1
|
Hofer DC, Zirkovits G, Pelzmann HJ, Huber K, Pessentheiner AR, Xia W, Uno K, Miyazaki T, Kon K, Tsuneki H, Pendl T, Al Zoughbi W, Madreiter-Sokolowski CT, Trausinger G, Abdellatif M, Schoiswohl G, Schreiber R, Eisenberg T, Magnes C, Sedej S, Eckhardt M, Sasahara M, Sasaoka T, Nitta A, Hoefler G, Graier WF, Kratky D, Auwerx J, Bogner-Strauss JG. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health. FASEB J 2019; 33:13808-13824. [PMID: 31638418 PMCID: PMC6894082 DOI: 10.1096/fj.201801323r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.
Collapse
Affiliation(s)
- Dina C. Hofer
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabriel Zirkovits
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Helmut J. Pelzmann
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Fresenius Kabi Austria GmbH, Graz, Austria
| | - Katharina Huber
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Ariane R. Pessentheiner
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- Department of Medicine, University of California–San Diego, La Jolla, California, USA
| | - Wenmin Xia
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Toh Miyazaki
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kanta Kon
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Wael Al Zoughbi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Gert Trausinger
- Joanneum Research, HEALTH–Institute for Biomedicine and Health Sciences, Graz, Austria
| | | | | | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph Magnes
- Joanneum Research, HEALTH–Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | | | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Juliane G. Bogner-Strauss
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 2017; 7:16872. [PMID: 29203794 PMCID: PMC5715020 DOI: 10.1038/s41598-017-17151-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/21/2017] [Indexed: 11/28/2022] Open
Abstract
We have identified SHATI/NAT8L in the brain of mice treated with methamphetamine. Recently, it has been reported that SHATI is N-acetyltransferase 8-like protein (NAT8L) that produces N-acetylaspatate (NAA) from aspartate and acetyl-CoA. We have generated SHATI/NAT8L knockout (Shati−/−) mouse which demonstrates behavioral deficits that are not rescued by single NAA supplementation, although the reason for which is still not clarified. It is possible that the developmental impairment results from deletion of SHATI/NAT8L in the mouse brain, because NAA is involved in myelination through lipid synthesis in oligodendrocytes. However, it remains unclear whether SHATI/NAT8L is involved in brain development. In this study, we found that the expression of Shati/Nat8l mRNA was increased with brain development in mice, while there was a reduction in the myelin basic protein (MBP) level in the prefrontal cortex of juvenile, but not adult, Shati−/− mice. Next, we found that deletion of SHATI/NAT8L induces several behavioral deficits in mice, and that glyceryltriacetate (GTA) treatment ameliorates the behavioral impairments and normalizes the reduced protein level of MBP in juvenile Shati−/− mice. These findings suggest that SHATI/NAT8L is involved in myelination in the juvenile mouse brain via supplementation of acetate derived from NAA. Thus, reduction of SHATI/NAT8L induces developmental neuronal dysfunction.
Collapse
|
3
|
Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease. Front Mol Neurosci 2017; 10:161. [PMID: 28626388 PMCID: PMC5454052 DOI: 10.3389/fnmol.2017.00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023] Open
Abstract
Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA) twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation), expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF-2) in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.
Collapse
Affiliation(s)
- Abhilash P. Appu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Sean Moran
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Vikram Nambiar
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Jishnu K. S. Krishnan
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| |
Collapse
|
4
|
Prokesch A, Pelzmann HJ, Pessentheiner AR, Huber K, Madreiter-Sokolowski CT, Drougard A, Schittmayer M, Kolb D, Magnes C, Trausinger G, Graier WF, Birner-Gruenberger R, Pospisilik JA, Bogner-Strauss JG. N-acetylaspartate catabolism determines cytosolic acetyl-CoA levels and histone acetylation in brown adipocytes. Sci Rep 2016; 6:23723. [PMID: 27045997 PMCID: PMC4820693 DOI: 10.1038/srep23723] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Histone acetylation depends on the abundance of nucleo-cytoplasmic acetyl-CoA. Here, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. N-acetylaspartate (NAA) is a highly abundant brain metabolite catabolized by aspartoacylase yielding aspartate and acetate. The latter can be further used for acetyl-CoA production. Prior to this work, the presence of NAA has not been described in adipocytes. Here, we show that accumulation of NAA decreases the brown adipocyte phenotype. We increased intracellular NAA concentrations in brown adipocytes via media supplementation or knock-down of aspartoacylase and measured reduced lipolysis, thermogenic gene expression, and oxygen consumption. Combinations of approaches to increase intracellular NAA levels showed additive effects on lipolysis and gene repression, nearly abolishing the expression of Ucp1, Cidea, Prdm16, and Ppara. Transcriptome analyses of aspartoacylase knock-down cells indicate deficiencies in acetyl-CoA and lipid metabolism. Concordantly, cytoplasmic acetyl-CoA levels and global histone H3 acetylation were decreased. Further, activating histone marks (H3K27ac and H3K9ac) in promoters/enhancers of brown marker genes showed reduced acetylation status. Taken together, we present a novel route for cytoplasmic acetyl-CoA production in brown adipocytes. Thereby, we mechanistically connect the NAA pathway to the epigenomic regulation of gene expression, modulating the phenotype of brown adipocytes.
Collapse
Affiliation(s)
- A. Prokesch
- Institute of Biochemistry, Graz University of Technology, Austria,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria,
| | - H. J. Pelzmann
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - K. Huber
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - A. Drougard
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - M. Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz and Omics Center Graz, BioTechMed-Graz, Austria
| | - D. Kolb
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Austria,ZMF, Center for Medical Research, Medical University of Graz, Austria
| | - C. Magnes
- HEALTH Insitute for Biomedicine and Health Sciences, Joanneum Research, Graz, Austria
| | - G. Trausinger
- HEALTH Insitute for Biomedicine and Health Sciences, Joanneum Research, Graz, Austria
| | - W. F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - R. Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz and Omics Center Graz, BioTechMed-Graz, Austria
| | - J. A. Pospisilik
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
5
|
Pessentheiner AR, Pelzmann HJ, Walenta E, Schweiger M, Groschner LN, Graier WF, Kolb D, Uno K, Miyazaki T, Nitta A, Rieder D, Prokesch A, Bogner-Strauss JG. NAT8L (N-acetyltransferase 8-like) accelerates lipid turnover and increases energy expenditure in brown adipocytes. J Biol Chem 2013; 288:36040-51. [PMID: 24155240 PMCID: PMC3861652 DOI: 10.1074/jbc.m113.491324] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NAT8L (N-acetyltransferase 8-like) catalyzes the formation of N-acetylaspartate (NAA) from acetyl-CoA and aspartate. In the brain, NAA delivers the acetate moiety for synthesis of acetyl-CoA that is further used for fatty acid generation. However, its function in other tissues remained elusive. Here, we show for the first time that Nat8l is highly expressed in adipose tissues and murine and human adipogenic cell lines and is localized in the mitochondria of brown adipocytes. Stable overexpression of Nat8l in immortalized brown adipogenic cells strongly increases glucose incorporation into neutral lipids, accompanied by increased lipolysis, indicating an accelerated lipid turnover. Additionally, mitochondrial mass and number as well as oxygen consumption are elevated upon Nat8l overexpression. Concordantly, expression levels of brown marker genes, such as Prdm16, Cidea, Pgc1α, Pparα, and particularly UCP1, are markedly elevated in these cells. Treatment with a PPARα antagonist indicates that the increase in UCP1 expression and oxygen consumption is PPARα-dependent. Nat8l knockdown in brown adipocytes has no impact on cellular triglyceride content, lipogenesis, or oxygen consumption, but lipolysis and brown marker gene expression are increased; the latter is also observed in BAT of Nat8l-KO mice. Interestingly, the expression of ATP-citrate lyase is increased in Nat8l-silenced adipocytes and BAT of Nat8l-KO mice, indicating a compensatory mechanism to sustain the acetyl-CoA pool once Nat8l levels are reduced. Taken together, our data show that Nat8l impacts on the brown adipogenic phenotype and suggests the existence of the NAT8L-driven NAA metabolism as a novel pathway to provide cytosolic acetyl-CoA for lipid synthesis in adipocytes.
Collapse
Affiliation(s)
- Ariane R. Pessentheiner
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Helmut J. Pelzmann
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Evelyn Walenta
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria
| | - Martina Schweiger
- the Institute for Molecular Biosciences, University of Graz, Heinrichstrasse 31, 8010 Graz, Austria
| | | | | | - Dagmar Kolb
- Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria, ,the Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Kyosuke Uno
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Toh Miyazaki
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Atsumi Nitta
- the Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan, and
| | - Dietmar Rieder
- the Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innrain 80, 6020 Innsbruck, Austria
| | - Andreas Prokesch
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria
| | - Juliane G. Bogner-Strauss
- From the Institute for Genomics and Bioinformatics, Graz University of Technology, Petergasse 14, 8010 Graz, Austria, ,the Institute of Biochemistry, Graz University of Technology, Petergasse 12, 8010 Graz, Austria, , To whom correspondence should be addressed: Petersgasse 14/5, 8010 Graz, Austria. Tel.: 43-316-873-5337; E-mail:
| |
Collapse
|
6
|
Ariyannur PS, Arun P, Barry ES, Andrews-Shigaki B, Bosomtwi A, Tang H, Selwyn R, Grunberg NE, Moffett JR, Namboodiri AM. Do reductions in brainN-acetylaspartate levels contribute to the etiology of some neuropsychiatric disorders? J Neurosci Res 2013; 91:934-42. [DOI: 10.1002/jnr.23234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/04/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Prasanth S. Ariyannur
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Erin S. Barry
- Department of Medical and Clinical Psychology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Brian Andrews-Shigaki
- Department of Military and Emergency Medicine; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Asamoah Bosomtwi
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Haiying Tang
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Reed Selwyn
- Department of Radiology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| | - Aryan M.A. Namboodiri
- Department of Anatomy, Physiology and Genetics; Uniformed Services University of the Health Sciences; Bethesda; Maryland
| |
Collapse
|
7
|
|
8
|
Collard F, Stroobant V, Lamosa P, Kapanda CN, Lambert DM, Muccioli GG, Poupaert JH, Opperdoes F, Van Schaftingen E. Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase. J Biol Chem 2010; 285:29826-33. [PMID: 20657015 DOI: 10.1074/jbc.m110.152629] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present work was to determine the identity of the enzymes that synthesize N-acetylaspartylglutamate (NAAG), the most abundant dipeptide present in vertebrate central nervous system (CNS), and β-citrylglutamate, a structural analogue of NAAG present in testis and immature brain. Previous evidence suggests that NAAG is not synthesized on ribosomes but presumably is synthesized by a ligase. As attempts to detect this ligase in brain extracts failed, we searched the mammalian genomes for putative enzymes that could catalyze this type of reaction. Mammalian genomes were found to encode two putative ligases homologous to Escherichia coli RIMK, which ligates glutamates to the C terminus of ribosomal protein S6. One of them, named RIMKLA, is almost exclusively expressed in the CNS, whereas RIMKLB, which shares 65% sequence identity with RIMKLA, is expressed in CNS and testis. Both proteins were expressed in bacteria or HEK293T cells and purified. RIMKLA catalyzed the ATP-dependent synthesis of N-acetylaspartylglutamate from N-acetylaspartate and l-glutamate. RIMKLB catalyzed this reaction as well as the synthesis of β-citrylglutamate. The nature of the reaction products was confirmed by mass spectrometry and NMR. RIMKLA was shown to produce stoichiometric amounts of NAAG and ADP, in agreement with its belonging to the ATP-grasp family of ligases. The molecular identification of these two enzymes will facilitate progress in the understanding of the function of NAAG and β-citrylglutamate.
Collapse
Affiliation(s)
- François Collard
- Laboratory of Physiological Chemistry, de Duve Institute and Université Catholique de Louvain, Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kolwijck E, Wevers RA, Engelke UF, Woudenberg J, Bulten J, Blom HJ, Massuger LFAG. Ovarian cyst fluid of serous ovarian tumors contains large quantities of the brain amino acid N-acetylaspartate. PLoS One 2010; 5:e10293. [PMID: 20421982 PMCID: PMC2858663 DOI: 10.1371/journal.pone.0010293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/25/2010] [Indexed: 11/18/2022] Open
Abstract
Background In humans, N-acetyl L-aspartate (NAA) has not been detected in other tissues than the brain. The physiological function of NAA is yet undefined. Recently, it has been suggested that NAA may function as a molecular water pump, responsible for the removal of large amounts of water from the human brain. Ovarian tumors typically present as large cystic masses with considerable fluid accumulation. Methodology and Principal Findings Using Gas Chromatography-Mass Spectrometry, we demonstrated that NAA was present in a high micromolar concentration in oCF of epithelial ovarian tumors (EOTs) of serous histology, sometimes in the same range as found in the extracellular space of the human brain. In contrast, oCF of EOTs with a mucinous, endometrioid and clear cell histological subtype contained a low micromolar concentration of NAA. Serous EOTs have a cellular differentiation pattern which resembles the lining of the fallopian tube and differs from the other histological subtypes. The NAA concentration in two samples of fluid accumulation in the fallopian tube (hydrosalpinx) was in the same ranges as NAA found in oCF of serous EOTs. The NAA concentration in oCF of patients with serous EOTs was mostly 10 to 50 fold higher than their normal serum NAA concentration, whereas in patients with other EOT subtypes, serum and cyst fluid NAA concentration was comparable. Conclusions and Significance The high concentration of NAA in cyst fluid of serous EOTs and low serum concentrations of NAA in these patients, suggest a local production of NAA in serous EOTs. Our findings provide the first identification of NAA concentrations high enough to suggest local production outside the human brain. Our findings contribute to the ongoing research understanding the physiological function of NAA in the human body.
Collapse
Affiliation(s)
- Eva Kolwijck
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ron A. Wevers
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| | - Udo F. Engelke
- Laboratory of Pediatrics and Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jannes Woudenberg
- Department of Gastroenterology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Henk J. Blom
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem J 2009; 425:127-36. [PMID: 19807691 DOI: 10.1042/bj20091024] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The brain-specific compound NAA (N-acetylaspartate) occurs almost exclusively in neurons, where its concentration reaches approx. 20 mM. Its abundance is determined in patients by MRS (magnetic resonance spectroscopy) to assess neuronal density and health. The molecular identity of the NAT (N-acetyltransferase) that catalyses NAA synthesis has remained unknown, because the enzyme is membrane-bound and difficult to purify. Database searches indicated that among putative NATs (i.e. proteins homologous with known NATs, but with uncharacterized catalytic activity) encoded by the human and mouse genomes two were almost exclusively expressed in brain, NAT8L and NAT14. Transfection studies in HEK-293T [human embryonic kidney-293 cells expressing the large T-antigen of SV40 (simian virus 40)] indicated that NAT8L, but not NAT14, catalysed the synthesis of NAA from L-aspartate and acetyl-CoA. The specificity of NAT8L, its Km for aspartate and its sensitivity to detergents are similar to those described for brain Asp-NAT. Confocal microscopy analysis of CHO (Chinese-hamster ovary) cells and neurons expressing recombinant NAT8L indicates that it is associated with the ER (endoplasmic reticulum), but not with mitochondria. A mutation search in the NAT8L gene of the only patient known to be deficient in NAA disclosed the presence of a homozygous 19 bp deletion, resulting in a change in reading frame and the absence of production of a functional protein. We conclude that NAT8L, a neuron-specific protein, is responsible for NAA synthesis and is mutated in primary NAA deficiency (hypoacetylaspartia). The molecular identification of this enzyme will lead to new perspectives in the clarification of the function of this most abundant amino acid derivative in neurons and for the diagnosis of hypoacetylaspartia in other patients.
Collapse
|
11
|
A novel key–lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular space. Amino Acids 2009; 38:51-5. [DOI: 10.1007/s00726-009-0232-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
12
|
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81:89-131. [PMID: 17275978 PMCID: PMC1919520 DOI: 10.1016/j.pneurobio.2006.12.003] [Citation(s) in RCA: 1030] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 12/07/2006] [Accepted: 12/11/2006] [Indexed: 01/02/2023]
Abstract
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal central nervous system (CNS) development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered.
Collapse
Affiliation(s)
- John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | | | |
Collapse
|