1
|
He L, Wang H, Yu Z, Liao C, Ding K, Zhang C, Yu C, Zhang C. Rescue of an enterotropic Newcastle disease virus strain ZM10 from cloned cDNA and stable expressing an inserted foreign gene. BMC Biotechnol 2022; 22:38. [PMID: 36471312 PMCID: PMC9724440 DOI: 10.1186/s12896-022-00763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Newcastle disease virus (NDV) strain ZM10, a typical enterotropic avirulent vaccine strain, has been widely used in China for chickens against Newcastle disease. To elucidate its enterotropic mechanism and develop recombiant multivalent vaccines based on it, the reverse genetics system for NDV ZM10 is an indispensable platform. RESULTS A full-length cDNA clone of NDV ZM10 and three supporting plasmids were constructed using the ligation-independent cloning method. Recombinant NDV rZM10 was successfully rescued after these plasmids were co-transfected into BHK-21 cells. Besides, the recombinant virus rZM10-RFP encoding the red fluorescent protein was generated by inserting the RFP gene into the full-length clone of NDV between the P and M genes. These rescued viruses were genetically and biologically identical to the parental strain and showed similar growth kinetics. CONCLUSION The recovery system of NDV ZM10 strain was established, and can be used as a foundation for research on the enterotropic mechanism and development of multivalent vaccines against viral diseases of livestock and poultry.
Collapse
Affiliation(s)
- Lei He
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Hairong Wang
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Zuhua Yu
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Chengshui Liao
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Ke Ding
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Cai Zhang
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471900 Henan China
| | - Chunjie Zhang
- grid.453074.10000 0000 9797 0900College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, 471023 Henan China
| |
Collapse
|
2
|
Moreira EA, Yamauchi Y, Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating. Cells 2021; 10:1722. [PMID: 34359892 PMCID: PMC8305448 DOI: 10.3390/cells10071722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza is a zoonotic respiratory disease of major public health interest due to its pandemic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry.
Collapse
Affiliation(s)
| | - Yohei Yamauchi
- Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland;
- Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
3
|
Somrit M, Yu SY, Le Pendu J, Breiman A, Guérardel Y, Weerachatyanukul W, Watthammawut A. Macrobrachium rosenbergii nodavirus virus-like particles attach to fucosylated glycans in the gills of the giant freshwater prawn. Cell Microbiol 2020; 22:e13258. [PMID: 32862508 DOI: 10.1111/cmi.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 02/04/2023]
Abstract
The Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white-tail disease (WTD) in many species of shrimp and prawn, has been shown to infect hemocytes and tissues such as the gills and muscles. However, little is known about the host surface molecules to which MrNV attach to initiate infection. Therefore, the present study investigated the role of glycans as binding molecules for virus attachment in susceptible tissues such as the gills. We established that MrNV in their virus-like particle (MrNV-VLP) form exhibited strong binding to gill tissues and lysates, which was highly reduced by the glycan-reducing periodate and PNGase F. The broad, fucose-binding Aleuria Aurantia lectin (AAL) highly reduced MrNV-VLPs binding to gill tissue sections and lysates, and efficiently disrupted the specific interactions between the VLPs and gill glycoproteins. Furthermore, mass spectroscopy revealed the existence of unique fucosylated LacdiNAc-extended N-linked and O-linked glycans in the gill tissues, whereas beta-elimination experiments showed that MrNV-VLPs demonstrated a binding preference for N-glycans. Therefore, the results from this study highly suggested that MrNV-VLPs preferentially attach to fucosylated N-glycans in the susceptible gill tissues, and these findings could lead to the development of strategies that target virus-host surface glycan interactions to reduce MrNV infections.
Collapse
Affiliation(s)
- Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Shin-Yi Yu
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | | | - Adrien Breiman
- Inserm, CRCINA, Université de Nantes, Nantes, France.,Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Yann Guérardel
- CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | | | - Atthaboon Watthammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
4
|
Canavan TN, Baddley JW, Pavlidakey P, Tallaj JA, Elewski BE. Human polyomavirus-7-associated eruption successfully treated with acitretin. Am J Transplant 2018; 18:1278-1284. [PMID: 29275541 DOI: 10.1111/ajt.14634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023]
Abstract
Advances in molecular technologies have led to the discovery of several novel human polyomaviruses (HPyVs), including human polyomavirus-7 (HPyV-7). Although low levels of HPyV-7 are shed from apparently normal skin, recent reports have described clinically significant cutaneous infection in immunocompromised patients that manifests as generalized pruritic plaques. The pruritus can be severe, and treatment options have not been described. Herein we report HPyV-7 cutaneous infection in a heart transplant patient who experienced temporary improvement with intravenous cidofovir, and complete remission with acitretin. We report a case of HPyV-7 cutaneous infection demonstrating a good response to treatment.
Collapse
Affiliation(s)
- T N Canavan
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J W Baddley
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Pavlidakey
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J A Tallaj
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - B E Elewski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Hussain I, Tasneem F, Umer M, Pervaiz A, Raza M, Arshad MI, Shahzad N. Specific and quantitative detection of Human polyomaviruses BKPyV and JCPyV in the healthy Pakistani population. Virol J 2017; 14:86. [PMID: 28438210 PMCID: PMC5404684 DOI: 10.1186/s12985-017-0752-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The BK Polyomavirus (BKPyV) and JC polyomavirus (JCPyV) infections are widespread in human population and have been associated with severe kidney and brain disorders, respectively. The viruses remain latent primarily in reno-urinary tract, reactivating only in case of a compromised immune system. The seroepidemiology and molecular prevalence of BKPyV and JCPyV have been widely studied both in healthy and immunocompromised patients worldwide. However, data regarding the prevalence of these viruses in the immunocompetent or apparently healthy Pakistani population is lacking. Herein, we present the first ever report on quantitative prevalence of BKPyV and JCPyV in the peripheral blood of a randomly selected cohort of healthy Pakistani population. METHODS A total of 266 whole blood samples were examined. The subjects were divided into three age groups: ≤ 25 years (young), 26-50 years (middle) and ≥ 51 years (elder). Absolute real time PCR assay was designed to quantify the BKPyV and JCPyV viral copy numbers in the range of 106 to 100 copies/mL. RESULTS Overall, BKPyV was detected in 27.1% (72/266) individuals while JCPyV in 11.6% (31/266) indicating significant difference (p < 0.005) in the distribution of these two viruses. The prevalence of BKPyV significantly decreased from 51% (49/96) in young age group to 8.2% (7/85) in eldest age group. Whereas, JCPyV positivity rate slightly increased from 8.3% (8/96) in young age group to 11.8% (10/85) in elder age group. The median viral load was calculated as 6.2 log and 3.38 log copies/mL of blood for BKPyV and JCPyV, respectively. Notably, no significant difference in viral load of either of the subtypes was found between different age groups. CONCLUSION The current study provides an important baseline data on the prevalence and viral load of circulating BKPyV and JCPyV in Pakistani population. The prevalence and viral load of BKPyV was comparatively higher than JCPyV. The prevalence of BKPyV significantly decreased with increase in age while JCPyV positivity rate slightly increased with increasing age. Viral load of both BKPyV and JCPyV was not correlated with the individual ages.
Collapse
Affiliation(s)
- Iqra Hussain
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammed Umer
- National Institute for Biotechnology & Genetic Engineering, Faisalabad, Pakistan
| | - Ayesha Pervaiz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Muslim Raza
- Department of Mathematics and Statistics, Virtual University of Pakistan, Lahore, Pakistan
| | | | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Burger-Calderon R, Webster-Cyriaque J. Human BK Polyomavirus-The Potential for Head and Neck Malignancy and Disease. Cancers (Basel) 2015; 7:1244-70. [PMID: 26184314 PMCID: PMC4586768 DOI: 10.3390/cancers7030835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022] Open
Abstract
Members of the human Polyomaviridae family are ubiquitous and pathogenic among immune-compromised individuals. While only Merkel cell polyomavirus (MCPyV) has conclusively been linked to human cancer, all members of the polyomavirus (PyV) family encode the oncoprotein T antigen and may be potentially carcinogenic. Studies focusing on PyV pathogenesis in humans have become more abundant as the number of PyV family members and the list of associated diseases has expanded. BK polyomavirus (BKPyV) in particular has emerged as a new opportunistic pathogen among HIV positive individuals, carrying harmful implications. Increasing evidence links BKPyV to HIV-associated salivary gland disease (HIVSGD). HIVSGD is associated with elevated risk of lymphoma formation and its prevalence has increased among HIV/AIDS patients. Determining the relationship between BKPyV, disease and tumorigenesis among immunosuppressed individuals is necessary and will allow for expanding effective anti-viral treatment and prevention options in the future.
Collapse
Affiliation(s)
- Raquel Burger-Calderon
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jennifer Webster-Cyriaque
- Microbiology and Immunology Department, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Andrei G, Topalis D, De Schutter T, Snoeck R. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyoma- and papillomaviruses and non-viral induced neoplasia. Antiviral Res 2014; 114:21-46. [PMID: 25446403 DOI: 10.1016/j.antiviral.2014.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
Abstract
Acyclic nucleoside phosphonates (ANPs) are well-known for their antiviral properties, three of them being approved for the treatment of human immunodeficiency virus infection (tenofovir), chronic hepatitis B (tenofovir and adefovir) or human cytomegalovirus retinitis (cidofovir). In addition, cidofovir is mostly used off-label for the treatment of infections caused by several DNA viruses other than cytomegalovirus, including papilloma- and polyomaviruses, which do not encode their own DNA polymerases. There is considerable interest in understanding why cidofovir is effective against these small DNA tumor viruses. Considering that papilloma- and polyomaviruses cause diseases associated either with productive infection (characterized by high production of infectious virus) or transformation (where only a limited number of viral proteins are expressed without synthesis of viral particles), it can be envisaged that cidofovir may act as antiviral and/or antiproliferative agent. The aim of this review is to discuss the advances in recent years in understanding the mode of action of ANPs as antiproliferative agents, given the fact that current data suggest that their use can be extended to the treatment of non-viral related malignancies.
Collapse
Affiliation(s)
- G Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium.
| | - D Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - T De Schutter
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - R Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
8
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
9
|
Mutations in the GM1 binding site of simian virus 40 VP1 alter receptor usage and cell tropism. J Virol 2012; 86:7028-42. [PMID: 22514351 DOI: 10.1128/jvi.00371-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution.
Collapse
|
10
|
Chang CF, Wang M, Ou WC, Chen PL, Shen CH, Lin PY, Fang CY, Chang D. Human JC virus-like particles as a gene delivery vector. Expert Opin Biol Ther 2011; 11:1169-75. [DOI: 10.1517/14712598.2011.583914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Sariyer IK, Safak M, Gordon J, Khalili K. Generation and characterization of JCV permissive hybrid cell lines. J Virol Methods 2009; 159:122-6. [PMID: 19442856 DOI: 10.1016/j.jviromet.2009.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 11/30/2022]
Abstract
JC virus (JCV) is a human neurotropic polyomavirus whose replication in the central nervous system induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV particles have been detected primarily in oligodendrocytes and astrocytes of the brains of patients with PML and in the laboratory its propagation is limited to primary cultures of human fetal glial cells. In this short communication, the development of a new cell culture system is described through the fusion of primary human fetal astrocytes with the human glioblastoma cell line, U-87MG. The new hybrid cell line obtained from this fusion has the capacity to support efficiently expression of JCV and replication of viral DNA in vitro up to 16 passages. This cell line can serve as a reliable culture system to study the biology of JCV host-cell interaction, determine the mechanisms involved in cell type specific replication of JCV, and provide a convenient cell culture system for high throughput screening of anti-viral agents.
Collapse
Affiliation(s)
- Ilker K Sariyer
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
12
|
Mischitelli M, Bellizzi A, Anzivino E, Fioriti D, Boldorini R, Miglio U, Chiarini F, Di Monaco F, Pietropaolo V. Complications post renal transplantation: literature focus on BK virus nephropathy and diagnostic tools actually available. Virol J 2008; 5:38. [PMID: 18315864 PMCID: PMC2268664 DOI: 10.1186/1743-422x-5-38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 03/03/2008] [Indexed: 12/11/2022] Open
Abstract
Clinical diagnosis of kidney transplants related illnesses is not a simple task. Several studies were conducted to define diseases and complications after renal transplantation, but there are no comprehensive guidelines about diagnostic tools for their prevention and detection. The Authors of this review looked for the medical literature and pertinent publications in particular to understand the role of Human Polyomavirus BK (BKV) in renal failure and to recognize analytical techniques for BK virus associated nephropathy (BKVAN) detection.
Collapse
Affiliation(s)
- Monica Mischitelli
- Department of Public Health Sciences, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|