Mathematical Chemistry (LMC); As. Zlatarov University; Bourgas Bulgaria
| |
Collapse
|
17
|
Luijten M, Olthof ED, Hakkert BC, Rorije E, van der Laan JW, Woutersen RA, van Benthem J. An integrative test strategy for cancer hazard identification. Crit Rev Toxicol 2016; 46:615-39. [PMID: 27142259 DOI: 10.3109/10408444.2016.1171294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.
Collapse
Affiliation(s)
- Mirjam Luijten
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Evelyn D Olthof
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Betty C Hakkert
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Emiel Rorije
- b Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | | | - Ruud A Woutersen
- d Netherlands Organization for Applied Scientific Research (TNO) , Zeist , the Netherlands
| | - Jan van Benthem
- a Centre for Health Protection, National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| |
Collapse
|
18
|
van der Laan JW, Kasper P, Silva Lima B, Jones DR, Pasanen M. Critical analysis of carcinogenicity study outcomes. Relationship with pharmacological properties. Crit Rev Toxicol 2016; 46:587-614. [PMID: 27116466 DOI: 10.3109/10408444.2016.1163664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Peter Kasper
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | | - David R. Jones
- Medicines and Healthcare Products Regulatory Agency, London, UK
| | - Markku Pasanen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Maternal-Fetal Cancer Risk Assessment of Ochratoxin A during Pregnancy. Toxins (Basel) 2016; 8:87. [PMID: 27023600 PMCID: PMC4848614 DOI: 10.3390/toxins8040087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has demonstrated that in utero exposure to environmental chemicals may interfere with fetal development and increase the risk of disease and cancer development later in life. Ochratoxin A (OTA) has been proven to induce diverse toxic effects including teratogenicity, carcinogenicity, immunotoxicity and potential endocrine disruption. Due to the continuous and widespread occurrence of OTA as a potential contaminant of staple foods, there is increasing concern of in utero exposure of fetus to this mycotoxin. In this study, maternal-fetal risk assessment of OTA during pregnancy was conducted using the benchmark dose approach for genotoxic carcinogens. The daily intake of OTA for Egyptian pregnant women was estimated based on their serum OTA level using the refined Klaassen equation for pregnancy. Fetal exposure level was also estimated based on the maternal data. Comparison between the estimated daily exposure and the negligible cancer risk intake (NCRI), and the calculation of margin of exposure (MOE) implicated that OTA exposure from dietary intake would be of low health concern for this general subpopulation of Egyptian women. This subpopulation of pregnant women was generally estimated not to be in high-risk for toxicity induced by OTA.
Collapse
|
20
|
Römer M, Eichner J, Dräger A, Wrzodek C, Wrzodek F, Zell A. ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis. PLoS One 2016; 11:e0149263. [PMID: 26882475 PMCID: PMC4801062 DOI: 10.1371/journal.pone.0149263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.
Collapse
Affiliation(s)
- Michael Römer
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Johannes Eichner
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Clemens Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Finja Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Nesslany F, Aurengo A, Bonnet-Belfais M, Lambrozo J. Comment on Lerchl study: "Tumor promotion in mice by exposure to radiofrequency electromagnetic fields still waiting evidence". Biochem Biophys Res Commun 2015; 467:101-2. [PMID: 26420225 DOI: 10.1016/j.bbrc.2015.09.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Fabrice Nesslany
- Genetic Toxicology Department, Institut Pasteur de Lille, France.
| | - André Aurengo
- Nuclear Medicine Department, Hôpital SALPETRIERE, Paris, France
| | | | | |
Collapse
|
22
|
Herwig R, Gmuender H, Corvi R, Bloch KM, Brandenburg A, Castell J, Ceelen L, Chesne C, Doktorova TY, Jennen D, Jennings P, Limonciel A, Lock EA, McMorrow T, Phrakonkham P, Radford R, Slattery C, Stierum R, Vilardell M, Wittenberger T, Yildirimman R, Ryan M, Rogiers V, Kleinjans J. Inter-laboratory study of human in vitro toxicogenomics-based tests as alternative methods for evaluating chemical carcinogenicity: a bioinformatics perspective. Arch Toxicol 2015; 90:2215-2229. [PMID: 26525393 DOI: 10.1007/s00204-015-1617-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 01/29/2023]
Abstract
The assessment of the carcinogenic potential of chemicals with alternative, human-based in vitro systems has become a major goal of toxicogenomics. The central read-out of these assays is the transcriptome, and while many studies exist that explored the gene expression responses of such systems, reports on robustness and reproducibility, when testing them independently in different laboratories, are still uncommon. Furthermore, there is limited knowledge about variability induced by the data analysis protocols. We have conducted an inter-laboratory study for testing chemical carcinogenicity evaluating two human in vitro assays: hepatoma-derived cells and hTERT-immortalized renal proximal tubule epithelial cells, representing liver and kidney as major target organs. Cellular systems were initially challenged with thirty compounds, genome-wide gene expression was measured with microarrays, and hazard classifiers were built from this training set. Subsequently, each system was independently established in three different laboratories, and gene expression measurements were conducted using anonymized compounds. Data analysis was performed independently by two separate groups applying different protocols for the assessment of inter-laboratory reproducibility and for the prediction of carcinogenic hazard. As a result, both workflows came to very similar conclusions with respect to (1) identification of experimental outliers, (2) overall assessment of robustness and inter-laboratory reproducibility and (3) re-classification of the unknown compounds to the respective toxicity classes. In summary, the developed bioinformatics workflows deliver accurate measures for inter-laboratory comparison studies, and the study can be used as guidance for validation of future carcinogenicity assays in order to implement testing of human in vitro alternatives to animal testing.
Collapse
Affiliation(s)
- R Herwig
- Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, 14195, Berlin, Germany.
| | - H Gmuender
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - R Corvi
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection (IHCP), European Commission Joint Research Centre, TP 126, Via E. Fermi 2749, 21027, Ispra, Italy
| | - K M Bloch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - A Brandenburg
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - J Castell
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Valencia, Av. Blasco Ibanez 15, 46010, Valencia, Spain
| | - L Ceelen
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - C Chesne
- Biopredic International, Parc d'affaires de la Bretèche, Bldg. A4, 35760, St Gregoire, France
| | - T Y Doktorova
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - D Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - P Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - A Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - E A Lock
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - T McMorrow
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - P Phrakonkham
- European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection (IHCP), European Commission Joint Research Centre, TP 126, Via E. Fermi 2749, 21027, Ispra, Italy
| | - R Radford
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - C Slattery
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Stierum
- Department of Risk Analysis for Products in Development, Netherlands Organisation for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | - M Vilardell
- Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, 14195, Berlin, Germany
| | - T Wittenberger
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - R Yildirimman
- Department Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, 14195, Berlin, Germany
| | - M Ryan
- Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - V Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - J Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
23
|
Pradeep P, Povinelli RJ, Merrill SJ, Bozdag S, Sem DS. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction. Mol Inform 2015; 34:236-45. [PMID: 27490169 DOI: 10.1002/minf.201400168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
The availability of large in vitro datasets enables better insight into the mode of action of chemicals and better identification of potential mechanism(s) of toxicity. Several studies have shown that not all in vitro assays can contribute as equal predictors of in vivo carcinogenicity for development of hybrid Quantitative Structure Activity Relationship (QSAR) models. We propose two novel approaches for the use of mechanistically relevant in vitro assay data in the identification of relevant biological descriptors and development of Quantitative Biological Activity Relationship (QBAR) models for carcinogenicity prediction. We demonstrate that in vitro assay data can be used to develop QBAR models for in vivo carcinogenicity prediction via two case studies corroborated with firm scientific rationale. The case studies demonstrate the similarities between QBAR and QSAR modeling in: (i) the selection of relevant descriptors to be used in the machine learning algorithm, and (ii) the development of a computational model that maps chemical or biological descriptors to a toxic endpoint. The results of both the case studies show: (i) improved accuracy and sensitivity which is especially desirable under regulatory requirements, and (ii) overall adherence with the OECD/REACH guidelines. Such mechanism based models can be used along with QSAR models for prediction of mechanistically complex toxic endpoints.
Collapse
Affiliation(s)
- Prachi Pradeep
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472.
| | - Richard J Povinelli
- Department of Electrical and Computer Engineering, Marquette University, 1515 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Stephen J Merrill
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Serdar Bozdag
- Department of Mathematics, Computer Science and Statistics, Marquette University, 1313 W. Wisconsin Avenue, Milwaukee, WI 53233, USA fax: (414) 288-5472
| | - Daniel S Sem
- School of Pharmacy, Concordia University Wisconsin, 12800 N. Lake Shore Drive, Mequon, WI 53097, USA
| |
Collapse
|
24
|
Sura R, Settivari RS, LeBaron MJ, Craig Rowlands J, Carney EW, Bhaskar Gollapudi B. A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicol Mech Methods 2015; 25:192-200. [DOI: 10.3109/15376516.2015.1007541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Kossler N, Matheis KA, Ostenfeldt N, Bach Toft D, Dhalluin S, Deschl U, Kalkuhl A. Identification of specific mRNA signatures as fingerprints for carcinogenesis in mice induced by genotoxic and nongenotoxic hepatocarcinogens. Toxicol Sci 2014; 143:277-95. [PMID: 25410580 DOI: 10.1093/toxsci/kfu248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long-term rodent carcinogenicity studies for evaluation of chemicals and pharmaceuticals concerning their carcinogenic potential to humans are currently receiving critical revision. Additional data from mechanistic studies can support cancer risk assessment by clarifying the underlying mode of action. In the course of the IMI MARCAR project, a European consortium of EFPIA partners and academics, which aims to identify biomarkers for nongenotoxic carcinogenesis, a toxicogenomic mouse liver database was generated. CD-1 mice were orally treated for 3 and 14 days with 3 known genotoxic hepatocarcinogens: C.I. Direct Black 38, Dimethylnitrosamine and 4,4'-Methylenedianiline; 3 nongenotoxic hepatocarcinogens: 1,4-Dichlorobenzene, Phenobarbital sodium and Piperonyl butoxide; 4 nonhepatocarcinogens: Cefuroxime sodium, Nifedipine, Prazosin hydrochloride and Propranolol hydrochloride; and 3 compounds that show ambiguous results in genotoxicity testing: Cyproterone acetate, Thioacetamide and Wy-14643. By liver mRNA expression analysis using individual animal data, we identified 64 specific biomarker candidates for genotoxic carcinogens and 69 for nongenotoxic carcinogens for male mice at day 15. The majority of genotoxic carcinogen biomarker candidates possess functions in DNA damage response (eg, apoptosis, cell cycle progression, DNA repair). Most of the identified nongenotoxic carcinogen biomarker candidates are involved in regulation of cell cycle progression and apoptosis. The derived biomarker lists were characterized with respect to their dependency on study duration and gender and were successfully used to characterize carcinogens with ambiguous genotoxicity test results, such as Wy-14643. The identified biomarker candidates improve the mechanistic understanding of drug-induced effects on the mouse liver that result in hepatocellular adenomas and/or carcinomas in 2-year mouse carcinogenicity studies.
Collapse
Affiliation(s)
- Nadine Kossler
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Katja A Matheis
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Nina Ostenfeldt
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Dorthe Bach Toft
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Stéphane Dhalluin
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Ulrich Deschl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| | - Arno Kalkuhl
- *Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany, H. Lundbeck A/S, 2500 Valby, Denmark and UCB Pharma S.A., 1070 Brussels, Belgium
| |
Collapse
|
26
|
ToxDBScan: Large-scale similarity screening of toxicological databases for drug candidates. Int J Mol Sci 2014; 15:19037-55. [PMID: 25338045 PMCID: PMC4227259 DOI: 10.3390/ijms151019037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022] Open
Abstract
We present a new tool for hepatocarcinogenicity evaluation of drug candidates in rodents. ToxDBScan is a web tool offering quick and easy similarity screening of new drug candidates against two large-scale public databases, which contain expression profiles for substances with known carcinogenic profiles: TG-GATEs and DrugMatrix. ToxDBScan uses a set similarity score that computes the putative similarity based on similar expression of genes to identify chemicals with similar genotoxic and hepatocarcinogenic potential. We propose using a discretized representation of expression profiles, which use only information on up- or down-regulation of genes as relevant features. Therefore, only the deregulated genes are required as input. ToxDBScan provides an extensive report on similar compounds, which includes additional information on compounds, differential genes and pathway enrichments. We evaluated ToxDBScan with expression data from 15 chemicals with known hepatocarcinogenic potential and observed a sensitivity of 88 Based on the identified chemicals, we achieved perfect classification of the independent test set. ToxDBScan is publicly available from the ZBIT Bioinformatics Toolbox.
Collapse
|
27
|
Römer M, Eichner J, Metzger U, Templin MF, Plummer S, Ellinger-Ziegelbauer H, Zell A. Cross-platform toxicogenomics for the prediction of non-genotoxic hepatocarcinogenesis in rat. PLoS One 2014; 9:e97640. [PMID: 24830643 PMCID: PMC4022579 DOI: 10.1371/journal.pone.0097640] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/10/2014] [Indexed: 02/07/2023] Open
Abstract
In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual high-throughput techniques, such as microarrays designed for monitoring global mRNA expression. In this study, we built predictive models by integrating omics data across complementary microarray platforms and introduced new concepts for modeling of pathway alterations and molecular interactions between multiple biological layers. We trained and evaluated diverse machine learning-based models, differing in the incorporated features and learning algorithms on a cross-omics dataset encompassing mRNA, miRNA, and protein expression profiles obtained from rat liver samples treated with a heterogeneous set of substances. Most of these compounds could be unambiguously classified as genotoxic carcinogens, non-genotoxic carcinogens, or non-hepatocarcinogens based on evidence from published studies. Since mixed characteristics were reported for the compounds Cyproterone acetate, Thioacetamide, and Wy-14643, we reclassified these compounds as either genotoxic or non-genotoxic carcinogens based on their molecular profiles. Evaluating our toxicogenomics models in a repeated external cross-validation procedure, we demonstrated that the prediction accuracy of our models could be increased by joining the biomarker signatures across multiple biological layers and by adding complex features derived from cross-platform integration of the omics data. Furthermore, we found that adding these features resulted in a better separation of the compound classes and a more confident reclassification of the three undefined compounds as non-genotoxic carcinogens.
Collapse
Affiliation(s)
- Michael Römer
- Center of Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tübingen, Germany
| | - Johannes Eichner
- Center of Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tübingen, Germany
| | - Ute Metzger
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Markus F. Templin
- Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Simon Plummer
- CXR Biosciences, James Lindsay Place, Dundee Technopole, Dundee, Scotland, United Kingdom
| | | | - Andreas Zell
- Center of Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Tübingen, Germany
| |
Collapse
|
28
|
Jones HB, Reens J, Brocklehurst SR, Betts CJ, Bickerton S, Bigley AL, Jenkins RP, Whalley NM, Morgan D, Smith DM. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Int J Exp Pathol 2014; 95:29-48. [PMID: 24456331 DOI: 10.1111/iep.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 01/24/2023] Open
Abstract
Antagonism of the effects of glucagon as an adjunct therapy with other glucose-lowering drugs in the chronic treatment of diabetes has been suggested to aggressively control blood glucose levels. Antagonism of glucagon effects, by targeting glucagon secretion or disabling the glucagon receptor, is associated with α-cell hyperplasia. We evaluated the influence of total glucagon withdrawal on islets of Langerhans using prohormone convertase-2 knockout mice (PC2-ko), in which α-cell hyperplasia is present from a young age and persists throughout life, in order to understand whether or not sustained glucagon deficit would lead to islet tumorigenesis. PC2-ko and wild-type (WT) mice were maintained drug-free, and cohorts of these groups sampled at 3, 12 and 18 months for plasma biochemical and morphological (histological, immunohistochemical, electron microscopical and image analytical) assessments. WT mice showed no islet tumours up to termination of the study, but PC2-ko animals displayed marked changes in islet morphology from α-cell hypertrophy/hyperplasia/atypical hyperplasia, to adenomas and carcinomas, these latter being first encountered at 6-8 months. Islet hyperplasias and tumours primarily consisted of α-cells associated to varying degrees with other islet endocrine cell types. In addition to substantial increases in islet neoplasia, increased α-cell neogenesis associated primarily with pancreatic duct(ule)s was present. We conclude that absolute blockade of the glucagon signal results in tumorigenesis and that the PC2-ko mouse represents a valuable model for investigation of islet tumours and pancreatic ductal neogenesis.
Collapse
Affiliation(s)
- Huw B Jones
- Department of Pathological Sciences, AstraZeneca Pharmaceuticals, Macclesfield, Cheshire, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Melis JPM, Derks KWJ, Pronk TE, Wackers P, Schaap MM, Zwart E, van Ijcken WFJ, Jonker MJ, Breit TM, Pothof J, van Steeg H, Luijten M. In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Arch Toxicol 2014; 88:1023-34. [PMID: 24390151 DOI: 10.1007/s00204-013-1189-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/06/2023]
Abstract
There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.
Collapse
Affiliation(s)
- Joost P M Melis
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Distinguishing between genotoxic and non-genotoxic hepatocarcinogens by gene expression profiling and bioinformatic pathway analysis. Sci Rep 2013; 3:2783. [PMID: 24089152 PMCID: PMC6505678 DOI: 10.1038/srep02783] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/06/2013] [Indexed: 01/09/2023] Open
Abstract
A rapid and sensitive method to determine the characteristics of carcinogens is needed. In this study, we used a microarray-based genomics approach, with a short-term in vivo model, in combination with insights from statistical and mechanistic analyses to determine the characteristics of carcinogens. Carcinogens were evaluated based on the different mechanisms involved in the responses to genotoxic carcinogens and non-genotoxic carcinogens. Gene profiling was performed at two time points after treatment with six training and four test carcinogens. We mapped the DEG (differentially expressed gene)-related pathways to analyze cellular processes, and we discovered significant mechanisms that involve critical cellular components. Classification results were further supported by Comet and Micronucleus assays. Mechanistic studies based on gene expression profiling enhanced our understanding of the characteristics of different carcinogens. Moreover, the efficiency of this study was demonstrated by the short-term nature of the animal experiments that were conducted.
Collapse
|
32
|
Perry R, Thompson CA, Earnhardt JN, Wright DJ, Bailey S, Komm B, Cukierski MA. Renal Tumors in Male Rats Following Long-term Administration of Bazedoxifene, a Tissue-selective Estrogen Receptor Modulator. Toxicol Pathol 2013; 41:1001-10. [DOI: 10.1177/0192623313477255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bazedoxifene acetate (BZA) is a selective estrogen receptor modulator that is approved in a number of countries for the prevention and/or treatment of osteoporosis in postmenopausal women. To assess carcinogenic potential, BZA was administered ad libitum in the diet to male and female rats for 2 years. The achieved mean dosages of BZA were approximately 1.31 to 56.9 mg/kg/day at dietary concentrations of 0.003% to 0.1%. BZA treatment resulted in a reduction and a delayed onset in total tumor burden in both male and female rats. Survival rates were enhanced due to decreased pituitary and mammary tumors and decreased body weight gain in BZA-treated animals compared with controls. In male rats only, an increase in renal tubular tumors was observed. The greater increase in tumor incidence in male rats given BZA was associated with the increased survival and increased time for development of late onset tumors. These findings are consistent with a non-genotoxic mechanism, unique to male rats, that involves test article–induced corticomedullary mineralization, renal tubular injury, and exacerbation of naturally occurring chronic progressive nephropathy in aged male rats that led to a sequela of proliferative changes and tumor formation.
Collapse
Affiliation(s)
- Rick Perry
- Drug Safety Research & Development, Pfizer, Groton, Connecticut, USA
| | | | - J. Nicole Earnhardt
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California, USA
| | - David J. Wright
- Drug Safety Research & Development, Pfizer, Groton, Connecticut, USA
| | - Steven Bailey
- Drug Safety Research & Development, Pfizer, Groton, Connecticut, USA
| | - Barry Komm
- Medical Affairs, Pfizer, Collegeville, Pennsylvania, USA
| | - Mark A. Cukierski
- Drug Safety Research & Development, Pfizer, Groton, Connecticut, USA
| |
Collapse
|
33
|
van der Laan JW, DeGeorge JJ, Sistare F, Moggs J. Toward More Scientific Relevance in Carcinogenicity Testing. GLOBAL APPROACH IN SAFETY TESTING 2013. [DOI: 10.1007/978-1-4614-5950-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Hochstenbach K, van Leeuwen D, Gottschalk R, Gmuender H, Stølevik S, Nygaard U, Løvik M, Granum B, Namork E, van Loveren H, van Delft J. Transcriptomic fingerprints in human peripheral blood mononuclear cells indicative of genotoxic and non-genotoxic carcinogenic exposure. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 746:124-34. [DOI: 10.1016/j.mrgentox.2012.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 04/11/2023]
|
35
|
Hargreaves A, Harleman J. Preclinical risk assessment of drug-induced hypo- and hyperprolactinemia. J Appl Toxicol 2011; 31:599-607. [DOI: 10.1002/jat.1723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Hargreaves
- Pathology Department; Safety Assessment, Astrazeneca Pharmaceuticals; Alderley Park; Cheshire; SK10 4TG; UK
| | - Johannes Harleman
- Pathology Department; Safety Assessment, Astrazeneca Pharmaceuticals; Alderley Park; Cheshire; SK10 4TG; UK
| |
Collapse
|
36
|
Jennen D, Ruiz-Aracama A, Magkoufopoulou C, Peijnenburg A, Lommen A, van Delft J, Kleinjans J. Integrating transcriptomics and metabonomics to unravel modes-of-action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells. BMC SYSTEMS BIOLOGY 2011; 5:139. [PMID: 21880148 PMCID: PMC3231768 DOI: 10.1186/1752-0509-5-139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND The integration of different 'omics' technologies has already been shown in several in vivo studies to offer a complementary insight into cellular responses to toxic challenges. Being interested in developing in vitro cellular models as alternative to animal-based toxicity assays, we hypothesize that combining transcriptomics and metabonomics data improves the understanding of molecular mechanisms underlying the effects caused by a toxic compound also in vitro in human cells. To test this hypothesis, and with the focus on non-genotoxic carcinogenesis as an endpoint of toxicity, in the present study, the human hepatocarcinoma cell line HepG2 was exposed to the well-known environmental carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). RESULTS Transcriptomics as well as metabonomics analyses demonstrated changes in TCDD-exposed HepG2 in common metabolic processes, e.g. amino acid metabolism, of which some of the changes only being confirmed if both 'omics' were integrated. In particular, this integrated analysis identified unique pathway maps involved in receptor-mediated mechanisms, such as the G-protein coupled receptor protein (GPCR) signaling pathway maps, in which the significantly up-regulated gene son of sevenless 1 (SOS1) seems to play an important role. SOS1 is an activator of several members of the RAS superfamily, a group of small GTPases known for their role in carcinogenesis. CONCLUSIONS The results presented here were not only comparable with other in vitro studies but also with in vivo studies. Moreover, new insights on the molecular responses caused by TCDD exposure were gained by the cross-omics analysis.
Collapse
Affiliation(s)
- Danyel Jennen
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Ainhoa Ruiz-Aracama
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Christina Magkoufopoulou
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Ad Peijnenburg
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Arjen Lommen
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Joost van Delft
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
37
|
Wisler JA, Afshari C, Fielden M, Zimmermann C, Taylor S, Carnahan J, Vonderfecht S. Raf Inhibition Causes Extensive Multiple Tissue Hyperplasia and Urinary Bladder Neoplasia in the Rat. Toxicol Pathol 2011; 39:809-22. [DOI: 10.1177/0192623311410442] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Seven novel and potent Raf small molecule kinase inhibitors (C1–7) were evaluated in seven-day oral repeat dose rat toxicity studies. All compounds tested induced hyperplasia in multiple tissues. Consistently affected was stratified squamous epithelium at a number of sites and transitional epithelium of urinary bladder and kidney. A seven-day time course study in rats showed morphologic evidence of epithelial proliferation in the nonglandular stomach within four to five hours after a single dose of C-1. Similar indications of cellular proliferation were observed in the urinary bladder by day 2 and in the heart, kidney, and liver by day 3. Transcriptional evidence of proliferation in the urinary bladder was detected within four to five hours after a single dose consistent with activation of the PI3K/AKT and ERK/MAPK pathways. In a twenty-eight-day rat toxicity study of C-1, hyperplasia was observed in the esophagus, nonglandular stomach, skin, urinary bladder, kidney, and heart. Hyperplasia of transitional epithelium of the urinary bladder was particularly severe and in one female rat was accompanied by the presence of a transitional cell carcinoma. These results suggest that these Raf inhibitors induce early transcriptional changes driving unchecked cell proliferation, resulting in marked tissue hyperplasia that can progress to carcinoma within a short time frame.
Collapse
Affiliation(s)
- John A. Wisler
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Cynthia Afshari
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Mark Fielden
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Cameron Zimmermann
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Scott Taylor
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Josette Carnahan
- Departments of Hematology & Oncology Research, Amgen Inc., Thousand Oaks, California, USA
| | - Steven Vonderfecht
- Comparative Biology Safety Sciences, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
38
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Koturbash I, Beland FA, Pogribny IP. Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 2011; 21:289-97. [DOI: 10.3109/15376516.2011.557881] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
41
|
Hogervorst JGF, Baars BJ, Schouten LJ, Konings EJM, Goldbohm RA, van den Brandt PA. The carcinogenicity of dietary acrylamide intake: a comparative discussion of epidemiological and experimental animal research. Crit Rev Toxicol 2010; 40:485-512. [PMID: 20170357 DOI: 10.3109/10408440903524254] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since 2002, it is known that the probable human carcinogen acrylamide is present in commonly consumed carbohydrate-rich foods, such as French fries and potato chips. In this review, the authors discuss the body of evidence on acrylamide carcinogenicity from both epidemiological and rodent studies, including variability, strengths and weaknesses, how both types of evidence relate, and possible reasons for discrepancies. In both rats and humans, increased incidences of various cancer types were observed. In rats, increased incidences of mammary gland, thyroid tumors and scrotal mesothelioma were observed in both studies that were performed. In humans, increased risks of ovarian and endometrial cancers, renal cell cancer, estrogen (and progesterone) receptor-positive breast cancer, and oral cavity cancer (the latter in non-smoking women) were observed. Some cancer types were found in both rats and humans, e.g., endometrial cancer (observed in one of the two rat studies), but there are also some inconsistencies. Interestingly, in humans, some indications for inverse associations were observed for lung and bladder cancers in women, and prostate and oro- and hypopharynx cancers in men. These latter observations indicate that genotoxicity may not be the only mechanism by which acrylamide causes cancer. The estimated risks based on the epidemiological studies for the sites for which a positive association was observed were considerably higher than those based on extrapolations from the rat studies. The observed pattern of increased risks in the rat and epidemiological studies and the decreased risks in the epidemiological studies suggests that acrylamide might influence hormonal systems, for which rodents may not be good models.
Collapse
Affiliation(s)
- Janneke G F Hogervorst
- Department of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Risk assessment of carcinogens in food. Toxicol Appl Pharmacol 2010; 243:180-90. [DOI: 10.1016/j.taap.2009.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/31/2009] [Accepted: 11/04/2009] [Indexed: 11/18/2022]
|
43
|
Matsumoto H, Yakabe Y, Saito K, Sumida K, Sekijima M, Nakayama K, Miyaura H, Saito F, Otsuka M, Shirai T. Discrimination of carcinogens by hepatic transcript profiling in rats following 28-day administration. Cancer Inform 2009; 7:253-69. [PMID: 20011461 PMCID: PMC2791490 DOI: 10.4137/cin.s3229] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study aimed at discriminating carcinogens on the basis of hepatic transcript profiling in the rats administrated with a variety of carcinogens and non-carcinogens. We conducted 28-day toxicity tests in male F344 rats with 47 carcinogens and 26 non-carcinogens, and then investigated periodically the hepatic gene expression profiles using custom microarrays. By hierarchical cluster analysis based on significantly altered genes, carcinogens were clustered into three major groups (Group 1 to 3). The formation of these groups was not affected by the gene sets used as well as the administration period, indicating that the grouping of carcinogens was universal independent of the conditions of both statistical analysis and toxicity testing. Seventeen carcinogens belonging to Group 1 were composed of mainly rat hepatocarcinogens, most of them being mutagenic ones. Group 2 was formed by three subgroups, which were composed of 23 carcinogens exhibiting distinct properties in terms of genotoxicity and target tissues, namely nonmutagenic hepatocarcinogens, and mutagenic and nonmutagenic carcinogens both of which are targeted to other tissues. Group 3 contained 6 carcinogens including 4 estrogenic substances, implying the group of estrogenic carcinogens. Gene network analyses revealed that the significantly altered genes in Group 1 included Bax, Tnfrsf6, Btg2, Mgmt and Abcb1b, suggesting that p53-mediated signaling pathway involved in early pathologic alterations associated with preceding mutagenic carcinogenesis. Thus, the common transcriptional signatures for each group might reflect the early molecular events of carcinogenesis and hence would enable us to identify the biomarker genes, and then to develop a new assay for carcinogenesis prediction.
Collapse
Affiliation(s)
- Hiroshi Matsumoto
- Chemical Assessment Center, Chemicals Evaluation and Research Institute, Japan (CERI), 1600, Shimo-Takano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mathijs K, Brauers KJJ, Jennen DGJ, Boorsma A, van Herwijnen MHM, Gottschalk RWH, Kleinjans JCS, van Delft JHM. Discrimination for Genotoxic and Nongenotoxic Carcinogens by Gene Expression Profiling in Primary Mouse Hepatocytes Improves with Exposure Time. Toxicol Sci 2009; 112:374-84. [DOI: 10.1093/toxsci/kfp229] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
45
|
Pratt I, Barlow S, Kleiner J, Larsen JC. The influence of thresholds on the risk assessment of carcinogens in food. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 678:113-7. [DOI: 10.1016/j.mrgentox.2009.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
|
46
|
Uehara T, Hirode M, Ono A, Kiyosawa N, Omura K, Shimizu T, Mizukawa Y, Miyagishima T, Nagao T, Urushidani T. A toxicogenomics approach for early assessment of potential non-genotoxic hepatocarcinogenicity of chemicals in rats. Toxicology 2008; 250:15-26. [PMID: 18619722 DOI: 10.1016/j.tox.2008.05.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 11/16/2022]
Abstract
For assessing carcinogenicity in animals, it is difficult and costly, an alternative strategy has been desired. We explored the possibility of applying a toxicogenomics approach by using comprehensive gene expression data in rat liver treated with various compounds. As prototypic non-genotoxic hepatocarcinogens, thioacetamide (TAA) and methapyrilene (MP) were selected and 349 commonly changed genes were extracted by statistical analysis. Taking both compounds as positive with six compounds, acetaminophen, aspirin, phenylbutazone, rifampicin, alpha-naphthylisothiocyanate, and amiodarone as negative, prediction analysis of microarray (PAM) was performed. By training and 10-fold cross validation, a classifier containing 112 probe sets that gave an overall success rate of 95% was obtained. The validity of the present discriminator was checked for 30 chemicals. The PAM score showed characteristic time-dependent increases by treatment with several non-genotoxic hepatocarcinogens, including TAA, MP, coumarin, ethionine and WY-14643, while almost all of the non-carcinogenic samples were correctly predicted. Measurement of hepatic glutathione content suggested that MP and TAA cause glutathione depletion followed by a protective increase, but the protective response is exhausted during repeated administration. Therefore, the presently obtained PAM classifier could predict potential non-genotoxic hepatocarcinogenesis within 24 h after single dose and the inevitable pseudo-positives could be eliminated by checking data of repeated administrations up to 28 days. Tests for carcinogenicity using rats takes at least 2 years, while the present work suggests the possibility of lowering the time to 28 days with high precision, at least for a category of non-genotoxic hepatocarcinogens causing oxidative stress.
Collapse
Affiliation(s)
- Takeki Uehara
- Toxicogenomics Project, National Institute of Biomedical Innovation, 7-6-8 Asagi, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pogribny IP, Rusyn I, Beland FA. Epigenetic aspects of genotoxic and non-genotoxic hepatocarcinogenesis: studies in rodents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:9-15. [PMID: 17879298 PMCID: PMC2705440 DOI: 10.1002/em.20342] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hepatocellular carcinoma, which is one of the most prevalent life-threatening human cancers, is showing an increased incidence worldwide. Recent evidence indicates that the development of hepatocellular carcinoma is associated with not only genetic alterations, but also with profound epigenetic changes. This review summarizes the current knowledge about epigenetic alterations during rodent hepatocarcinogenesis, considers the similarities and differences in epigenetic effects of genotoxic and non-genotoxic rodent liver carcinogens, and discusses the possible role of these effects in the causality of liver tumor development.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
48
|
|
49
|
Pogribny IP, Tryndyak VP, Woods CG, Witt SE, Rusyn I. Epigenetic effects of the continuous exposure to peroxisome proliferator WY-14,643 in mouse liver are dependent upon peroxisome proliferator activated receptor alpha. Mutat Res 2007; 625:62-71. [PMID: 17586532 PMCID: PMC2111058 DOI: 10.1016/j.mrfmmm.2007.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 01/17/2023]
Abstract
Peroxisome proliferators are potent rodent liver carcinogens that act via a non-genotoxic mechanism. The mode of action of these agents in rodent liver includes increased cell proliferation, decreased apoptosis, secondary oxidative stress and other events; however, it is not well understood how peroxisome proliferators are triggering the plethora of the molecular signals leading to cancer. Epigenetic changes have been implicated in the mechanism of liver carcinogenesis by a number of environmental agents. Short-term treatment with peroxisome proliferators and other non-genotoxic carcinogens leads to global and locus-specific DNA hypomethylation in mouse liver, events that were suggested to correlate with a burst of cell proliferation. In the current study, we investigated the effects of long-term exposure to a model peroxisome proliferator WY-14,643 on DNA and histone methylation. Male SV129mice were fed a control or WY-14,643-containing (1000ppm) diet for one week, five weeks or five months. Treatment with WY-14,643 led to progressive global hypomethylation of liver DNA as determined by an HpaII-based cytosine extension assay with the maximum effect reaching over 200% at five months. Likewise, trimethylation of histone H4 lysine 20 and H3 lysine 9 was significantly decreased at all time points. The majority of cytosine methylation in mammals resides in repetitive DNA sequences. In view of this, we measured the effect of WY-14,643 on the methylation status of major and minor satellites, as well as in IAP, LINE1 and LINE2 elements in liver DNA. Exposure to WY-14,643 resulted in a gradual loss of cytosine methylation in major and minor satellites, IAP, LINE1 and LINE2 elements. The epigenetic changes correlated with the temporal effects of WY-14,643 on cell proliferation rates in liver, but no sustained effect on c-Myc promoter methylation was observed. Finally, WY-14,643 had no effect on DNA and histone methylation status in Pparalpha-null mice at any of the time points considered in this study. These data indicate the importance of epigenetic alterations in the mechanism of action of peroxisome proliferators and the key role of Pparalpha.
Collapse
Affiliation(s)
- Igor P. Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Volodymyr P. Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Courtney G. Woods
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah E. Witt
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Nesslany F, Zennouche N, Simar-Meintières S, Talahari I, Nkili-Mboui EN, Marzin D. In vivo Comet assay on isolated kidney cells to distinguish genotoxic carcinogens from epigenetic carcinogens or cytotoxic compounds. Mutat Res 2007; 630:28-41. [PMID: 17507283 DOI: 10.1016/j.mrgentox.2007.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/18/2006] [Accepted: 02/25/2007] [Indexed: 02/02/2023]
Abstract
The objective of this study was to determine the ability of the alkaline in vivo Comet assay (pH>13) to distinguish genotoxic carcinogens from epigenetic carcinogens when performed on freshly isolated kidney cells and to determine the possible interference of cytotoxicity by assessing DNA damage induced by renal genotoxic, epigenetic or toxic compounds after enzymatic isolation of kidney cells from OFA Sprague-Dawley male rats. The ability of the Comet assay to distinguish (1) genotoxicity versus cytotoxicity and (2) genotoxic versus non-genotoxic (epigenetic) carcinogens, was thus investigated by studying five known genotoxic renal carcinogens acting through diverse mechanisms of action, i.e. streptozotocin, aristolochic acids, 2-nitroanisole, potassium bromate and cisplatin, two rodent renal epigenetic carcinogens: d-limonene and ciclosporine and two nephrotoxic compounds: streptomycin and indomethacin. Animals were treated once with the test compound by the appropriate route of administration and genotoxic effects were measured at the two sampling times of 3-6 and 22-26h after treatment. Regarding the tissue processing, the limited background level of DNA migration observed in the negative control groups throughout all experiments demonstrated that the enzymatic isolation method implemented in the current study is appropriate. On the other hand, streptozotocin, 20mg/kg, used as positive reference control concurrently to each assay, caused a clear increase in the mean Olive Tail Moment median value, which allows validating the current methodology. Under these experimental conditions, the in vivo rodent Comet assay demonstrated good sensitivity and good specificity: all the five renal genotoxic carcinogens were clearly detected in at least one expression period either directly or indirectly, as in the case of cisplatin: for this cross-linking agent, the significant decrease in DNA migration observed under standard electrophoresis conditions was clearly amplified when the duration of electrophoresis was increased up to 40min. In contrast, epigenetic and nephrotoxic compounds failed to induce any signifcant increase in DNA migration. In conclusion, the in vivo rodent Comet assay performed on isolated kidney cells could be used as a tool to investigate the genotoxic potential of a test compound if neoplasic/preneoplasic changes occur after subchronic or chronic treatments, in order to determine the role of genotoxicity in tumor induction. Moreover, the epigenetic carcinogens and cytotoxic compounds displayed clearly negative responses in this study. These results allow excluding a DNA direct-acting mechanism of action and can thus suggest that a threshold exists. Therefore, the current in vivo rodent Comet assay could contribute to elucidate an epigenetic mechanism and thus, to undertake a risk assessment associated with human use, depending on the exposure level.
Collapse
Affiliation(s)
- Fabrice Nesslany
- Laboratoire de Toxicologie Génétique - Institut Pasteur de Lille, 1, rue du Professeur Calmette, 59019 Lille, Cedex, France
| | | | | | | | | | | |
Collapse
|