1
|
Neuroprotective Effects of Polydeoxyribonucleotide in a Murine Model of Cadmium Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4285694. [PMID: 30228855 PMCID: PMC6136506 DOI: 10.1155/2018/4285694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal, which causes severe brain damage and neurotoxic effects. Polydeoxyribonucleotide (PDRN) stimulates adenosine A2A receptor, thus contrasting several deleterious mechanisms in course of tissue damages. We aimed to investigate the possible neuroprotective effect of PDRN in a murine model of Cd-induced brain toxicity. Male C57 BL/6J mice were treated as follows: vehicle (0.9% NaCl, 1 ml/kg/day), PDRN (8 mg/kg/day), CdCl2 (2 mg/kg/day), and CdCl2 + PDRN. Animals were tested with the Morris water maze test to assess spatial memory and learning. After 14 days of treatment, brains were processed to evaluate the presence of edema in the cerebral tissue, the expression of mammalian target of rapamycin kinase (mTOR) and brain-derived neurotrophic factor (BDNF), and the morphological behavior of the hippocampal structures. After CdCl2 administration, the escape latency was high, protein expression of BDNF was significantly decreased if compared to controls, mTOR levels were higher than normal controls, and brain edema and neuronal damages were evident. The coadministration of CdCl2 and PDRN significantly diminished the escape latency, increased BDNF levels, and decreased protein expression of mTOR. Furthermore, brain edema was reduced and the structural organization and the number of neurons, particularly in the CA1 and CA3 hippocampal areas, were improved. In conclusion, a functional, biochemical, and morphological protective effect of PDRN against Cd induced toxicity was demonstrated in mouse brain.
Collapse
|
2
|
Yang H, Peng Y, Shi Y, Tian J, Wang J, Peng X, Xie C, Xu X, Song Q, Wang Z, Lv Z. Transcriptome assembly and expression profiling of the molecular responses to cadmium toxicity in cerebral ganglia of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:198-208. [PMID: 29299797 PMCID: PMC5847060 DOI: 10.1007/s10646-017-1885-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a heavy metal that can cause irreversible toxicity to animals, and is an environmental pollutant in farmlands. Spiders are considered to be an excellent model for investigating the impacts of heavy metals on the environment. To date, the changes at the molecular level in the cerebral ganglia of spiders are poorly understood. Cd exposure leads to strong damage in the nervous system, such as apoptosis and necrosis of nerve cells, therefore we conducted a transcriptomic analysis of Pardosa pseudoannulata cerebral ganglia under Cd stress to profile differential gene expression (DGE). We obtained a total of 123,328 assembled unigenes, and 1441 Cd stress-associated DEGs between the Cd-treated and control groups. Expression profile analysis demonstrated that many genes involved in calcium signaling, cGMP-PKG signaling, tyrosine metabolism, phototransduction-fly, melanogenesis and isoquinoline alkaloid biosynthesis were up-regulated under Cd stress, whereas oxidative phosphorylation-related, nervous disease-associated, non-alcoholic fatty liver disease-associated, and ribosomal-associated genes were down-regulated. Here, we provide a comprehensive set of DEGs influenced by Cd stress, and heavy metal stress, and provide new information for elucidating the neurotoxic mechanisms of Cd stress in spiders.
Collapse
Affiliation(s)
- Huilin Yang
- College of Orient Science & Technology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Yixue Shi
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Juan Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Xianjin Peng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xiang Xu
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China.
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Eldridge DS, Crawford RJ, Harding IH. The role of metal ion-ligand interactions during divalent metal ion adsorption. J Colloid Interface Sci 2015; 454:20-6. [DOI: 10.1016/j.jcis.2015.04.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/26/2015] [Indexed: 11/16/2022]
|
4
|
Imai S, Tokumoto M, Fujiwara Y, Honda A, Hasegawa T, Seko Y, Lee JY, Nagase H, Satoh M. Gene expression differences in the duodenum of 129/Sv and DBA/2 mice compared with that of C57BL/6J mice. J Toxicol Sci 2014; 39:173-7. [PMID: 24418721 DOI: 10.2131/jts.39.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We compared the cadmium (Cd) concentration in the liver and kidney of different strains of mice after exposure to 50 ppm Cd for 30 days via drinking water. Cd concentration in the liver and kidney of C57BL/6J mice were higher than those of 129/Sv and DBA/2 mice. Since orally ingested heavy metals are absorbed in the small intestine and then widely distributed to target tissues, microarray analyses were performed to compare the expression levels of transport-related genes in the duodenum between C57BL/6J mice and 129/Sv or DBA/2 mice. The expression levels of 9 and 11 genes were elevated more than 2.0-fold and 13 and 12 genes were reduced less than 0.5-fold in 129/Sv mice and DBA/2 mice, respectively. Among these low expressed genes, 10 genes (Slc2a2, Slc5a1, Slc16a2, Slc22a13, Slc22a18, Slc25a11, Slc36a1, Slco6c1, Abca3 and Abcd1) were common between the two types of strains. These results suggest that some of those genes might be involved in Cd absorption and its toxicity.
Collapse
Affiliation(s)
- Shunji Imai
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rao DB, Little PB, Sills R. Subsite awareness in neuropathology evaluation of National Toxicology Program (NTP) studies: a review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 2013; 42:487-509. [PMID: 24135464 PMCID: PMC3965620 DOI: 10.1177/0192623313501893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.
Collapse
Affiliation(s)
- Deepa B. Rao
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina
| | - Peter B. Little
- Consultant, Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina
| | - Robert Sills
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
6
|
Gulisano M, Pacini S, Punzi T, Morucci G, Quagliata S, Delfino G, Sarchielli E, Marini M, Vannelli GB. Cadmium modulates proliferation and differentiation of human neuroblasts. J Neurosci Res 2009; 87:228-37. [DOI: 10.1002/jnr.21830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Kovacic P, Somanathan R. Mechanism of teratogenesis: Electron transfer, reactive oxygen species, and antioxidants. ACTA ACUST UNITED AC 2007; 78:308-25. [PMID: 17315244 DOI: 10.1002/bdrc.20081] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Teratogenesis has been a topic of increasing interest and concern in recent years, generating controversy in association with danger to humans and other living things. A veritable host of chemicals is known to be involved, encompassing a wide variety of classes, both organic and inorganic. Contact with these chemicals is virtually unavoidable due to contamination of air, water, ground, food, beverages, and household items, as well as exposure to medicinals. The resulting adverse effects on reproduction are numerous. There is uncertainty regarding the mode of action of these chemicals, although various theories have been advanced, e.g., disruption of the central nervous system (CNS), DNA attack, enzyme inhibition, interference with hormonal action, and insult to membranes, proteins, and mitochondria. This review provides extensive evidence for involvement of oxidative stress (OS) and electron transfer (ET) as a unifying theme. Successful application of the mechanistic approach is made to all of the main classes of toxins, in addition to large numbers of miscellaneous types. We believe it is not coincidental that the vast majority of these substances incorporate ET functionalities (quinone, metal complex, ArNO2, or conjugated iminium) either per se or in metabolites, potentially giving rise to reactive oxygen species (ROS) by redox cycling. Some categories, e.g., peroxides and radiation, appear to generate ROS by non-ET routes. Other mechanisms are briefly addressed; a multifaceted approach to mode of action appears to be the most logical. Our framework should increase understanding and contribute to preventative measures, such as use of antioxidants.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182, USA.
| | | |
Collapse
|
8
|
Abstract
The rodent is a particularly valuable model with which to test therapeutic interventions for aging, as rodent physiology is close enough to human physiology to give the findings relevance for human aging, and it is small enough to allow for use of statistically robust sample sizes. There are many rodent models to choose from, with advantages and disadvantages to each. The choice of model system, as well as other experimental design decisions such as diet and housing, is extremely important for the success of lifespan studies. These issues are discussed in this review of the use of the rodent model. The National Institute on Aging (NIA) Interventions Testing Program, which has grappled with all of these issues, is described.
Collapse
Affiliation(s)
- Nancy L Nadon
- National Institute on Aging, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Shimada H, Takamure Y, Shimada A, Yasutake A, Waalkes MP, Imamura Y. Strain differences of cadmium-induced hepatotoxicity in Wistar–Imamichi and Fischer 344 rats: involvement of cadmium accumulation. Toxicology 2004; 203:189-97. [PMID: 15363594 DOI: 10.1016/j.tox.2004.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 11/19/2022]
Abstract
We previously reported that Wistar-Imamichi (WI) rats have a strong resistance to cadmium (Cd)-induced lethality compared to other strains such as Fischer 344 (Fischer) rats. The present study was designed to establish biochemical and histological differences in Cd toxicity in WI and Fischer rats, and to clarify the mechanistic basis of these strain differences. A single Cd (4.5 mg/kg, s.c.) treatment caused a significant increase in serum alanine aminotransferase activity, indicative of hepatotoxicity, in Fischer rats, but did not in WI rats. This difference in hepatotoxic response to Cd was supported by pathological analysis. After treatment with Cd at doses of 3.0, 3.5 and 4.5 mg/kg, the hepatic and renal accumulation of Cd was significantly lower in the WI rats than in the Fischer rats, indicating a kinetic mechanism for the observed strain differences in Cd toxicity. Thus, the remarkable resistance to Cd-induced hepatotoxicity in WI rats is associated, at least in part, with a lower tissue accumulation of the metal. Hepatic and renal zinc (Zn) contents after administration were similarly lower in WI than in Fischer rats. When Zn was administered in combination with Cd to Fischer rats, it decreased Cd contents in the liver and kidney, and exhibited a significant protective effect against the toxicity of Cd. We propose the possibility that Zn transporter plays an important role in the strain difference of Cd toxicity in WI and Fischer rats.
Collapse
Affiliation(s)
- Hideaki Shimada
- Faculty of Education, Kumamoto University, 2-40-1, Kurokami, 860-8555, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Włostowski T, Bonda E, Krasowska A. Photoperiod affects hepatic and renal cadmium accumulation, metallothionein induction, and cadmium toxicity in the wild bank vole (Clethrionomys glareolus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 58:29-36. [PMID: 15087160 DOI: 10.1016/s0147-6513(03)00109-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 06/09/2003] [Accepted: 06/20/2003] [Indexed: 05/08/2023]
Abstract
The objective of this study was to examine the toxic effects of dietary cadmium (Cd) on bank voles, being the F1 offspring of a wild-caught population. For 6 weeks, the rodents were provided with diets containing 0.05 (control), 40, 80, and 120 microg Cd/g dry wt of diet under moderate (12 h) and long (16 h) photoperiods. Histological examinations and analyses of metallothionein (MT), Cd, Cd bound and not bound to MT, iron and lipid peroxidation in the liver and kidneys were carried out. Histopathological changes occurred in the liver (infiltrations of leukocytes) and kidneys (hemorrhage, glomerular injury, tubular cell degeneration) of bank voles fed the highest dose of dietary Cd only under the moderate photoperiod. The same voles also exhibited the highest values of hepatic and renal Cd, Cd not bound to MT, and renal lipid peroxidation. It seems that under the long photoperiod the liver and kidneys of bank voles were protected against Cd-induced injury through decreasing Cd accumulation and increasing synthesis of MT.
Collapse
Affiliation(s)
- T Włostowski
- Institute of Biology, University of Białystok, Swierkowa 20B, Białystok 15-950, Poland.
| | | | | |
Collapse
|
11
|
Jiang H, Daniels PJ, Andrews GK. Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-I promoter. J Biol Chem 2003; 278:30394-402. [PMID: 12764133 DOI: 10.1074/jbc.m303598200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metalloregulatory functions of metal-response element-binding transcription factor-1 (MTF-1) have been mapped, in part, to its six highly conserved zinc fingers. Here we examined the ability of zinc finger deletion mutants of mouse MTF-1 to regulate the endogenous metallothionein-I (MT-I) gene in cells lacking endogenous MTF-1. MTF-1 knockout mouse embryo fibroblasts were transfected with expression vectors for FLAG-tagged MTF-1 (MTF-1flag) or finger deletion mutants of MTF-1flag and then assayed for metal induction of MT-I gene expression, nuclear translocation, and in vitro DNA-binding activity of MTF-1 and its stable association with the endogenous chromosomal MT-I promoter. Intact MTF-1flag restored metal responsiveness of the MT-I gene, underwent nuclear translocation, displayed increased in vitro DNA binding in response to zinc and less so to cadmium, and rapidly formed a stable complex with the MT-I promoter chromatin in response to both of these metals. In contrast, although deletion of finger 1, fingers 5 and 6, or finger 6 only had variable effects on the nuclear localization and in vitro DNA-binding activity of MTF-1, each of these finger-deletion mutants severely attenuated metal-induced MTF-1 binding to the MT-I promoter chromatin and activation of the endogenous MT-I gene. These results demonstrated that the metal-induced recruitment of MTF-1 to the MT-I promoter is a rate-limiting step in its metalloregulatory function and that an intact zinc finger domain is required for this recruitment. During the course of these studies, it was discovered that mouse MTF-1 is polymorphic. The impact of these polymorphisms on MTF-1 metalloregulatory functions is discussed.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Blotting, Northern
- Blotting, Western
- Cadmium/chemistry
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/metabolism
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Fibroblasts/metabolism
- Gene Deletion
- Genetic Vectors
- Humans
- Metallothionein/genetics
- Metals/metabolism
- Mice
- Mice, Knockout
- Mutation
- Plasmids/metabolism
- Polymorphism, Genetic
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transfection
- Zinc/chemistry
- Zinc Fingers
- Transcription Factor MTF-1
Collapse
Affiliation(s)
- Huimin Jiang
- Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|