1
|
Bora SK, Biswas S, Behera BK, Saikia AK. Stereoselective synthesis of gem-dihalopiperidines via the halo-aza-Prins cyclization reaction: access to piperidin-4-ones and pyridines. Org Biomol Chem 2024; 22:3893-3903. [PMID: 38654601 DOI: 10.1039/d4ob00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
An efficient methodology for the synthesis of 4,4-dihalopiperidine derivatives in excellent yields has been developed using N-(3-halobut-3-en-1-yl)-4-methylbenzenesulfonamide and an aldehyde catalyzed by In(OTf)3. The reaction involves an initial formation of a six-membered carbocation via the aza-Prins cyclization reaction followed by a nucleophilic attack by a halide ion to give 4,4-dihalopiperidine. The dihalopiperidine is converted to tetrahydropiperidinone using Ac2O/Et3N in DCM/H2O (1 : 1). It is also utilized for the synthesis of pyridine scaffolds by treatment with DBU. Furthermore, the dihalopiperidine is transformed to its enol ether derivatives using KOH in alcohol.
Collapse
Affiliation(s)
- Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Bipin Kumar Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
2
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024; 67:4259-4297. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
3
|
Shu J, Cao K, Fei C, Dai H, Li Y, Cao Y, Zhou T, Yu M, Xia Z, An M, Wu Y. Antiviral Mechanisms of Anisomycin Produced by Streptomyces albulus SN40 on Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3506-3519. [PMID: 38346922 DOI: 10.1021/acs.jafc.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microbial secondary metabolites produced by Streptomyces have diverse application prospects in the control of plant diseases. Herein, the fermentation filtrate of Streptomyces SN40 effectively inhibited the infection of tobacco mosaic virus (TMV) in Nicotiana glutinosa and systemic infection of potato virus Y (PVY) in Nicotiana benthamiana. Additionally, metabolomic analysis indicated that anisomycin (C14H19NO4) and trans-3-indoleacrylic acid (C11H9NO2) were highly abundant in the crude extract and that anisomycin effectively suppressed the infection of TMV as well as PVY. Subsequently, transcriptomic analysis was conducted to elucidate its mechanisms on the induction of host defense responses. Furthermore, the results of molecular docking suggested that anisomycin can potentially bind with the helicase domain (Hel) of TMV replicase, TMV coat protein (CP), and PVY helper component proteinase (HC-Pro). This study demonstrates new functions of anisomycin in virus inhibition and provides important theoretical significance for the development of new biological pesticides to control diverse plant viruses.
Collapse
Affiliation(s)
- Jing Shu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Kexin Cao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Chuanjiang Fei
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Hui Dai
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Yuhang Li
- Guizhou Qianxinan Prefectural Tobacco Company, Xingyi 562400, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Tao Zhou
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Miao Yu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, No. 120 Dongling, Shenyang 110866, China
| |
Collapse
|
4
|
Shit S, Choudhury C, Saikia AK. Nitrile stabilized synthesis of pyrrolidine and piperidine derivatives via tandem alkynyl aza-Prins-Ritter reactions. Org Biomol Chem 2024; 22:568-578. [PMID: 38117142 DOI: 10.1039/d3ob01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An efficient methodology for the synthesis of N-(pyrrolidine-3-ylidenemethyl)acetamides mediated by triflic acid in good yields with separable Z/E isomers within a short reaction time has been demonstrated. The reaction involves the initial formation of the pyrrolidin-3-ylidenemethylium carbocation via the Prins cyclization reaction followed by the Ritter reaction to produce N-(pyrrolidine-3-ylidenemethyl)acetamides. This methodology is also used for the synthesis of their piperidine derivatives.
Collapse
Affiliation(s)
- Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Chinmayee Choudhury
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
5
|
Park Y, Ryu JS. Sulfamidate-Based Stereoselective Total Synthesis of (+)-Preussin Using Gold(I)-Catalyzed Intramolecular Dehydrative Amination: Dead End and Detour. J Org Chem 2023. [PMID: 37392432 DOI: 10.1021/acs.joc.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
A sulfamidate-based stereoselective total synthesis of (+)-preussin has been developed. The key step involves a gold(I)-catalyzed intramolecular dehydrative amination of sulfamate esters tethered to allylic alcohols, which allows for the construction of the cyclic sulfamidate with high stereoselectivity. Further manipulation to highly constrained bicyclic sulfamidate and the following ring-opening process afford 3-hydroxypyrrolidine motif stereoselectively. The energy of the constrained bicyclic ring system is relieved by the subsequent ring-opening process, which leads to a stereoselective formation of the 3-hydroxypyrrolidine motif under mild reaction conditions. The success of this approach not only provides a new method for the total synthesis of enantiomerically pure (+)-preussin but also highlights the synthetic utility of sulfamidates in constructing valuable natural product architectures.
Collapse
Affiliation(s)
- Yunjeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jae-Sang Ryu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Effects and Mechanisms of Action of Preussin, a Marine Fungal Metabolite, against the Triple-Negative Breast Cancer Cell Line, MDA-MB-231, in 2D and 3D Cultures. Mar Drugs 2023; 21:md21030166. [PMID: 36976215 PMCID: PMC10053333 DOI: 10.3390/md21030166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer (BC) with a typically poorer prognosis than other subtypes of BC and limited therapeutic options. Therefore, new drugs would be particularly welcome to help treat TNBC. Preussin, isolated from the marine sponge-associated fungus, Aspergillus candidus, has shown the potential to reduce cell viability and proliferation as well as to induce cell death and cell cycle arrest in 2D cell culture models. However, studies that better mimic the tumors in vivo, such as 3D cell cultures, are needed. Here, we studied the effects of preussin in the MDA-MB-231 cell line, comparing 2D and 3D cell cultures, using ultrastructural analysis and the MTT, BrdU, annexin V-PI, comet (alkaline and FPG modified versions), and wound healing assays. Preussin was found to decrease cell viability, both in 2D and 3D cell cultures, in a dose-dependent manner, impair cell proliferation, and induce cell death, therefore excluding the hypothesis of genotoxic properties. The cellular impacts were reflected by ultrastructural alterations in both cell culture models. Preussin also significantly inhibited the migration of MDA-MB-231 cells. The new data expanded the knowledge on preussin actions while supporting other studies, highlighting its potential as a molecule or scaffold for the development of new anticancer drugs against TNBC.
Collapse
|
7
|
Rolband L, Beasock D, Wang Y, Shu YG, Dinman JD, Schlick T, Zhou Y, Kieft JS, Chen SJ, Bussi G, Oukhaled A, Gao X, Šulc P, Binzel D, Bhullar AS, Liang C, Guo P, Afonin KA. Biomotors, viral assembly, and RNA nanobiotechnology: Current achievements and future directions. Comput Struct Biotechnol J 2022; 20:6120-6137. [PMID: 36420155 PMCID: PMC9672130 DOI: 10.1016/j.csbj.2022.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) serves to further the development of a wide variety of functional nucleic acids and other related nanotechnology platforms. To aid in the dissemination of the most recent advancements, a biennial discussion focused on biomotors, viral assembly, and RNA nanobiotechnology has been established where international experts in interdisciplinary fields such as structural biology, biophysical chemistry, nanotechnology, cell and cancer biology, and pharmacology share their latest accomplishments and future perspectives. The results summarized here highlight advancements in our understanding of viral biology and the structure-function relationship of frame-shifting elements in genomic viral RNA, improvements in the predictions of SHAPE analysis of 3D RNA structures, and the understanding of dynamic RNA structures through a variety of experimental and computational means. Additionally, recent advances in the drug delivery, vaccine design, nanopore technologies, biomotor and biomachine development, DNA packaging, RNA nanotechnology, and drug delivery are included in this critical review. We emphasize some of the novel accomplishments, major discussion topics, and present current challenges and perspectives of these emerging fields.
Collapse
Affiliation(s)
- Lewis Rolband
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Damian Beasock
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Yang Wang
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | - Yao-Gen Shu
- Wenzhou Institute, University of China Academy of Sciences, 1st, Jinlian Road, Longwan District, Wenzhou, Zhjiang 325001, China
| | | | - Tamar Schlick
- New York University, Department of Chemistry and Courant Institute of Mathematical Sciences, Simons Center for Computational Physical Chemistry, New York, NY 10012, USA
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518107, China
| | - Jeffrey S. Kieft
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shi-Jie Chen
- University of Missouri at Columbia, Columbia, MO 65211, USA
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
| | | | - Xingfa Gao
- National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Petr Šulc
- Arizona State University, Tempe, AZ, USA
| | | | | | - Chenxi Liang
- The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- The Ohio State University, Columbus, OH 43210, USA
| | - Kirill A. Afonin
- University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Length-dependent motions of SARS-CoV-2 frameshifting RNA pseudoknot and alternative conformations suggest avenues for frameshifting suppression. Nat Commun 2022; 13:4284. [PMID: 35879278 PMCID: PMC9310368 DOI: 10.1038/s41467-022-31353-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/10/2022] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 frameshifting element (FSE), a highly conserved mRNA region required for correct translation of viral polyproteins, defines an excellent therapeutic target against Covid-19. As discovered by our prior graph-theory analysis with SHAPE experiments, the FSE adopts a heterogeneous, length-dependent conformational landscape consisting of an assumed 3-stem H-type pseudoknot (graph motif 3_6), and two alternative motifs (3_3 and 3_5). Here, for the first time, we build and simulate, by microsecond molecular dynamics, 30 models for all three motifs plus motif-stabilizing mutants at different lengths. Our 3_6 pseudoknot systems, which agree with experimental structures, reveal interconvertible L and linear conformations likely related to ribosomal pausing and frameshifting. The 3_6 mutant inhibits this transformation and could hamper frameshifting. Our 3_3 systems exhibit length-dependent stem interactions that point to a potential transition pathway connecting the three motifs during ribosomal elongation. Together, our observations provide new insights into frameshifting mechanisms and anti-viral strategies.
Collapse
|
9
|
Schlick T, Zhu Q, Dey A, Jain S, Yan S, Laederach A. To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element. J Am Chem Soc 2021; 143:11404-11422. [PMID: 34283611 PMCID: PMC8315264 DOI: 10.1021/jacs.1c03003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has a profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure, has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States
- New York University-East China Normal University Center for Computational Chemistry, New York University-Shanghai, Shanghai 200062, P. R. China
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Swati Jain
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
| | - Shuting Yan
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Schlick T, Zhu Q, Dey A, Jain S, Yan S, Laederach A. To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.31.437955. [PMID: 33821274 PMCID: PMC8020974 DOI: 10.1101/2021.03.31.437955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P.R. China
| | - Qiyao Zhu
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 U.S.A
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Swati Jain
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Shuting Yan
- Department of Chemistry, 100 Washington Square East, Silver Building, New York University, New York, NY 10003 U.S.A
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Jindal S, Ghosh A, Ismail A, Singh N, Komar AA. Role of the uS9/yS16 C-terminal tail in translation initiation and elongation in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 47:806-823. [PMID: 30481328 PMCID: PMC6344880 DOI: 10.1093/nar/gky1180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
The small ribosomal subunit protein uS9 (formerly called rpS16 in Saccharomyces cerevisiae), has a long protruding C-terminal tail (CTT) that extends towards the mRNA cleft of the ribosome. The last C-terminal residue of uS9 is an invariably conserved, positively charged Arg that is believed to enhance interaction of the negatively charged initiator tRNA with the ribosome when the tRNA is base-paired to the AUG codon in the P-site. In order to more fully characterize the role of the uS9 CTT in eukaryotic translation, we tested how truncations, extensions and substitutions within the CTT affect initiation and elongation processes in Saccharomyces cerevisiae. We found that uS9 C-terminal residues are critical for efficient recruitment of the eIF2•GTP•Met-tRNAiMet ternary complex to the ribosome and for its proper response to the presence of an AUG codon in the P-site during the scanning phase of initiation. These residues also regulate hydrolysis of the GTP in the eIF2•GTP•Met-tRNAiMet complex to GDP and Pi. In addition, our data show that uS9 CTT modulates elongation fidelity. Therefore, we propose that uS9 CTT is critical for proper control of the complex interplay of events surrounding accommodation of initiator and elongator tRNAs in the P- and A-sites of the ribosome.
Collapse
Affiliation(s)
- Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amra Ismail
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Nishant Singh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
13
|
Trost BM, Gnanamani E, Hung CIJ, Kalnmals CA. Synthesis of Chiral, Densely Substituted Pyrrolidones via Phosphine-Catalyzed Cycloisomerization. Org Lett 2019; 21:1890-1894. [PMID: 30829494 DOI: 10.1021/acs.orglett.9b00496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Densely substituted chiral pyrrolidones are synthesized via phosphine-catalyzed cycloisomerization of enantioenriched β-amino ynones, which are prepared in a single step using a highly enantioselective Zn-ProPhenol-catalyzed Mannich reaction. The exocyclic alkenes in the cyclization products provide versatile handles for further transformations and typically form with good E/ Z selectivity. This cycloisomerization method can be performed in streamlined fashion, without purification of the intermediate Mannich adduct, and extends to anthranilic acid based scaffolds in addition to ProPhenol-derived Mannich adducts.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Elumalai Gnanamani
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Chao-I Joey Hung
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Christopher A Kalnmals
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
14
|
Hausherr A, Siemeister G, Reissig HU. Alkoxyallene-based syntheses of preussin and its analogs and their cytotoxicity. Org Biomol Chem 2018; 17:122-134. [PMID: 30520931 DOI: 10.1039/c8ob02645a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Short syntheses of oxa-preussin, racemic preussin and (-)-preussin are reported. Starting from a racemic 3-nonyl-substituted methoxyallene derivative, its lithiation and addition to phenylethanal provided the corresponding allenyl alcohol that was converted into two diastereomeric dihydrofuran derivatives by silver nitrate-catalyzed 5-endo-trig cyclization. The acid hydrolysis of the enol ether moiety gave heterocyclic ketones and subsequent highly stereoselective reductions with l-selectride furnished 2-benzyl-5-nonylfuran-3-ol derivatives in good overall yield. The major all-cis-diastereomer has the skeleton and relative configuration of preussin and is hence called oxa-preussin. An analogous sequence with the same allene, but an N-sulfonyl imine as the electrophile, finally led to racemic preussin. The stereoselectivities of the individual steps are discussed in detail. With an enantiopure 2-benzyl-5-nonylpyrrolidin-3-one intermediate the preparation of (-)-preussin with an enantiomeric ratio of >95 : 5 could be accomplished in a few steps. The sign of the optical rotation of this product finally proved the absolute configurations of its precursors and demonstrated that our chiral auxiliary-based route led to the antipode of the natural product. The cytotoxicity of several of the prepared heterocycles against MCF-7 tumor cells was investigated and five compounds, including racemic and enantiopure (-)-preussin, were identified as highly cytotoxic with IC50 values in the range of 3-6 μM.
Collapse
Affiliation(s)
- Arndt Hausherr
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | |
Collapse
|
15
|
Gu BB, Jiao FR, Wu W, Jiao WH, Li L, Sun F, Wang SP, Yang F, Lin HW. Preussins with Inhibition of IL-6 Expression from Aspergillus flocculosus 16D-1, a Fungus Isolated from the Marine Sponge Phakellia fusca. JOURNAL OF NATURAL PRODUCTS 2018; 81:2275-2281. [PMID: 30350993 DOI: 10.1021/acs.jnatprod.8b00662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
New pyrrolidine alkaloids, preussins C-I (1-7) and (11 R)/(11 S)-preussins J and K (8 and 9), were isolated from the sponge-derived fungus Aspergillus flocculosus 16D-1. The structures and configurations of these preussins were elucidated by detailed spectroscopic analysis, modified Mosher's method, and comparisons with literature data. These compounds showed strong to moderate inhibitory activity toward IL-6 production in lipopolysaccharide-induced THP-1 cells with IC50 values ranging from 0.11 to 22 μM, but were inactive against normal tumor cell lines and fungi.
Collapse
Affiliation(s)
- Bin-Bin Gu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fu-Rong Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Wei Wu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Lei Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Shu-Ping Wang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , 200127 , People's Republic of China
| |
Collapse
|
16
|
Devi N, Behera BK, Saikia AK. Stereo- and Regioselective Synthesis of 4-Vinylpyrrolidine from N-Tethered Alkyne-Alkenol. ACS OMEGA 2018; 3:576-584. [PMID: 31457915 PMCID: PMC6641446 DOI: 10.1021/acsomega.7b01785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 06/10/2023]
Abstract
Indium(III) chloride can be efficiently used for the synthesis of 4-vinylpyrrolidine from N-tethered alkyne-alkenol in good yields. The reaction is highly stereo- and regioselective.
Collapse
|
17
|
Dias RM, Momo PB, Burtoloso AC. One-step syntheses of substituted 2-pyrrolidinones and 3-pyrrolidinones from α,β-unsaturated diazoketones and amines. Application in the synthesis of barmumycin. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Rong HJ, Yao JJ, Li JK, Qu J. Molecular Iodine-Mediated α-C–H Oxidation of Pyrrolidines to N,O-Acetals: Synthesis of (±)-Preussin by Late-Stage 2,5-Difunctionalizations of Pyrrolidine. J Org Chem 2017; 82:5557-5565. [DOI: 10.1021/acs.joc.7b00361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hao-Jie Rong
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun-Jun Yao
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ji-Kun Li
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin Qu
- The State Key Laboratory
and Institute of Elemento-organic Chemistry, Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Si CM, Shao LP, Mao ZY, Zhou W, Wei BG. An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (−)-hapalosin. Org Biomol Chem 2017; 15:649-661. [DOI: 10.1039/c6ob02523d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural products of (+)-preussin and (−)-hapalosin have been asymmetrically synthesized through the stereoselective tandem Barbier process.
Collapse
Affiliation(s)
- Chang-Mei Si
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Lu-Ping Shao
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Zhuo-Ya Mao
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Wen Zhou
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry
- School of Pharmacy
- Fudan University
- Shanghai
- China
| |
Collapse
|
20
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Buchman M, Csatayová K, Davies SG, Fletcher AM, Houlsby ITT, Roberts PM, Rowe SM, Thomson JE. Asymmetric Syntheses of (+)-Preussin B, the C(2)-Epimer of (−)-Preussin B, and 3-Deoxy-(+)-preussin B. J Org Chem 2016; 81:4907-22. [DOI: 10.1021/acs.joc.6b00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Buchman
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Kristína Csatayová
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Stephen G. Davies
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Ai M. Fletcher
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Ian T. T. Houlsby
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Paul M. Roberts
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - Sam M. Rowe
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| | - James E. Thomson
- Department
of Chemistry,
Chemistry Research Laboratory, University of Oxford, Mansfield
Road, Oxford OX1 3TA, U.K
| |
Collapse
|
22
|
Burtoloso ACB, Dias RMP, Bernardim B. α,β-Unsaturated diazoketones as useful platforms in the synthesis of nitrogen heterocycles. Acc Chem Res 2015; 48:921-34. [PMID: 25789710 DOI: 10.1021/ar500433t] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Among the different types of diazocarbonyl substrates found in the literature to date, α,β-unsaturated diazoketones have proven to be very promising as multifunctional intermediates. Possessing a diazo group, a ketone function and a double bond all together in a single molecule, these compounds constitute versatile building blocks for synthesis. For example, double bond functionalization, followed by intramolecular insertion reactions, can be a short alternative to prepare several rings or heterocyclic compounds. Although there are many efficient methods to prepare diazoketones, very few can be extended to the synthesis of the a,β-unsaturated diazoketones; this is likely responsible for their limited application in synthesis. Unfortunately, the classical methods to prepare saturated- or aryl-diazoketones (acylation of diazomethane with acyl chlorides or mixed anhydrides) are not suitable for preparing a,β-unsaturated diazoketones, since pyrazolines (dipolar cycloaddition products from the reaction between diazomethane and the double bond) are formed. Although Danheiser's two-step detrifluoroacetylative procedure (starting from a,β-unsaturated methyl ketones) is considered the best general method, it cannot be applied to the synthesis of all types of a,β-unsaturated diazoketones. For example, the synthesis of more complex unsaturated diazoketones, as well as those with epimerizable stereocenters in the γ position, was never described before. Another point is related to the geometry of the double bond, since practically all examples described thus far refer to unsaturated diazoketones with E geometry. In recent years, our research group developed two new Horner-Wadsworth-Emmons reagents (containing a diazocarbonyl function) that could be easily applied in the one-step preparation of α,β-unsaturated diazoketones from aldehydes. Not only were we able to selectively synthesize E- and Z-unsaturated diazoketones, but also to employ these useful platforms in the short synthesis of several nitrogen heterocycles such as indolizidines, quinolizidines, piperidines, and pyrrolidines. Our purpose in this Account is to introduce this class of diazoketone and provide a brief historical overview, culminating in how we developed a general methodology to prepare them. In continuation, we wish to call of the reader's attention to these important building blocks, showing how we could apply them to the synthesis of several nitrogen heterocycles, including the very short preparation of some popular alkaloids. The reader will also notice that the combination of these three important functions in the same molecule makes these compounds special as well as provides powerful platforms to access many important molecules in a direct fashion.
Collapse
Affiliation(s)
- Antonio C. B. Burtoloso
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | - Rafael M. P. Dias
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| | - Barbara Bernardim
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
23
|
The first enantioselective total synthesis of (+)-preussin B and an improved synthesis of (+)-preussin by step-economical methods. Sci China Chem 2015. [DOI: 10.1007/s11426-014-5270-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Zhou QR, Wei XY, Li YQ, Huang D, Wei BG. An efficient method for the preparation of 3-hydroxyl-5-substituted 2-pyrrolidones and application in the divergent synthesis of (−)-preussin and its analogues. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Rosset IG, Dias RMP, Pinho VD, Burtoloso ACB. Three-Step Synthesis of (±)-Preussin from Decanal. J Org Chem 2014; 79:6748-53. [DOI: 10.1021/jo5011558] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Isac G. Rosset
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP Brazil
| | - Rafael M. P. Dias
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP Brazil
| | - Vagner D. Pinho
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP Brazil
| | - Antonio C. B. Burtoloso
- Instituto de Química
de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP Brazil
| |
Collapse
|
26
|
Fukuda T, Sudoh Y, Tsuchiya Y, Okuda T, Igarashi Y. Isolation and biosynthesis of preussin B, a pyrrolidine alkaloid from Simplicillium lanosoniveum. JOURNAL OF NATURAL PRODUCTS 2014; 77:813-817. [PMID: 24588303 DOI: 10.1021/np400910r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new pyrrolidine alkaloid, preussin B (1), was isolated from the culture extract of the fungus Simplicillium lanosoniveum TAMA 173 along with the known congener preussin (2). The structure and absolute configuration of 1 were determined by spectroscopic analysis and spectral comparison with 2. Feeding experiments with 13C-labeled precursors revealed that the pyrrolidine ring of 1 was assembled from acetate and l-phenylalanine by a PKS-NRPS hybrid biosynthetic pathway.
Collapse
Affiliation(s)
- Takao Fukuda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University , 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | |
Collapse
|
27
|
Ofori LO, Hilimire TA, Bennett RP, Brown NW, Smith HC, Miller BL. High-affinity recognition of HIV-1 frameshift-stimulating RNA alters frameshifting in vitro and interferes with HIV-1 infectivity. J Med Chem 2014; 57:723-32. [PMID: 24387306 PMCID: PMC3954503 DOI: 10.1021/jm401438g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
life cycle of the human immunodeficiency virus type 1 (HIV-1)
has an absolute requirement for ribosomal frameshifting during protein
translation in order to produce the polyprotein precursor of the viral
enzymes. While an RNA stem-loop structure (the “HIV-1 Frameshift
Stimulating Signal”, or HIV-1 FSS) controls the frameshift
efficiency and has been hypothesized as an attractive therapeutic
target, developing compounds that selectively bind this RNA and interfere
with HIV-1 replication has proven challenging. Building on our prior
discovery of a “hit” molecule able to bind this stem-loop,
we now report the development of compounds displaying high affinity
for the HIV-1 FSS. These compounds are able to enhance frameshifting
more than 50% in a dual-luciferase assay in human embryonic kidney
cells, and they strongly inhibit the infectivity of pseudotyped HIV-1
virions.
Collapse
Affiliation(s)
- Leslie O Ofori
- Departments of Chemistry, ‡Biochemistry and Biophysics, and §Dermatology, University of Rochester , Rochester, New York 14642, United States
| | | | | | | | | | | |
Collapse
|
28
|
Dinman JD. Mechanisms and implications of programmed translational frameshifting. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:661-73. [PMID: 22715123 PMCID: PMC3419312 DOI: 10.1002/wrna.1126] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While ribosomes must maintain translational reading frame in order to translate primary genetic information into polypeptides, cis‐acting signals located in mRNAs represent higher order information content that can be used to fine‐tune gene expression. Classes of signals have been identified that direct a fraction of elongating ribosomes to shift reading frame by one base in the 5′ (−1) or 3′ (+1) direction. This is called programmed ribosomal frameshifting (PRF). Although mechanisms of PRF differ, a common feature is induction of ribosome pausing, which alters kinetic partitioning rates between in‐frame and out‐of‐frame codons at specific ‘slippery’ sequences. Many viruses use PRF to ensure synthesis of the correct ratios of virus‐encoded proteins required for proper viral particle assembly and maturation, thus identifying PRF as an attractive target for antiviral therapeutics. In contrast, recent studies indicate that PRF signals may primarily function as mRNA destabilizing elements in cellular mRNAs. These studies suggest that PRF may be used to fine‐tune gene expression through mRNA decay pathways. The possible regulation of PRF by noncoding RNAs is also discussed. WIREs RNA 2012 doi: 10.1002/wrna.1126 This article is categorized under:
RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > Computational Analyses of RNA Translation > Translation Regulation
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
29
|
Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:569870. [PMID: 22545064 PMCID: PMC3321566 DOI: 10.1155/2012/569870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/16/2012] [Indexed: 01/17/2023]
Abstract
Programmed ribosomal frameshifting (PRF) serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1 PRF mechanism among viruses.
Collapse
|
30
|
Rakauskaite R, Liao PY, Rhodin MHJ, Lee K, Dinman JD. A rapid, inexpensive yeast-based dual-fluorescence assay of programmed--1 ribosomal frameshifting for high-throughput screening. Nucleic Acids Res 2011; 39:e97. [PMID: 21602263 PMCID: PMC3152369 DOI: 10.1093/nar/gkr382] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Programmed −1 ribosomal frameshifting (−1 PRF) is a mechanism that directs elongating ribosomes to shift-reading frame by 1 base in the 5′ direction that is utilized by many RNA viruses. Importantly, rates of −1 PRF are fine-tuned by viruses, including Retroviruses, Coronaviruses, Flavivriuses and in two endogenous viruses of the yeast Saccharomyces cerevisiae, to deliver the correct ratios of different viral proteins for efficient replication. Thus, −1 PRF presents a novel target for antiviral therapeutics. The underlying molecular mechanism of −1 PRF is conserved from yeast to mammals, enabling yeast to be used as a logical platform for high-throughput screens. Our understanding of the strengths and pitfalls of assays to monitor −1 PRF have evolved since the initial discovery of −1 PRF. These include controlling for the effects of drugs on protein expression and mRNA stability, as well as minimizing costs and the requirement for multiple processing steps. Here we describe the development of an automated yeast-based dual fluorescence assay of −1 PRF that provides a rapid, inexpensive automated pipeline to screen for compounds that alter rates of −1 PRF which will help to pave the way toward the discovery and development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Rasa Rakauskaite
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
31
|
Lapointe G, Schenk K, Renaud P. Concise Synthesis of Pyrrolidine and Indolizidine Alkaloids by a Highly Convergent Three‐Component Reaction. Chemistry 2011; 17:3207-12. [DOI: 10.1002/chem.201003137] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Lapointe
- Departement für Chemie und Biochemie, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland), Fax: (+41) 31‐631‐3426
| | - Kurt Schenk
- École Polytechnique Fédérale de Lausanne, Laboratoire de Cristallographie, Le Cubotron, Dorigny, 1015 Lausanne (Switzerland)
| | - Philippe Renaud
- Departement für Chemie und Biochemie, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland), Fax: (+41) 31‐631‐3426
| |
Collapse
|
32
|
Paderes MC, Chemler SR. Diastereoselective pyrrolidine synthesis via copper promoted intramolecular aminooxygenation of alkenes: formal synthesis of (+)-monomorine. Org Lett 2009; 11:1915-8. [PMID: 19331361 PMCID: PMC2714983 DOI: 10.1021/ol9003492] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diastereoselectivity of the copper-promoted intramolecular aminooxygenation of various alkene substrates was investigated. Alpha-substituted 4-pentenyl sulfonamides favor the formation of 2,5-cis-pyrrolidines (dr >20:1) giving excellent yields which range from 76-97% while gamma-substituted substrates favor the 2,3-trans pyrrolidine adducts with moderate selectivity (ca. 3:1). A substrate whose N-substituent was directly tethered to the alpha-carbon exclusively yielded the 2,5-trans pyrrolidine. The synthetic utility of the method was demonstrated by a short and efficient formal synthesis of (+)-monomorine.
Collapse
Affiliation(s)
- Monissa C Paderes
- Department of Chemistry, University at Buffalo, The State University of New York, 618 Natural Sciences Complex, Buffalo, NY 14260
| | - Sherry R Chemler
- Department of Chemistry, University at Buffalo, The State University of New York, 618 Natural Sciences Complex, Buffalo, NY 14260
| |
Collapse
|
33
|
Park SJ, Jung YH, Kim YG, Park HJ. Identification of novel ligands for the RNA pseudoknot that regulate -1 ribosomal frameshifting. Bioorg Med Chem 2008; 16:4676-84. [PMID: 18321712 PMCID: PMC7125880 DOI: 10.1016/j.bmc.2008.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/24/2022]
Abstract
In many viruses, -1 ribosomal frameshifting (-1RF) regulates synthesis of proteins and is crucial for virus production. An RNA pseudoknot is one of the essential components of the viral -1RF system. Thermodynamic or kinetic control of pseudoknot folding may be important in regulating the efficiency of -1RF. Thus, small molecules that interact with viral RNA pseudoknots may disrupt the -1RF system and show antiviral activity. In this study, we conducted virtual screening of a chemical database targeting the X-ray crystal structure of RNA pseudoknot complexed with biotin to identify ligands that may regulate an -1RF system containing biotin-aptamer as an RNA pseudoknot component. After docking screening of about 80,000 compounds, 58 high-ranked hits were selected and their activities were examined by in vitro and cell-based -1 frameshifting assays. Six compounds increased the efficiency of -1 frameshifting, and these are novel small molecule compounds that regulate the -1RF.
Collapse
Affiliation(s)
- So-Jung Park
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Davis FA, Zhang J, Qiu H, Wu Y. Asymmetric Synthesis of cis- and trans-2,5-Disubstituted Pyrrolidines from 3-Oxo Pyrrolidine 2-Phosphonates: Synthesis of (+)-Preussin and Analogs. Org Lett 2008; 10:1433-6. [DOI: 10.1021/ol800255r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Franklin A. Davis
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Junyi Zhang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Hui Qiu
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Yongzhong Wu
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
35
|
Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA (NEW YORK, N.Y.) 2007; 13:2224-37. [PMID: 17921318 PMCID: PMC2080596 DOI: 10.1261/rna.694007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Previously, we demonstrated that treatment of monocytic cells with IFN-gamma causes release of ribosomal protein L13a from the 60S ribosome and subsequent translational silencing of Ceruloplasmin (Cp) mRNA. Here, evidence using cultured cells demonstrates that Cp mRNA silencing is dependent on L13a and that L13a-deficient ribosomes are competent for global translational activity. Human monocytic U937 cells were stably transfected with two different shRNA sequences for L13a and clonally selected for more than 98% abrogation of total L13a expression. Metabolic labeling of these cells showed rescue of Cp translation from the IFN-gamma mediated translational silencing activity. Depletion of L13a caused significant reduction of methylation of ribosomal RNA and of cap-independent translation mediated by Internal Ribosome Entry Site (IRES) elements derived from p27, p53, and SNAT2 mRNAs. However, no significant differences in the ribosomal RNA processing, polysome formation, global translational activity, translational fidelity, and cell proliferation were observed between L13a-deficient and wild-type control cells. These results support the notion that ribosome can serve as a depot for releasable translation-regulatory factors unrelated to its basal polypeptide synthetic function. Unlike mammalian cells, the L13a homolog in yeast is indispensable for growth. Thus, L13a may have evolved from an essential ribosomal protein in lower eukaryotes to having a role as a dispensable extra-ribosomal function in higher eukaryotes.
Collapse
Affiliation(s)
- Sujan Chaudhuri
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Pace DA, Manahan DT. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae. THE BIOLOGICAL BULLETIN 2007; 212:115-29. [PMID: 17438204 DOI: 10.2307/25066589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Cold environments represent a substantial volume of the biosphere. To study developmental physiology in subzero seawater temperatures typically found in the Southern Ocean, rates and costs of protein synthesis were measured in embryos and larvae of Sterechinus neumayeri, the Antarctic sea urchin. Our analysis of the "cost of living" in extreme cold for this species shows (1) that cost of protein synthesis is strikingly low during development, at 0.41 +/- 0.05 J (mg protein synthesized)(-1) (n = 16); (2) that synthesis cost is fixed and independent of synthesis rate; and (3) that a low synthesis cost permits high rates of protein turnover at -1 degrees C, at rates comparable to those of temperate species of sea urchin embryos developing at 15 degrees C. With a low synthesis cost, even at the highest synthesis rates measured (gastrulae), the proportion of total metabolism accounted for by protein synthesis in the Antarctic sea urchin was 54%-a value similar to that of temperate sea urchin embryos. In the Antarctic sea urchin, up to 87% of metabolic rate can be accounted for by the combined energy costs of protein synthesis and the sodium pump. We conclude that, in Antarctic sea urchin embryos, high rates of protein synthesis can be supported in extreme-cold environments while still maintaining low rates of respiration.
Collapse
Affiliation(s)
- Douglas A Pace
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0371, USA
| | | |
Collapse
|
37
|
Wolfe JP. Stereoselective Synthesis of Saturated Heterocycles via Pd-Catalyzed Alkene Carboetherification and Carboamination Reactions. European J Org Chem 2006; 2007:571-582. [PMID: 19183704 PMCID: PMC2633094 DOI: 10.1002/ejoc.200600767] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Indexed: 11/11/2022]
Abstract
The development of Pd-catalyzed carboetherification and carboamination reactions between aryl/alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of product formation, which involves an unusual intramolecular syn-insertion of an alkene into a Pd-Heteroatom bond is also discussed in detail.
Collapse
Affiliation(s)
- John P Wolfe
- University of Michigan, Department of Chemistry, 930 N. University Avenue, Ann Arbor, Michigan, 48109-1055
| |
Collapse
|
38
|
Bertrand MB, Wolfe JP. A concise stereoselective synthesis of Preussin, 3-epi-Preussin, and analogues. Org Lett 2006; 8:2353-6. [PMID: 16706524 PMCID: PMC2613785 DOI: 10.1021/ol0606435] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] A new stereoselective synthesis of the antifungal and antitumor agents Preussin and 3-epi-Preussin via a Pd-catalyzed carboamination of a protected amino alcohol is described. The key transformation leads to simultaneous formation of the N-C2 bond and the C1'-aryl bond, and allows installation of the aryl group one step from the end of the sequence. This strategy permits the facile construction of a variety of preussin analogues bearing different aromatic groups.
Collapse
|
39
|
Gogoi N, Boruwa J, Barua NC. A Concise Total Synthesis of Antifungal Antibiotic (+)-Preussin. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500833] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Meskauskas A, Petrov AN, Dinman JD. Identification of functionally important amino acids of ribosomal protein L3 by saturation mutagenesis. Mol Cell Biol 2006; 25:10863-74. [PMID: 16314511 PMCID: PMC1316954 DOI: 10.1128/mcb.25.24.10863-10874.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is accumulating evidence that many ribosomal proteins are involved in shaping rRNA into their functionally correct conformations through RNA-protein interactions. Moreover, although rRNA seems to play the central role in all aspects of ribosome function, ribosomal proteins may be involved in facilitating communication between different functional regions in ribosome, as well as between the ribosome and cellular factors. In an effort to more fully understand how ribosomal proteins may influence ribosome function, we undertook large-scale mutational analysis of ribosomal protein L3, a core protein of the large subunit that has been implicated in numerous ribosome-associated functions in the past. A total of 98 different rpl3 alleles were genetically characterized with regard to their effects on killer virus maintenance, programmed -1 ribosomal frameshifting, resistance/hypersensitivity to the translational inhibitor anisomycin and, in specific cases, the ability to enhance translation of a reporter mRNA lacking the 5' (7)mGppp cap structure and 3' poly(A) tail. Biochemical studies reveal a correlation between an increased affinity for aminoacyl-tRNA and the extent of anisomycin resistance and a decreased peptidyltransferase activity and increased frameshifting efficiency. Immunoblot analyses reveal that the superkiller phenotype is not due to a defect in the ability of ribosomes to recruit the Ski-complex, suggesting that the defect lies in a reduced ability of mutant ribosomes to distinguish between cap(+)/poly(A)(+) and cap(-)/poly(A)(-) mRNAs. The results of these analyses are discussed with regard to how protein-rRNA interactions may affect ribosome function.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, 20742, USA
| | | | | |
Collapse
|
41
|
Wills NM, Moore B, Hammer A, Gesteland RF, Atkins JF. A functional -1 ribosomal frameshift signal in the human paraneoplastic Ma3 gene. J Biol Chem 2006; 281:7082-8. [PMID: 16407312 DOI: 10.1074/jbc.m511629200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A bioinformatics approach to finding new cases of -1 frameshifting in the expression of human genes revealed a classical retrovirus-like heptanucleotide shift site followed by a potential structural stimulator in the paraneoplastic antigen Ma3 and Ma5 genes. Analysis of the sequence 3' of the shift site demonstrated that an RNA pseudoknot in Ma3 is important for promoting efficient -1 frame-shifting. Ma3 is a member of a family of six genes in humans whose protein products contain homology to retroviral Gag proteins. The -1 frameshift site and pseudoknot structure are conserved in other mammals, but there are some sequence differences. Although the functions of the Ma genes are unknown, the serious neurological effects of ectopic expression in tumor cells indicate their importance in the brain.
Collapse
Affiliation(s)
- Norma M Wills
- Department of Human Genetics, 15 N. 2030 E., Bldg. 533, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
42
|
Kiparisov S, Petrov A, Meskauskas A, Sergiev PV, Dontsova OA, Dinman JD. Structural and functional analysis of 5S rRNA in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:235-47. [PMID: 16047201 PMCID: PMC1276653 DOI: 10.1007/s00438-005-0020-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 05/27/2005] [Indexed: 11/26/2022]
Abstract
5S rRNA extends from the central protuberance of the large ribosomal subunit, through the A-site finger, and down to the GTPase-associated center. Here, we present a structure-function analysis of seven 5S rRNA alleles which are sufficient for viability in the yeast Saccharomyces cerevisiae when expressed in the absence of wild-type 5S rRNAs, and extend this analysis using a large bank of mutant alleles that show semi-dominant phenotypes in the presence of wild-type 5S rRNA. This analysis supports the hypothesis that 5S rRNA serves to link together several different functional centers of the ribosome. Data are also presented which suggest that in eukaryotic genomes selection has favored the maintenance of multiple alleles of 5S rRNA, and that these may provide cells with a mechanism to post-transcriptionally regulate gene expression.
Collapse
|
43
|
Kim JH, Curtis-Long MJ, Seo WD, Ryu YB, Yang MS, Park KH. Stereodivergent Syntheses of Anisomycin Derivatives from d-Tyrosine. J Org Chem 2005; 70:4082-7. [PMID: 15876100 DOI: 10.1021/jo050079w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structures: see text] Enantiomerically pure 2-alkyl-3-acetoxy-4-iodopyrrolidines with all groups cis, and all adjacent groups trans (10 and 17), important precursors for the synthesis of pyrrolidinediols, have been prepared from D-tyrosine through regio- and diastereoselective reduction of a vinyl ketone and subsequent iodoamidation controlled by minimization of nonbonding steric interactions. Highly stereodivergent Woodward-Prevost methodology, applied to both iodopyrrolidines, yielded enantiomerically pure (2R,3R,4R)-, (2R,3R,4S)-, and (2R,3S,4R)-deacetylanisomycin (3, 4, and 5), each in excellent de. Incorporation of differential protection of the hydroxyl groups led to a one-pot synthesis of (2R,3R,4R)-anisomycin 2.
Collapse
Affiliation(s)
- Jin Hyo Kim
- Department of Agricultural Chemistry, Division of Applied Life Science (BK21 programs), Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Bicistronic reporter assay systems have become a mainstay of molecular biology. While the assays themselves encompass a broad range of diverse and unrelated experimental protocols, the numerical data garnered from these experiments often have similar statistical properties. In general, a primary dataset measures the paired expression of two internally controlled reporter genes. The expression ratio of these two genes is then normalized to an external control reporter. The end result is a ‘ratio of ratios’ that is inherently sensitive to propagation of the error contributed by each of the respective numerical components. The statistical analysis of this data therefore requires careful handling in order to control for the propagation of error and its potentially misleading effects. A careful survey of the literature found no consistent method for the statistical analysis of data generated from these important and informative assay systems. In this report, we present a detailed statistical framework for the systematic analysis of data obtained from bicistronic reporter assay systems. Specifically, a dual luciferase reporter assay was employed to measure the efficiency of four programmed −1 frameshift signals. These frameshift signals originate from the L-A virus, the SARS-associated Coronavirus and computationally identified frameshift signals from two Saccharomyces cerevisiae genes. Furthermore, these statistical methods were applied to prove that the effects of anisomycin on programmed −1 frameshifting are statistically significant. A set of Microsoft Excel spreadsheets, which can be used as templates for data generated by dual reporter assay systems, and an online tutorial are available at our website (http://dinmanlab.umd.edu/statistics). These spreadsheets could be easily adapted to any bicistronic reporter assay system.
Collapse
Affiliation(s)
- Jonathan L Jacobs
- Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to present recent developments in the prenatal diagnosis of the most clinically relevant congenital infections. RECENT FINDINGS Immunoglobin G avidity testing can help to differentiate between recent or prior infection. A combination of tests, including serology, avidity and polymerase chain reaction, may be necessary to improve accuracy of diagnosis. The interval between exposure to an infectious agent and prenatal testing can be critical to the interpretation of the test result. SUMMARY This review reinforces the need for accurate testing to guide appropriate counseling and individual fetal risk assessment. The findings of viral-specific antibodies or sonographic abnormalities do not accurately predict the severity or outcome of fetal infection. Further research is necessary to determine the pathogenesis of transplacental viral transmission and thereby allow us to target prevention strategies.
Collapse
Affiliation(s)
- Janet I Andrews
- Division of Maternal-Fetal Medicine, University of Iowa, Iowa City, Iowa 52242-1080, USA.
| |
Collapse
|
46
|
Harger JW, Dinman JD. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2003; 9:1019-24. [PMID: 12869712 PMCID: PMC1236998 DOI: 10.1261/rna.5930803] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A new in vivo assay system has been developed to study programmed frameshifting in the yeast Saccharomyces cerevisiae. Frameshift signals are inserted between the Renilla and firefly luciferase reporter genes contained in a yeast expression vector and the two activities are directly measured from cell lysates in one tube. Similar to other bicistronic reporter systems, this one allows the efficient estimation of recoding efficiency by comparison of the normalized activity ratios from each luciferase protein. The assay system has been applied to HIV-1 and L-A directed programmed -1 frameshifting and Ty1 and Ty3 directed +1 frameshifting. The assay system is amenable to high-throughput screening.
Collapse
Affiliation(s)
- Jason W Harger
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|