1
|
Eyvani K, Letafatkar N, Babaei P. AMPA Receptors Endocytosis Inhibition Attenuates Cognition Deficit Via c-Fos/BDNF Signaling in Amyloid β Neurotoxicity. Exp Aging Res 2025; 51:303-315. [PMID: 39077805 DOI: 10.1080/0361073x.2024.2377440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Glutamatergic imbalance, particularly downregulation of α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptor (AMPARs) endocytosis, has been addressed as a possible reason for cognitive dysfunctions in Alzheimer's disease (AD). We hypothesized that inhibition of AMPAR endocytosis may ameliorate memory impairment in AD model of rats. To approach this, twenty-four adults male Wistar rats were divided into three groups: saline + saline (control group), Aβ + saline, and Aβ + Tat-GluR23Y (AMPA endocytosis inhibitor). Animals received an intracerebroventricular (i.c.v) injection of Aβ (1-42) to induce neuro-toxicity, followed by chronic administration of GluR23Y, and further behavioral assessments by MWM. Afterward, the hippocampal level of Brain Derived Neurotrophic Factor (BDNF) and c-Fos was measured via Western blotting. The results of our study revealed that chronic administration of GluR23Y improved both working and reference memories evidenced by shorter latency time and longer total time spent in the target zone in MWM. Additionally, this improvement was paralleled by an increase in BDNF, but a decrease in c-Fos. In conclusion, GluR23Y improves spatial memory impairment at least partly via elevating neuroprotective factor of BDNF and reducing apoptotic protein of c-Fos.
Collapse
Affiliation(s)
- Kimia Eyvani
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Neuroscience Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- Cellular & Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
3
|
Rubio N, Sanz-Rodriguez F. Theiler's murine encephalomyelitis virus infection of astrocytes induces the expression of chemokines which attract activated but not resting T lymphocytes. J Neurovirol 2019; 25:844-852. [PMID: 31278536 PMCID: PMC7095026 DOI: 10.1007/s13365-019-00776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
In this article, we studied the production of the chemokine CXCL9, also termed Mig (monokine induced by gamma interferon) by cultured SJL/J mouse astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). This picornavirus induces demyelination in the SJL/J genetically susceptible strain of mice through an immune process mediated by CD4+ Th1 T cells. Those cells were chemoattracted by chemokines inside the central nervous system (CNS) after blood-brain barrier (BBB) disruption.cRNAs from TMEV- and mock-infected astrocytes cells were hybridized to the Affymetrix murine genome U74v2 DNA microarray. Hybridization data analysis revealed the upregulation of six sequences potentially coding for Mig. We confirmed post infection Mig mRNA increase by quantitative (qPCR) and RT-PCR. The presence of Mig in the supernatants of infected astrocytes was quantified using a specific ELISA. Secreted Mig was biologically active, inducing chemoattraction of mouse activated CD4+ T lymphocytes. Conversely, attracting activity on CD3+ resting T cells that can be attributed to chemokines as CXCL12/SDF-1α could not be demonstrated in these supernatants. No overinduction of the gene coding for this chemokine was assessed by DNA hybridization either. Both recombinant IFN-γ and TNF-α inflammatory cytokines were also strong inducers of Mig in SJL/J astrocyte cultures.
Collapse
Affiliation(s)
- Nazario Rubio
- Instituto Cajal. C.S.I.C, Dr. Arce Avenue 37, 28002, Madrid, Spain.
| | | |
Collapse
|
4
|
Merienne N, Le Douce J, Faivre E, Déglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci 2013; 7:106. [PMID: 23847471 PMCID: PMC3701857 DOI: 10.3389/fncel.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Collapse
Affiliation(s)
- Nicolas Merienne
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Lausanne University Hospital Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
5
|
Rubio N, Cerciat M, Unkila M, Garcia-Segura LM, Arevalo MA. An in vitro experimental model of neuroinflammation: the induction of interleukin-6 in murine astrocytes infected with Theiler's murine encephalomyelitis virus, and its inhibition by oestrogenic receptor modulators. Immunology 2011; 133:360-9. [PMID: 21564094 DOI: 10.1111/j.1365-2567.2011.03448.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This paper describes an experimental model of neuroinflammation based on the production of interleukin-6 (IL-6) by neural glial cells infected with Theiler's murine encephalomyelitis virus (TMEV). Production of IL-6 mRNA in mock-infected and TMEV-infected SJL/J murine astrocytes was examined using the Affymetrix murine genome U74v2 DNA microarray. The IL-6 mRNA from infected cells showed an eightfold increase in hybridization to a sequence encoding IL-6 located on chromosome number 5. Quantitative real-time reverse transcription PCR (qPCR) was used to study the regulation of IL-6 expression. The presence of IL-6 in the supernatants of TMEV-infected astrocyte cultures was quantified by ELISA and found to be weaker than in cultures of infected macrophages. The IL-6 was induced by whole TMEV virions, but not by Ad.βGal adenovirus, purified TMEV capsid proteins, or UV-inactivated virus. Two recombinant inflammatory cytokines, IL-1α and tumour necrosis factor-α were also found to be potent inducers of IL-6. The secreted IL-6 was biologically active because it fully supported B9 hybridoma proliferation in a [(3) H]thymidine incorporation bioassay. The cerebrospinal fluid of infected mice contained IL-6 during the acute encephalitis phase, peaking at days 2-4 post-infection. Finally, this in vitro neuroinflammation model was fully inhibited, as demonstrated by ELISA and qPCR, by five selective oestrogen receptor modulators.
Collapse
|
6
|
Rubio N, Palomo M, Alcami A. Interferon-alpha/beta genes are up-regulated in murine brain astrocytes after infection with Theiler's murine encephalomyelitis virus. J Interferon Cytokine Res 2010; 30:253-62. [PMID: 20038206 DOI: 10.1089/jir.2009.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article reports the production of interferon alpha/beta (IFN-alpha/beta) by SJL/J mouse brain astrocyte cultures infected with Theiler's murine encephalomyelitis virus (TMEV). cRNA from mock- and TMEV-infected SJL/J astrocytes was hybridized to the Affymetrix whole murine genome DNA microarray. Analysis revealed the up-regulation of 3 sequences coding for the IFN-alpha/beta domain. Increased expression of mRNA coding for IFN-alpha was shown by conventional RT-PCR and quantitative real-time RT-PCR. According to ELISA, the concentration of IFN-alpha in the supernatants of infected astrocyte cultures varied with the multiplicity of infection and post-infection time. The IFN-alpha/beta secreted was biologically active, as shown by a virus-based IFN bioassay involving Cocal virus and TMEV infection. The contribution to total interferon activity was 29% +/- 3.0% for IFN-alpha and 52% +/- 3.6% for IFN-beta. IFN-alpha/beta was induced by whole TMEV virions; induction was not achieved with either purified isolated virion capsid proteins or UV-inactivated virus. Further, induction was inhibited by specific anti-TMEV antibodies. The receptor for IFN-alpha/beta, which is absent in uninfected astrocytes, was up-regulated after infection, as suggested by DNA hybridization analysis. The brains of infected mice contained IFN-alpha/beta mRNA during the acute encephalitis phase, peaking at day 5 post-infection. Our findings could have significance for human diseases such as viral encephalitis and multiple sclerosis.
Collapse
|
7
|
Vit JP, Ohara PT, Sundberg C, Rubi B, Maechler P, Liu C, Puntel M, Lowenstein P, Castro M, Jasmin L. Adenovector GAD65 gene delivery into the rat trigeminal ganglion produces orofacial analgesia. Mol Pain 2009; 5:42. [PMID: 19656360 PMCID: PMC2734545 DOI: 10.1186/1744-8069-5-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/05/2009] [Indexed: 01/15/2023] Open
Abstract
Background Our goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion. Results Injection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist. Conclusion Transfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rubio N, Sanz-Rodriguez F, Lipton HL. Theiler's virus induces the MIP-2 chemokine (CXCL2) in astrocytes from genetically susceptible but not from resistant mouse strains. Cell Immunol 2006; 239:31-40. [PMID: 16684516 DOI: 10.1016/j.cellimm.2006.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 11/19/2022]
Abstract
The murine encephalomyelitis virus of Theiler (TMEV) induces demyelination in susceptible strains of mice by a CD4(+) Th1 T cell mediated immunopathologic process. We focused on the production of one chemokine, the macrophage inflammatory protein-2 (MIP-2 or CXCL2), by cultured mouse astrocytes infected with the BeAn strain of TMEV. Analysis of a murine genome DNA hybridized with cRNA from mock- and TMEV-infected astrocytes, revealed up-regulation of three sequences encoding MIP-2. Northern blot analysis indicated increased MIP-2 mRNA expression. Levels of MIP-2 in the supernatants of infected cells as detected by ELISA, varied directly with the multiplicity of infection used. This secreted CXCL2 was biologically active inducing chemoattraction of neutrophils but not of lymphocytes. CXCL2 was specifically induced by TMEV infection, since induction was inhibited by anti TMEV antibodies. The inflammatory cytokines, IL-1alpha and TNF-alpha, which are also induced in astrocytes by TMEV, were very potent inducers of CXCL2. Nevertheless, both mechanisms of induction follows different pathways as antibodies to both cytokines fails to inhibit TMEV-induced CXCL2 up-regulation. Sera from TMEV-infected SJL/J mice with chronic demyelination, but not from BALB/c TMEV-resistant mice, revealed CXCL2 at the peak of clinical disease. Our main novel finding is the strain-dependent differences in CXCL2 expression both in vitro and in vivo. This suggest an role for this chemokine in attracting immune cells within the CNS, which in turn, might trigger demyelination in this experimental model of MS.
Collapse
|
9
|
Duale H, Kasparov S, Paton JFR, Teschemacher AG. Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 2004; 90:71-8. [PMID: 15542614 DOI: 10.1113/expphysiol.2004.029173] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenoviral vectors (AVVs) and lentiviral vectors (LVVs) are highly useful research tools which can be used to investigate the function of specific cell phenotypes in the brain. The transductional tropism of viral vectors has a critical impact upon the transgene expression in different brain areas. This largely depends on the properties of the viral particles, which for AVVs are most commonly analogous to the serotype 5 adenovirus and, in the case of LVVs, are determined by the envelope used for pseudotyping, for example the vesicular stomatitis virus coat (VSVG). We have created a matching set of shuttle plasmids that allow a one-step transfer of an entire expression cassette between the backbones of AVVs and LVVs. This has permitted a fair assessment of the impact of the vector type on tropism for both AVVs and LVVs. Thus, the aims of this study were twofold: (i) to develop and demonstrate the validity of a transgene 'swap' system between AVVs and LVVs; and (ii) using this system, to assess the tropism of AVVs and LVVs for neuronal versus glial cell types. We have constructed AVVs and VSVG-coated LVVs to express monomeric red fluorescent protein (mRFP) driven by the human cytomegalovirus promoter (hCMV). Transgene expression in neurones and glia in the hypoglossal and dorsal vagal motor nuclei of the rat brainstem was compared by determining the colocalization with immunostaining for the neuronal marker NeuN (neuronal nuclear antigen) and the glial marker GFAP (glial fibrillatory acidic protein). We found that 55% of mRFP-expressing cells transduced with AVVs were immunopositive for GFAP, while only 38% were NeuN-immunoreactive. In contrast, when the same expression cassette was delivered by VSVG-coated LVVs, the neurone/glia ratio of mRFP expression was reversed with 56% of mRFP-positive cells identified as neurones and 26% as glia. Thus, the present study provides compelling evidence that VSVG-coated LVVs significantly shift transgene expression towards neurones while transduction with AVVs favours glia.
Collapse
Affiliation(s)
- Hanad Duale
- Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
10
|
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72:111-27. [PMID: 15063528 DOI: 10.1016/j.pneurobio.2004.02.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Accepted: 02/04/2004] [Indexed: 12/21/2022]
Abstract
Astrocytes, the most abundant glial cell types in the brain, provide metabolic and trophic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions can critically influence neuronal survival. Recent studies show that astrocyte apoptosis may contribute to pathogenesis of many acute and chronic neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease and Parkinson's disease. We found that incubation of cultured rat astrocytes in a Ca(2+)-containing medium after exposure to a Ca(2+)-free medium causes an increase in intracellular Ca(2+) concentration followed by apoptosis, and that NF-kappa B, reactive oxygen species, and enzymes such as calpain, xanthine oxidase, calcineurin and caspase-3 are involved in reperfusion-induced apoptosis. Furthermore, we demonstrated that heat shock protein, mitogen-activated protein/extracellular signal-regulated kinase, phosphatidylinositol-3 kinase and cyclic GMP phosphodiesterase are target molecules for anti-apoptotic drugs. This review summarizes (1) astrocytic functions in neuroprotection, (2) current evidence of astrocyte apoptosis in both in vitro and in vivo studies including its molecular pathways such as Ca(2+) overload, oxidative stress, NF-kappa B activation, mitochondrial dysfunction, endoplasmic reticulum stress, and protease activation, and (3) several drugs preventing astrocyte apoptosis. As a whole, this article provides new insights into the potential role of astrocytes as targets for neuroprotection. In addition, the advance in the knowledge of molecular mechanisms of astrocyte apoptosis may lead to the development of novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Kobe 651-2180, Japan
| | | | | |
Collapse
|
11
|
Kügler S, Kilic E, Bähr M. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 2003; 10:337-47. [PMID: 12595892 DOI: 10.1038/sj.gt.3301905] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Targeting therapeutic transgene expression to defined tissues is a major task in the development of safe and efficient gene therapy protocols. Recombinant adenovirus is an attractive vector because it can be prepared in huge quantity and new generation vectors possess very large cloning capacities combined with reduced immunogenicity. In the brain, adenovirus transduces mainly glial cells, making it difficult to use this vector system in applications that need expression of therapeutic proteins in neurons. Here, we show that by using a small fragment of the human synapsin 1 gene promoter, we were able to restrict transgene expression from an adenoviral vector exclusively to neurons. Furthermore, we obtained stable long-term transgene expression from this vector in striatum and thalamus at appropriate vector dose. Other promoters like the CMV and U1snRNA promoters also mediated transgene expression over several months, but mainly in glial cells. Although the NSE promoter was relatively neuron specific, it still expressed in glial cells also, and was clearly outperformed by the synapsin promoter with respect to transcriptional neuronal targeting. As an important feature of adenoviral-mediated gene transfer to the brain, we demonstrate that dopaminergic neurons of the substantia nigra do not allow for long-term expression from adenoviral vectors. Strikingly, these neurons appeared to specifically attenuate transgene expression by deleting the adenoviral genome.
Collapse
Affiliation(s)
- S Kügler
- University of Göttingen, Department of Neurology, Germany
| | | | | |
Collapse
|