1
|
Smith CR, Kaltenegger E, Teisher J, Moore AJ, Straub SCK, Livshultz T. Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae. AMERICAN JOURNAL OF BOTANY 2025; 112:e16458. [PMID: 39887714 PMCID: PMC11848025 DOI: 10.1002/ajb2.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Enzymes that are encoded by paralogous genes and produce identical specialized metabolites in distantly related plant lineages are strong evidence of parallel phenotypic evolution. Inference of phenotypic homology for metabolites produced by orthologous genes is less straightforward, since orthologs may be recruited in parallel into novel pathways. In prior research on pyrrolizidine alkaloids (PAs), specialized metabolites of Apocynaceae, the evolution of homospermidine synthase (HSS), an enzyme of PA biosynthesis, was reconstructed and a single origin of PAs inferred because HSS enzymes of all known PA-producing Apocynaceae species are orthologous and descended from an ancestral enzyme with the motif (VXXXD) of an optimized HSS. METHODS We increased sampling, tested the effect of amino acid motif on HSS function, revisited motif evolution, and tested for selection to infer evolution of HSS function and its correlation with phenotype. RESULTS Some evidence supports a single origin of PAs: an IXXXD HSS-like gene, similar in function to VXXXD HSS, evolved in the shared ancestor of all PA-producing species; loss of HSS function occurred multiple times via pseudogenization and perhaps via evolution of an IXXXN motif. Other evidence indicates multiple origins: the VXXXD motif, highly correlated with the PA phenotype, evolved two or four times independently; the ancestral IXXXD gene was not under positive selection, while some VXXXD genes were; and substitutions at sites experiencing positive selection occurred on multiple branches in the HSS-like gene tree. CONCLUSIONS The complexity of the genotype-function-phenotype map confounds the inference of PA homology from HSS-like gene evolution in Apocynaceae.
Collapse
Affiliation(s)
- Chelsea R. Smith
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| | - Elisabeth Kaltenegger
- Botanisches Institut und Botanischer GartenChristian‐Albrechts‐Universitӓt zu KielKielGermany
| | - Jordan Teisher
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- MO Herbarium, Missouri Botanical GardenSt. LouisMOUSA
| | - Abigail J. Moore
- School of Biological Sciences, University of OklahomaNormanOKUSA
| | | | - Tatyana Livshultz
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| |
Collapse
|
2
|
McColgan Á, DiFrisco J. Understanding developmental system drift. Development 2024; 151:dev203054. [PMID: 39417684 PMCID: PMC11529278 DOI: 10.1242/dev.203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developmental system drift (DSD) occurs when the genetic basis for homologous traits diverges over time despite conservation of the phenotype. In this Review, we examine the key ideas, evidence and open problems arising from studies of DSD. Recent work suggests that DSD may be pervasive, having been detected across a range of different organisms and developmental processes. Although developmental research remains heavily reliant on model organisms, extrapolation of findings to non-model organisms can be error-prone if the lineages have undergone DSD. We suggest how existing data and modelling approaches may be used to detect DSD and estimate its frequency. More direct study of DSD, we propose, can inform null hypotheses for how much genetic divergence to expect on the basis of phylogenetic distance, while also contributing to principles of gene regulatory evolution.
Collapse
Affiliation(s)
- Áine McColgan
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
3
|
Pavlicev M, Wagner GP. Reading the palimpsest of cell interactions: What questions may we ask of the data? iScience 2024; 27:109670. [PMID: 38665209 PMCID: PMC11043885 DOI: 10.1016/j.isci.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Biological function depends on the composition and structure of the organism, the latter describing the organization of interactions between parts. While cells in multicellular organisms are capable of a remarkable degree of autonomy, most functions do require cell communication: the coordination of functions (growth, differentiation, and apoptosis), the compartmentalization of cellular processes, and the integration of cells into higher levels of structural organization. A wealth of data on putative cell interactions has become available, yet its biological interpretation depends on our expectations about the structure of interaction networks. Here, we attempt to formulate basic questions to ask when interpreting cell interaction data. We build on the understanding that cells fulfill two general functions: the integrity-maintaining and the organismal service function. We derive the expected patterns of cell interactions considering two intertwined aspects: the functional and the evolutionary. Based on these, we propose guidelines for analysis and interpretation of transcriptional cell-interactome data.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Complexity Science Hub, Vienna 1090, Austria
| | - Günter P. Wagner
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Yale University, New Haven, CT 06520, USA
- Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Vargas AO, Botelho JF, Mpodozis J. The evolutionary consequences of epigenesis and neutral change: A conceptual approach at the organismal level. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:531-540. [PMID: 33382199 DOI: 10.1002/jez.b.23023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Living beings are autopoietic systems with highly context-dependent structural dynamics and interactions, that determine whether a disturbance in the genotype or environment will lead or not to phenotypic change. The concept of epigenesis entails how a change in the phenotype may not correspond to a change in the structure of an earlier developmental stage, including the genome. Disturbances of embryonic structure may fail to change the phenotype, as in regulated development, or when different genotypes are associated to a single phenotype. Likewise, the same genotype or early embryonic structure may develop different phenotypes, as in phenotypic plasticity. Disturbances that fail to trigger phenotypic change are considered neutral, but even so, they can alter unexpressed developmental potential. Here, we present conceptual diagrams of the "epigenic field": similar to Waddington's epigenetic landscapes, but including the ontogenic niche (organism/environment interactional dynamics during ontogeny) as a factor in defining epigenic fields, rather than just selecting among possible pathways. Our diagrams illustrate transgenerational changes of genotype, ontogenic niche, and their correspondence (or lack thereof) with changes of phenotype. Epigenic fields provide a simple way to understand developmental constraints on evolution, for instance: how constraints evolve as a result of developmental system drift; how neutral changes can be involved in genetic assimilation and de-assimilation; and how constraints can evolve as a result of neutral changes in the ontogenic niche (not only the genotype). We argue that evolutionary thinking can benefit from a framework for evolution with conceptual foundations at the organismal level.
Collapse
Affiliation(s)
- Alexander O Vargas
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Joao F Botelho
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Santos-Moreno J, Tasiudi E, Kusumawardhani H, Stelling J, Schaerli Y. Robustness and innovation in synthetic genotype networks. Nat Commun 2023; 14:2454. [PMID: 37117168 PMCID: PMC10147661 DOI: 10.1038/s41467-023-38033-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Genotype networks are sets of genotypes connected by small mutational changes that share the same phenotype. They facilitate evolutionary innovation by enabling the exploration of different neighborhoods in genotype space. Genotype networks, first suggested by theoretical models, have been empirically confirmed for proteins and RNAs. Comparative studies also support their existence for gene regulatory networks (GRNs), but direct experimental evidence is lacking. Here, we report the construction of three interconnected genotype networks of synthetic GRNs producing three distinct phenotypes in Escherichia coli. Our synthetic GRNs contain three nodes regulating each other by CRISPR interference and governing the expression of fluorescent reporters. The genotype networks, composed of over twenty different synthetic GRNs, provide robustness in face of mutations while enabling transitions to innovative phenotypes. Through realistic mathematical modeling, we quantify robustness and evolvability for the complete genotype-phenotype map and link these features mechanistically to GRN motifs. Our work thereby exemplifies how GRN evolution along genotype networks might be driving evolutionary innovation.
Collapse
Affiliation(s)
- Javier Santos-Moreno
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
- Department of Medicine and Life Sciences, Pompeu Fabra University, 00803, Barcelona, Spain
| | - Eve Tasiudi
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hadiastri Kusumawardhani
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Joerg Stelling
- Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
6
|
Zimm R, Berio F, Debiais-Thibaud M, Goudemand N. A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proc Natl Acad Sci U S A 2023; 120:e2216959120. [PMID: 37027430 PMCID: PMC10104537 DOI: 10.1073/pnas.2216959120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks Scyliorhinus canicula. We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.
Collapse
Affiliation(s)
- Roland Zimm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| | - Fidji Berio
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Nicolas Goudemand
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| |
Collapse
|
7
|
Moczek AP. When the end modifies its means: the origins of novelty and the evolution of innovation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The origin of novel complex traits constitutes a central yet largely unresolved challenge in evolutionary biology. Intriguingly, many of the most promising breakthroughs in understanding the genesis of evolutionary novelty in recent years have occurred not in evolutionary biology itself, but through the comparative study of development and, more recently, the interface of developmental biology and ecology. Here, I discuss how these insights are changing our understanding of what matters in the origin of novel, complex traits in ontogeny and evolution. Specifically, my essay has two major objectives. First, I discuss how the nature of developmental systems biases the production of phenotypic variation in the face of novel or stressful environments toward functional, integrated and, possibly, adaptive variants. This, in turn, allows the production of novel phenotypes to precede (rather than follow) changes in genotype and allows developmental processes that are the product of past evolution to shape evolutionary change that has yet to occur. Second, I explore how this nature of developmental systems has itself evolved over time, increasing the repertoire of ontogenies to pursue a wider range of objectives across an expanding range of conditions, thereby creating an increasingly extensive affordance landscape in development and developmental evolution. Developmental systems and their evolution can thus be viewed as dynamic processes that modify their own means across ontogeny and phylogeny. The study of these dynamics necessitates more than the strict reductionist approach that currently dominates the fields of developmental and evolutionary developmental biology.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University , Bloomington, IN , USA
| |
Collapse
|
8
|
Torri A, Jaeger J, Pradeu T, Saleh MC. The origin of RNA interference: Adaptive or neutral evolution? PLoS Biol 2022; 20:e3001715. [PMID: 35767561 PMCID: PMC9275709 DOI: 10.1371/journal.pbio.3001715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability. Where does RNA interference come from? This Essay describes a new step-by-step evolutionary model of how RNA interference might have originated in early eukaryotes through neutral events from the molecular machinery present in prokaryotes.
Collapse
Affiliation(s)
- Alessandro Torri
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| | | | - Thomas Pradeu
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Institut d’histoire et de philosophie des sciences et des techniques, CNRS UMR 8590, Pantheon-Sorbonne University, Paris, France
| | - Maria-Carla Saleh
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| |
Collapse
|
9
|
Suzuki TK. Phenotypic systems biology for organisms: Concepts, methods and case studies. Biophys Physicobiol 2022; 19:1-17. [PMID: 35749096 PMCID: PMC9159793 DOI: 10.2142/biophysico.bppb-v19.0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Design principles of phenotypes in organisms are fundamental issues in physical biology. So far, understanding "systems" of living organisms have been chiefly promoted by understanding the underlying biomolecules such as genes and proteins, and their intra- and inter-relationships and regulations. After a long period of sophistication, biophysics and molecular biology have established a general framework for understanding 'molecular systems' in organisms without regard to species, so that the findings of fly studies can be applied to mouse studies. However, little attention has been paid to exploring "phenotypic systems" in organisms, and thus its general framework remains poorly understood. Here I review concepts, methods, and case studies using butterfly and moth wing patterns to explore phenotypes as systems. First, I present a unifying framework for phenotypic traits as systems, termed multi-component systems. Second, I describe how to define components of phenotypic systems, and also show how to quantify interactions among phenotypic parts. Subsequently, I introduce the concept of the macro-evolutionary process, which illustrates how to generate complex traits. In this point, I also introduce mathematical methods, "phylogenetic comparative methods", which provide stochastic processes along molecular phylogeny as bifurcated paths to quantify trait evolution. Finally, I would like to propose two key concepts, macro-evolutionary pathways and genotype-phenotype loop (GP loop), which must be needed for the next directions. I hope these efforts on phenotypic biology will become one major target in biophysics and create the next generations of textbooks. This review article is an extended version of the Japanese article, Biological Physics in Phenotypic Systems of Living Organisms, published in SEIBUTSU-BUTSURI Vol. 61, p. 31-35 (2021).
Collapse
Affiliation(s)
- Takao K. Suzuki
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
10
|
Abstract
Even if a species' phenotype does not change over evolutionary time, the underlying mechanism may change, as distinct molecular pathways can realize identical phenotypes. Here we use linear system theory to explore the consequences of this idea, describing how a gene network underlying a conserved phenotype evolves, as the genetic drift of small changes to these molecular pathways causes a population to explore the set of mechanisms with identical phenotypes. To do this, we model an organism's internal state as a linear system of differential equations for which the environment provides input and the phenotype is the output, in which context there exists an exact characterization of the set of all mechanisms that give the same input-output relationship. This characterization implies that selectively neutral directions in genotype space should be common and that the evolutionary exploration of these distinct but equivalent mechanisms can lead to the reproductive incompatibility of independently evolving populations. This evolutionary exploration, or system drift, is expected to proceed at a rate proportional to the amount of intrapopulation genetic variation divided by the effective population size ( Ne$N_e$ ). At biologically reasonable parameter values this could lead to substantial interpopulation incompatibility, and thus speciation, on a time scale of Ne$N_e$ generations. This model also naturally predicts Haldane's rule, thus providing a concrete explanation of why heterogametic hybrids tend to be disrupted more often than homogametes during the early stages of speciation.
Collapse
Affiliation(s)
- Joshua S. Schiffman
- New York Genome CenterNew YorkNew York 10013,Weill Cornell MedicineNew YorkNew York 10065,Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCalifornia 90089
| | - Peter L. Ralph
- Department of Molecular and Computational BiologyUniversity of Southern CaliforniaLos AngelesCalifornia 90089,Department of Mathematics, Institute of Ecology and EvolutionUniversity of OregonEugeneOregon 97403,Department of Biology, Institute of Ecology and EvolutionUniversity of OregonEugeneOregon 97403
| |
Collapse
|
11
|
DiFrisco J, Jaeger J. Homology of process: developmental dynamics in comparative biology. Interface Focus 2021; 11:20210007. [PMID: 34055306 PMCID: PMC8086918 DOI: 10.1098/rsfs.2021.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Comparative biology builds up systematic knowledge of the diversity of life, across evolutionary lineages and levels of organization, starting with evidence from a sparse sample of model organisms. In developmental biology, a key obstacle to the growth of comparative approaches is that the concept of homology is not very well defined for levels of organization that are intermediate between individual genes and morphological characters. In this paper, we investigate what it means for ontogenetic processes to be homologous, focusing specifically on the examples of insect segmentation and vertebrate somitogenesis. These processes can be homologous without homology of the underlying genes or gene networks, since the latter can diverge over evolutionary time, while the dynamics of the process remain the same. Ontogenetic processes like these therefore constitute a dissociable level and distinctive unit of comparison requiring their own specific criteria of homology. In addition, such processes are typically complex and nonlinear, such that their rigorous description and comparison requires not only observation and experimentation, but also dynamical modelling. We propose six criteria of process homology, combining recognized indicators (sameness of parts, morphological outcome and topological position) with novel ones derived from dynamical systems modelling (sameness of dynamical properties, dynamical complexity and evidence for transitional forms). We show how these criteria apply to animal segmentation and other ontogenetic processes. We conclude by situating our proposed dynamical framework for homology of process in relation to similar research programmes, such as process structuralism and developmental approaches to morphological homology.
Collapse
Affiliation(s)
- James DiFrisco
- Institute of Philosophy, KU Leuven, 3000 Leuven, Belgium
| | - Johannes Jaeger
- Complexity Science Hub (CSH) Vienna, Josefstädter Strasse 39, 1080 Vienna, Austria
| |
Collapse
|
12
|
Botham JL, Haddad CR, Gryzenhout M, Swart VR, Bredenhand E. High genetic diversity of spider species in a mosaic montane grassland landscape. PLoS One 2020; 15:e0234437. [PMID: 32511281 PMCID: PMC7279597 DOI: 10.1371/journal.pone.0234437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Gene flow and genetic variation were examined within and among populations of five of the most common spider species in shrublands of the mountainous Golden Gate Highlands National Park (GGHNP), South Africa. These species included three active hunters, Dendryphantes purcelli Peckham & Peckham, 1903 (Salticidae), Pherecydes tuberculatus O.P.-Cambridge, 1883 (Thomisidae) and Philodromus browningi Lawrence, 1952 (Philodromidae), and two web-builders, Neoscona subfusca (C.L. Koch, 1837) (Araneidae) and a Theridion Walckenaer, 1802 species (Theridiidae). A total of 249 spiders (57 D. purcelli, 69 N. subfusca, 34 P. browningi, 56 P. tuberculatus and 33 Theridion sp.) were collected and analysed from six shrubland localities in the park. Analyses of sequence variation of the mitochondrial cytochrome oxidase c subunit I (COI) gene for each species revealed relatively low nucleotide diversity (π < 0.0420) but high genetic diversity (Hd > 0.6500) within populations for all species, except P. tuberculatus. Genetic differentiation was also noted to differ between species, with only P. tuberculatus indicating very large divergence (Fst > 0.2500). These results were reflected by gene flow, with D. purcelli, N. subfusca and the Theridion sp. estimated as experiencing more than one disperser per generation. Overall, highest gene flow was found in the two web-building species, indicating possible high dispersal ability of these spiders in the GGHNP. Additionally, constructed phylogenies indicated possible cryptic speciation occurring in the majority of the investigated species. Our current results indicate that the five investigated spider species were able to maintain gene flow between shrubland populations within the GGHNP to some degree, despite the mountainous landscape. However, further analyses incorporating additional molecular markers are needed to properly determine the extent of genetic diversity and gene flow of these species within the GGHNP.
Collapse
Affiliation(s)
- Jason L. Botham
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
- * E-mail:
| | - Charles R. Haddad
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, Free State, South Africa
| | - Vaughn R. Swart
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, Free State, South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State Qwaqwa Campus, Phuthaditjhaba, Free State, South Africa
| |
Collapse
|
13
|
Cauret CMS, Gansauge MT, Tupper AS, Furman BLS, Knytl M, Song XY, Greenbaum E, Meyer M, Evans BJ. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol Biol Evol 2019; 37:799-810. [DOI: 10.1093/molbev/msz268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractPhenotypic invariance—the outcome of purifying selection—is a hallmark of biological importance. However, invariant phenotypes might be controlled by diverged genetic systems in different species. Here, we explore how an important and invariant phenotype—the development of sexually differentiated individuals—is controlled in over two dozen species in the frog family Pipidae. We uncovered evidence in different species for 1) an ancestral W chromosome that is not found in many females and is found in some males, 2) independent losses and 3) autosomal segregation of this W chromosome, 4) changes in male versus female heterogamy, and 5) substantial variation among species in recombination suppression on sex chromosomes. We further provide evidence of, and evolutionary context for, the origins of at least seven distinct systems for regulating sex determination among three closely related genera. These systems are distinct in their genomic locations, evolutionary origins, and/or male versus female heterogamy. Our findings demonstrate that the developmental control of sexual differentiation changed via loss, sidelining, and empowerment of a mechanistically influential gene, and offer insights into novel factors that impinge on the diverse evolutionary fates of sex chromosomes.
Collapse
Affiliation(s)
| | - Marie-Theres Gansauge
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew S Tupper
- Origins Institute and Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Canada
| | - Benjamin L S Furman
- Biology Department, McMaster University, Hamilton, Canada
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Martin Knytl
- Biology Department, McMaster University, Hamilton, Canada
- Department of Cell Biology, Charles University, Prague 2, Czech Republic
| | - Xue-Ying Song
- Biology Department, McMaster University, Hamilton, Canada
| | - Eli Greenbaum
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben J Evans
- Biology Department, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Pillai JP, Patel D. Novel application of the ‘Hardy-Weinberg equilibrium’ in the analysis of cusp patterning phenotype in Gujarati Population. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2019. [DOI: 10.1016/j.fsir.2019.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
16
|
Linz DM, Hu Y, Moczek AP. The origins of novelty from within the confines of homology: the developmental evolution of the digging tibia of dung beetles. Proc Biol Sci 2019; 286:20182427. [PMID: 30963933 PMCID: PMC6408602 DOI: 10.1098/rspb.2018.2427] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/23/2019] [Indexed: 11/12/2022] Open
Abstract
Understanding the origin of novel complex traits is among the most fundamental goals in evolutionary biology. The most widely used definition of novelty in evolution assumes the absence of homology, yet where homology ends and novelty begins is increasingly difficult to parse as evo devo continuously revises our understanding of what constitutes homology. Here, we executed a case study to explore the earliest stages of innovation by examining the tibial teeth of tunnelling dung beetles. Tibial teeth are a morphologically modest innovation, composed of relatively simple body wall projections and contained fully within the fore tibia, a leg segment whose own homology status is unambiguous. We first demonstrate that tibial teeth aid in multiple digging behaviours. We then show that the developmental evolution of tibial teeth was dominated by the redeployment of locally pre-existing gene networks. At the same time, we find that even at this very early stage of innovation, at least two genes that ancestrally function in embryonic patterning and thus entirely outside the spatial and temporal context of leg formation, have already become recruited to help shape the formation of tibial teeth. Our results suggest a testable model for how developmental evolution scaffolds innovation.
Collapse
|
17
|
Haag ES, Fitch DHA, Delattre M. From "the Worm" to "the Worms" and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics 2018; 210:397-433. [PMID: 30287515 PMCID: PMC6216592 DOI: 10.1534/genetics.118.300243] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Since the earliest days of research on nematodes, scientists have noted the developmental and morphological variation that exists within and between species. As various cellular and developmental processes were revealed through intense focus on Caenorhabditis elegans, these comparative studies have expanded. Within the genus Caenorhabditis, they include characterization of intraspecific polymorphisms and comparisons of distinct species, all generally amenable to the same laboratory culture methods and supported by robust genomic and experimental tools. The C. elegans paradigm has also motivated studies with more distantly related nematodes and animals. Combined with improved phylogenies, this work has led to important insights about the evolution of nematode development. First, while many aspects of C. elegans development are representative of Caenorhabditis, and of terrestrial nematodes more generally, others vary in ways both obvious and cryptic. Second, the system has revealed several clear examples of developmental flexibility in achieving a particular trait. This includes developmental system drift, in which the developmental control of homologous traits has diverged in different lineages, and cases of convergent evolution. Overall, the wealth of information and experimental techniques developed in C. elegans is being leveraged to make nematodes a powerful system for evolutionary cellular and developmental biology.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | | | - Marie Delattre
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS, INSERM, Ecole Normale Supérieure de Lyon, 69007, France
| |
Collapse
|
18
|
Schaerli Y, Jiménez A, Duarte JM, Mihajlovic L, Renggli J, Isalan M, Sharpe J, Wagner A. Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Mol Syst Biol 2018; 14:e8102. [PMID: 30201776 PMCID: PMC6129954 DOI: 10.15252/msb.20178102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe-a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.
Collapse
Affiliation(s)
- Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Alba Jiménez
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Duarte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | | | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - James Sharpe
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- EMBL Barcelona European Molecular Biology Laboratory, Barcelona, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
19
|
Weiss KM. The tales genes tell (or not): A century of exploration. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165:741-753. [PMID: 29574847 DOI: 10.1002/ajpa.23333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
|
20
|
A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila. PLoS Biol 2018; 16:e2003174. [PMID: 29451884 PMCID: PMC5832388 DOI: 10.1371/journal.pbio.2003174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/01/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. Different insect species exhibit one of two distinct modes of determining their body segments (known as segmentation) during development: they either use a molecular oscillator to position segments sequentially, or they generate segments simultaneously through a hierarchical gene-regulatory cascade. The sequential mode is ancestral, while the simultaneous mode has been derived from it independently several times during evolution. In this paper, we present evidence suggesting that simultaneous segmentation also involves an oscillator in the posterior end of the embryo of the vinegar fly, Drosophila melanogaster. This surprising result indicates that both modes of segment determination are much more similar than previously thought. Such similarity provides an important step towards our understanding of the frequent evolutionary transitions observed between sequential and simultaneous segmentation.
Collapse
|
21
|
Wotton KR, Alcaine-Colet A, Jaeger J, Jiménez-Guri E. Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo 2017; 8:20. [PMID: 29158889 PMCID: PMC5683363 DOI: 10.1186/s13227-017-0083-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 11/20/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) are of central importance for dorsal–ventral (DV) axis specification. They are core components of a signalling cascade that includes the BMP ligand decapentaplegic (DPP) and its antagonist short gastrulation (SOG) in Drosophila melanogaster. These components are very ancient, with orthologs involved in DV patterning in both protostomes and deuterostomes. Despite such strong conservation, recent comparative work in insects has revealed interesting differences in the way the patterning function of the DV system is achieved in different species. Results In this paper, we characterise the expression patterns of the principal components of the BMP DV patterning system, as well as its signalling outputs and downstream targets, in the non-cyclorrhaphan moth midge Clogmia albipunctata (Diptera: Psychodidae). We previously reported ventral expression patterns of dpp in the pole regions of C. albipunctata blastoderm embryos. Strikingly, we also find ventral sog and posteriorly restricted tkv expression, as well as expanded polar activity of pMad. We use our results from gene knock-down by embryonic RNA interference to propose a mechanism of polar morphogen shuttling in C. albipunctata. We compare these results to available data from other species and discuss scenarios for the evolution of DV signalling in the holometabolan insects. Conclusions A comparison of gene expression patterns across hemipteran and holometabolan insects reveals that expression of upstream signalling factors in the DV system is very variable, while signalling output is highly conserved. This has two major implications: first, as long as ligand shuttling and other upstream regulatory mechanisms lead to an appropriately localised activation of BMP signalling at the dorsal midline, it is of less importance exactly where the upstream components of the DV system are expressed. This, in turn, explains why the early-acting components of the DV patterning system in insects exhibit extensive amounts of developmental systems drift constrained by highly conserved downstream signalling output.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| | - Anna Alcaine-Colet
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Complexity Science Hub Vienna, Josefstädter Straße 39, 1080 Vienna, Austria
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Present Address: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9EZ UK
| |
Collapse
|
22
|
Weiss K, Hiekkalinna T. Life is a simulation of life - or is it?: What we observe is just one run of a probabilistic process. Evol Anthropol 2017; 26:151-156. [PMID: 28815960 DOI: 10.1002/evan.21522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Kenneth Weiss
- Department of Anthropology and Genetics, Penn State University
| | - Tero Hiekkalinna
- Genomics and Biomarkers Unit, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
23
|
Trail F, Wang Z, Stefanko K, Cubba C, Townsend JP. The ancestral levels of transcription and the evolution of sexual phenotypes in filamentous fungi. PLoS Genet 2017; 13:e1006867. [PMID: 28704372 PMCID: PMC5509106 DOI: 10.1371/journal.pgen.1006867] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Changes in gene expression have been hypothesized to play an important role in the evolution of divergent morphologies. To test this hypothesis in a model system, we examined differences in fruiting body morphology of five filamentous fungi in the Sordariomycetes, culturing them in a common garden environment and profiling genome-wide gene expression at five developmental stages. We reconstructed ancestral gene expression phenotypes, identifying genes with the largest evolved increases in gene expression across development. Conducting knockouts and performing phenotypic analysis in two divergent species typically demonstrated altered fruiting body development in the species that had evolved increased expression. Our evolutionary approach to finding relevant genes proved far more efficient than other gene deletion studies targeting whole genomes or gene families. Combining gene expression measurements with knockout phenotypes facilitated the refinement of Bayesian networks of the genes underlying fruiting body development, regulation of which is one of the least understood processes of multicellular development.
Collapse
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kayla Stefanko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Caitlyn Cubba
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States of America
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America
| |
Collapse
|
24
|
Perspectives on Gene Regulatory Network Evolution. Trends Genet 2017; 33:436-447. [PMID: 28528721 DOI: 10.1016/j.tig.2017.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022]
Abstract
Animal development proceeds through the activity of genes and their cis-regulatory modules (CRMs) working together in sets of gene regulatory networks (GRNs). The emergence of species-specific traits and novel structures results from evolutionary changes in GRNs. Recent work in a wide variety of animal models, and particularly in insects, has started to reveal the modes and mechanisms of GRN evolution. I discuss here various aspects of GRN evolution and argue that developmental system drift (DSD), in which conserved phenotype is nevertheless a result of changed genetic interactions, should regularly be viewed from the perspective of GRN evolution. Advances in methods to discover related CRMs in diverse insect species, a critical requirement for detailed GRN characterization, are also described.
Collapse
|
25
|
Weiss K. Why can we ask why?: Our adaptability adaptation programs us not to be programmed. Evol Anthropol 2017; 26:49-53. [PMID: 28429570 DOI: 10.1002/evan.21514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 11/11/2022]
|
26
|
Schreier HI, Soen Y, Brenner N. Exploratory adaptation in large random networks. Nat Commun 2017; 8:14826. [PMID: 28429717 PMCID: PMC5413947 DOI: 10.1038/ncomms14826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/02/2017] [Indexed: 02/06/2023] Open
Abstract
The capacity of cells and organisms to respond to challenging conditions in a repeatable manner is limited by a finite repertoire of pre-evolved adaptive responses. Beyond this capacity, cells can use exploratory dynamics to cope with a much broader array of conditions. However, the process of adaptation by exploratory dynamics within the lifetime of a cell is not well understood. Here we demonstrate the feasibility of exploratory adaptation in a high-dimensional network model of gene regulation. Exploration is initiated by failure to comply with a constraint and is implemented by random sampling of network configurations. It ceases if and when the network reaches a stable state satisfying the constraint. We find that successful convergence (adaptation) in high dimensions requires outgoing network hubs and is enhanced by their auto-regulation. The ability of these empirically validated features of gene regulatory networks to support exploratory adaptation without fine-tuning, makes it plausible for biological implementation. Recent works suggest that cellular networks may respond to novel challenges on the time-scale of cellular lifetimes through large-scale perturbation of gene expression and convergence to a new state. Here, the authors demonstrate the theoretical feasibility of exploratory adaptation in cellular networks by showing that convergence to new states depends on known features of these networks.
Collapse
Affiliation(s)
- Hallel I Schreier
- Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Interdisciplinary Program for Applied Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Brenner
- Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
27
|
Dimassi N, Khadra YB, Othmen AB, Ezzine IK, Said K. High genetic diversity vs. low genetic and morphological differentiation of Argiope trifasciata (Araneae, Araneidae) in Tunisia. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1203040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Najet Dimassi
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir (LR11ES41), Université de Monastir, Monastir, Tunisie
| | - Yousra Ben Khadra
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir (LR11ES41), Université de Monastir, Monastir, Tunisie
| | - Abdelwaheb Ben Othmen
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir (LR11ES41), Université de Monastir, Monastir, Tunisie
| | - Issaad Kawther Ezzine
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir (LR11ES41), Université de Monastir, Monastir, Tunisie
| | - Khaled Said
- Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de Monastir (LR11ES41), Université de Monastir, Monastir, Tunisie
| |
Collapse
|
28
|
Suryamohan K, Hanson C, Andrews E, Sinha S, Scheel MD, Halfon MS. Redeployment of a conserved gene regulatory network during Aedes aegypti development. Dev Biol 2016; 416:402-13. [PMID: 27341759 DOI: 10.1016/j.ydbio.2016.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
| | - Casey Hanson
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Emily Andrews
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Molly Duman Scheel
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, South Bend, IN, United States; University of Notre Dame, Eck Inst. for Global Health and Department of Biological Sciences, South Bend, IN, United States
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, United States; NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States; Department of Biological Sciences and Department of Biomedical Informatics, University at Buffalo-State University of New York, Buffalo, NY, United States; Department of Molecular and Cellular Biology and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
29
|
What was the ancestral function of decidual stromal cells? A model for the evolution of eutherian pregnancy. Placenta 2016; 40:40-51. [DOI: 10.1016/j.placenta.2016.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
|
30
|
Stopper GF, Richards-Hrdlicka KL, Wagner GP. Hedgehog inhibition causes complete loss of limb outgrowth and transformation of digit identity in Xenopus tropicalis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:110-24. [PMID: 26918681 DOI: 10.1002/jez.b.22669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The study of the tetrapod limb has contributed greatly to our understanding of developmental pathways and how changes to these pathways affect the evolution of morphology. Most of our understanding of tetrapod limb development comes from research on amniotes, with far less known about mechanisms of limb development in amphibians. To better understand the mechanisms of limb development in anuran amphibians, we used cyclopamine to inhibit Hedgehog signaling at various stages of development in the western clawed frog, Xenopus tropicalis, and observed resulting morphologies. We also analyzed gene expression changes resulting from similar experiments in Xenopus laevis. Inhibition of Hedgehog signaling in X. tropicalis results in limb abnormalities including reduced digit number, missing skeletal elements, and complete absence of limbs. In addition, posterior digits assume an anterior identity by developing claws that are usually only found on anterior digits, confirming Sonic hedgehog's role in digit identity determination. Thus, Sonic hedgehog appears to play mechanistically separable roles in digit number specification and digit identity specification as in other studied tetrapods. The complete limb loss observed in response to reduced Hedgehog signaling in X. tropicalis, however, is striking, as this functional role for Hedgehog signaling has not been found in any other tetrapod. This changed mechanism may represent a substantial developmental constraint to digit number evolution in frogs. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Geffrey F Stopper
- Department of Biology, Sacred Heart University, Fairfield, Connecticut
| | | | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| |
Collapse
|
31
|
Crombach A, Wotton KR, Jiménez-Guri E, Jaeger J. Gap Gene Regulatory Dynamics Evolve along a Genotype Network. Mol Biol Evol 2016; 33:1293-307. [PMID: 26796549 PMCID: PMC4839219 DOI: 10.1093/molbev/msw013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).
Collapse
Affiliation(s)
- Anton Crombach
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
32
|
Weiss K, Buchanan A, Richtsmeier J. How are we made?: Even well-controlled experiments show the complexity of our traits. Evol Anthropol 2015; 24:130-6. [PMID: 26267434 DOI: 10.1002/evan.21454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
34
|
Faunes M, Francisco Botelho J, Ahumada Galleguillos P, Mpodozis J. On the hodological criterion for homology. Front Neurosci 2015; 9:223. [PMID: 26157357 PMCID: PMC4477164 DOI: 10.3389/fnins.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/08/2015] [Indexed: 11/13/2022] Open
Abstract
Owen's pre-evolutionary definition of a homolog as “the same organ in different animals under every variety of form and function” and its redefinition after Darwin as “the same trait in different lineages due to common ancestry” entail the same heuristic problem: how to establish “sameness.”Although different criteria for homology often conflict, there is currently a generalized acceptance of gene expression as the best criterion. This gene-centered view of homology results from a reductionist and preformationist concept of living beings. Here, we adopt an alternative organismic-epigenetic viewpoint, and conceive living beings as systems whose identity is given by the dynamic interactions between their components at their multiple levels of composition. We posit that there cannot be an absolute homology criterion, and instead, homology should be inferred from comparisons at the levels and developmental stages where the delimitation of the compared trait lies. In this line, we argue that neural connectivity, i.e., the hodological criterion, should prevail in the determination of homologies between brain supra-cellular structures, such as the vertebrate pallium.
Collapse
Affiliation(s)
- Macarena Faunes
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - João Francisco Botelho
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand ; Grupo Fritz Müller-Desterro de Estudos em Filosofia e História da Biologia, Departamento de Filosofia, Universidade Federal de Santa Catarina Florianópolis, Brasil
| | - Patricio Ahumada Galleguillos
- Programa de Anatomía y Biología del Desarrollo, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile Santiago, Chile
| | - Jorge Mpodozis
- Laboratorio de Neurobiología y Biología del Conocer, Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| |
Collapse
|
35
|
|
36
|
Samadi L, Schmid A, Eriksson BJ. Differential expression of retinal determination genes in the principal and secondary eyes of Cupiennius salei Keyserling (1877). EvoDevo 2015; 6:16. [PMID: 26034575 PMCID: PMC4450993 DOI: 10.1186/s13227-015-0010-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors that determine retinal development seem to be conserved in different phyla throughout the animal kingdom. In most representatives, however, only a few of the involved transcription factors have been sampled and many animal groups remain understudied. In order to fill in the gaps for the chelicerate group of arthropods, we tested the expression pattern of the candidate genes involved in the eye development in the embryo of the wandering spider Cupiennius salei. One main objective was to profile the molecular development of the eyes and to search for possible variation among eye subtype differentiation. A second aim was to form a basis for comparative studies in order to elucidate evolutionary pathways in eye development. RESULTS We screened the spider embryonic transcriptome for retina determination gene candidates and discovered that all except one of the retinal determination genes have been duplicated. Gene expression analysis shows that the two orthologs of all the genes have different expression patterns. The genes are mainly expressed in the developing optic neuropiles of the eyes (lateral furrow, mushroom body, arcuate body) in earlier stages of development (160 to 220 h after egg laying). Later in development (180 to 280 h after egg laying), there is differential expression of the genes in disparate eye vesicles; for example, Cs-otxa is expressed only in posterior-lateral eye vesicles, Cs-otxb, Cs-six1a, and Cs-six3b in all three secondary eye vesicles, Cs-pax6a only in principal eye vesicles, Cs-six1b in posterior-median, and posterior-lateral eye vesicles, and Cs-six3a in lateral and principal eye vesicles. CONCLUSIONS Principle eye development shows pax6a (ey) expression, suggesting pax6 dependence, although secondary eyes develop independently of pax6 genes and show differential expression of several retinal determination genes. Comparing this with the other arthropods suggests that pax6-dependent median eye development is a ground pattern of eye development in this group and that the ocelli of insects, the median eyes of chelicerates, and nauplius eyes can be homologised. The expression pattern of the investigated genes makes it possible to distinguish between secondary eyes and principal eyes. Differences of gene expression among the different lateral eyes indicate disparate function combined with genetic drift.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Axel Schmid
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Bo Joakim Eriksson
- Department of Neurobiology, Centre for Organismal Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
37
|
Wotton KR, Jiménez-Guri E, Jaeger J. Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita. PLoS Genet 2015; 11:e1005042. [PMID: 25757102 PMCID: PMC4355411 DOI: 10.1371/journal.pgen.1005042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 02/01/2023] Open
Abstract
Axis specification and segment determination in dipteran insects are an excellent model system for comparative analyses of gene network evolution. Antero-posterior polarity of the embryo is established through systems of maternal morphogen gradients. In Drosophila melanogaster, the anterior system acts through opposing gradients of Bicoid (Bcd) and Caudal (Cad), while the posterior system involves Nanos (Nos) and Hunchback (Hb) protein. These systems act redundantly. Both Bcd and Hb need to be eliminated to cause a complete loss of polarity resulting in mirror-duplicated abdomens, so-called bicaudal phenotypes. In contrast, knock-down of bcd alone is sufficient to induce double abdomens in non-drosophilid cyclorrhaphan dipterans such as the hoverfly Episyrphus balteatus or the scuttle fly Megaselia abdita. We investigate conserved and divergent aspects of axis specification in the cyclorrhaphan lineage through a detailed study of the establishment and regulatory effect of maternal gradients in M. abdita. Our results show that the function of the anterior maternal system is highly conserved in this species, despite the loss of maternal cad expression. In contrast, hb does not activate gap genes in this species. The absence of this activatory role provides a precise genetic explanation for the loss of polarity upon bcd knock-down in M. abdita, and suggests a general scenario in which the posterior maternal system is increasingly replaced by the anterior one during the evolution of the cyclorrhaphan dipteran lineage. The basic head-to-tail polarity of an animal is established very early in development. In dipteran insects (flies, midges, and mosquitoes), polarity is established with the help of so-called morphogen gradients. Morphogens are regulatory proteins that are distributed as a concentration gradient, often involving diffusion from a localised source. This graded distribution then leads to the concentration-dependent activation of different target genes along the embryo’s axis. We examine this process, which differs to a surprising extent between dipteran species, in the scuttle fly Megaselia abdita, and compare our results to the model organism Drosophila melanogaster. In this way, we not only gain insights into how the mechanisms that establish polarity function differently in different species, but also how the system has evolved since these two flies shared a common ancestor. Specifically, we pin down the main difference between Drosophila and Megaselia in the altered function of the maternal Hunchback morphogen gradient, which activates target genes in the former, but not the latter species, where it has been completely replaced by the Bicoid morphogen during evolution.
Collapse
Affiliation(s)
- Karl R. Wotton
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- * E-mail: (KW); (JJ)
| |
Collapse
|
38
|
Jaeger J, Laubichler M, Callebaut W. The Comet Cometh: Evolving Developmental Systems. ACTA ACUST UNITED AC 2015; 10:36-49. [PMID: 25798078 PMCID: PMC4357653 DOI: 10.1007/s13752-015-0203-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 01/08/2023]
Abstract
In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule’s prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach—which is based on reverse engineering, simulation, and mathematical analysis—the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.
Collapse
Affiliation(s)
- Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Wissenschaftskolleg zu Berlin, Berlin, Germany
| | - Manfred Laubichler
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- Santa Fe Institute, Santa Fe, NM USA
- Marine Biological Laboratory, Woods Hole, MA USA
- Max Planck Institute for the History of Science, Berlin, Germany
- The KLI Institute, Klosterneuburg, Austria
| | | |
Collapse
|
39
|
|
40
|
Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J. Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLife 2015; 4:e04785. [PMID: 25560971 PMCID: PMC4337606 DOI: 10.7554/elife.04785] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022] Open
Abstract
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.
Collapse
Affiliation(s)
- Karl R Wotton
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Jiménez-Guri
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anton Crombach
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Hilde Janssens
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Alcaine-Colet
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Steffen Lemke
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Johannes Jaeger
- European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
41
|
|
42
|
Wang CC, Man GCW, Chu CY, Borchert A, Ugun-Klusek A, Billett EE, Kühn H, Ufer C. Serotonin receptor 6 mediates defective brain development in monoamine oxidase A-deficient mouse embryos. J Biol Chem 2014; 289:8252-63. [PMID: 24497636 DOI: 10.1074/jbc.m113.522094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5-E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations.
Collapse
|
43
|
Liu Q, Haag ES. Evolutionarily dynamic roles of a PUF RNA-binding protein in the somatic development of Caenorhabditis briggsae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:129-41. [PMID: 24254995 DOI: 10.1002/jez.b.22550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 11/12/2022]
Abstract
Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
44
|
|
45
|
Shbailat SJ, Abouheif E. The wing-patterning network in the wingless castes of Myrmicine and Formicine ant species is a mix of evolutionarily labile and non-labile genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 320:74-83. [PMID: 23225600 DOI: 10.1002/jez.b.22482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 08/15/2012] [Accepted: 09/10/2012] [Indexed: 11/08/2022]
Abstract
Wing polyphenism in ants is the ability of a single genome to produce winged or wingless castes in a colony in response to environmental cues. Although wing polyphenism is a universal and homologous feature of ants, the gene network underlying wing polyphenism is conserved in the winged castes, but is labile in the wingless castes, that is, the network is interrupted at different points in the wingless castes of different ant species. Because the expression of all genes sampled so far in this network in the wingless castes is evolutionarily labile across species, an important question is whether all "interruption points" in the network are evolutionarily labile or are there interruption points that are evolutionarily non-labile. Here we show that in the wingless castes, the expression of the gene brinker (brk), which mediates growth, patterning, and apoptosis in the Drosophila wing disc, is non-labile; it is absent in vestigial wing discs of four ants species. In contrast, the expression of engrailed (en), a gene upstream of brk is labile; it is present in some species but absent in others. In the winged castes, both brk and en expression are conserved relative to their expression in Drosophila wing discs. The differential lability of genes in the network in wingless castes may be a general feature of networks underlying polyphenic traits. This raises the possibility that some genes, like brk, may be under stabilizing selection while most others, like en, may be evolving via directional selection or neutral drift.
Collapse
|
46
|
Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 2012; 12:21. [PMID: 22335999 PMCID: PMC3361465 DOI: 10.1186/1471-2148-12-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/15/2012] [Indexed: 12/31/2022] Open
Abstract
Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene (co-)recruitment is consistent with both divergence from a recruited putative ancestral network, and with independent co-option of individual genes. The diversity in the combinations of genes expressed in association with eyespot formation does not parallel diversity in characteristics of the adult phenotype. We discuss these results in the context of inferring homology. Our study underscores the importance of widening the representation of phylogenetic, morphological, and genetic diversity in order to establish general principles about the mechanisms behind the evolution of novel traits.
Collapse
Affiliation(s)
- Leila T Shirai
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Weiss KM, Buchanan AV, Lambert BW. The red queen and her king: Cooperation at all levels of life. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146 Suppl 53:3-18. [DOI: 10.1002/ajpa.21608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Rockman MV. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 2011; 66:1-17. [PMID: 22220860 DOI: 10.1111/j.1558-5646.2011.01486.x] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others.
Collapse
Affiliation(s)
- Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| |
Collapse
|
49
|
Medugorac I, Veit-Kensch CE, Ramljak J, Brka M, Marković B, Stojanović S, Bytyqi H, Kochoski L, Kume K, Grünenfelder HP, Bennewitz J, Förster M. Conservation priorities of genetic diversity in domesticated metapopulations: a study in taurine cattle breeds. Ecol Evol 2011; 1:408-20. [PMID: 22393510 PMCID: PMC3287311 DOI: 10.1002/ece3.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 07/29/2011] [Accepted: 08/03/2011] [Indexed: 11/09/2022] Open
Abstract
We estimated neutral diversity of 21 European cattle breeds with 105 microsatellites. Nine of them resembled unselected Balkan Buša strains with diffuse breeding barriers and the 12 others were strongly differentiated, isolated breeds. Because of the impact of neutral genetic diversity on long-term population adaptive capacity, we discuss the long-term outcome of different conservation priorities in a subdivided metapopulation of the investigated cattle breeds. The optimal contribution to a pool of total genetic diversity allocated more than 95% of long-term relevant neutral diversity to virtually unselected strains of the Balkan Buša, while the maximization of total variance preferred inbred breeds. Current artificial selection methods, such as genomic selection sped up and a recovery of underestimated traits becomes quickly impossible. We emphasize that currently neutral and even deleterious alleles might be required for future genotypes in sustainable and efficient livestock breeding and production systems of a 21st century. We provide cumulative evidences that long-term survival relies on genetic complexity and complexity relies on allelic diversity. Our results suggest that virtually unselected, nonuniform strains harbor a crucial proportion of neutral diversity and should be conserved with high global priority. As one example, we suggest a cooperative maintenance of the nondifferentiated, highly fragmented, and fast vanishing metapopulation of Balkan Buša.
Collapse
Affiliation(s)
- Ivica Medugorac
- Chair of Animal Genetics and Husbandry, The Ludwig-Maximilians-University MunichMunich, Germany
| | - Claudia E Veit-Kensch
- Chair of Animal Genetics and Husbandry, The Ludwig-Maximilians-University MunichMunich, Germany
| | - Jelena Ramljak
- Department of Animal Science, Faculty of Agriculture, University of ZagrebZagreb, Croatia
| | - Muhamed Brka
- Institute of Animal Sciences, The Faculty of Agriculture, The University of SarajevoSarajevo, Bosnia and Herzegovina
| | - Božidarka Marković
- Department of Livestock Science, Biotechnical Faculty, University of MontenegroPodgorica, Montenegro
| | - Srđan Stojanović
- Department for Genetic Resources, Ministry of Agriculture, Forestry and Water ManagementBelgrade, Serbia
| | - Hysen Bytyqi
- Department of Animal Science, Faculty of Agriculture, University of PrishtinaLidhja e Pejes, Prishtina, Kosovo-UNMIK
| | - Ljupche Kochoski
- Bitola Faculty of Biotechnical Sciences, University “St. Kliment Ohridski”Bitola, Macedonia
| | - Kristaq Kume
- National Coordinator of FAnGRRr.“Abdyl Frasheri” Nd.5 H.29 Ap.6, Tirana, Albania
| | | | - Jörn Bennewitz
- Institute of Animal Husbandry and Breeding, University HohenheimStuttgart, Germany
| | - Martin Förster
- Chair of Animal Genetics and Husbandry, The Ludwig-Maximilians-University MunichMunich, Germany
| |
Collapse
|
50
|
|