1
|
Dou B, Wang K, Chen Y, Wang P. Programmable DNA Nanomachine Integrated with Electrochemically Controlled Atom Transfer Radical Polymerization for Antibody Detection at Picomolar Level. Anal Chem 2024; 96:10594-10600. [PMID: 38904276 DOI: 10.1021/acs.analchem.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The quantitative detection of antibodies is crucial for the diagnosis of infectious and autoimmune diseases, while the traditional methods experience high background signal noise and restricted signal gain. In this work, we have developed a highly efficient electrochemical biosensor by constructing a programmable DNA nanomachine integrated with electrochemically controlled atom transfer radical polymerization (eATRP). The sensor works by binding the target antidigoxin antibody (anti-Dig) to the epitope of the recognization probe, which then initiates the cascaded strand displacement reaction on a magnetic bead, leading to the capture of cupric oxide (CuO) nanoparticles through magnetic separation. After CuO was dissolved, the eATRP initiators were attached to the electrode based on the CuΙ-catalyzed azide-alkyne cycloaddition. The subsequent eATRP reaction results in the formation of long electroactive polymers (poly-FcMMA), producing an amplified current response for sensitive detection of anti-Dig. This method achieved a detection limit at clinically relevant picomolar concentration in human serum, offering a sensitive, convenient, and cost-effective tool for detecting various biomarkers in a wide range of applications.
Collapse
Affiliation(s)
- Baoting Dou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Keming Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Po Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
2
|
Durdabak DB, Dogan S, Tekol SD, Celik C, Ozalp VC, Tuna BG. Direct Detection of Viral Infections from Swab Samples by Probe-Gated Silica Nanoparticle-Based Lateral Flow Assay. ChemistryOpen 2024; 13:e202300120. [PMID: 37824210 PMCID: PMC10853071 DOI: 10.1002/open.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Point-of-care diagnosis is crucial to control the spreading of viral infections. Here, universal-modifiable probe-gated silica nanoparticles (SNPs) based lateral flow assay (LFA) is developed in the interest of the rapid and early detection of viral infections. The most superior advantage of the rapid assay is its utility in detecting various sides of the virus directly from the human swab samples and its adaptability to detect various types of viruses. For this purpose, a high concentration of fluorescein and rhodamine B as a reporting material was loaded into SNPs with excellent loading capacity and measured using standard curve, 4.19 μmol ⋅ g-1 and 1.23 μmol ⋅ g-1 , respectively. As a model organism, severe acute respiratory syndrome coronavirus-2 (CoV-2) infections were selected by targeting its nonstructural (NSP9, NSP12) and envelope (E) genes as target sites of the virus. We showed that NSP12-gated SNPs-based LFA significantly outperformed detection of viral infection in 15 minutes from 0.73 pg ⋅ mL-1 synthetic viral solution and with a dilution of 1 : 103 of unprocessed human samples with an increasing test line intensity compared to steady state (n=12). Compared to the RT-qPCR method, the sensitivity, specificity, and accuracy of NSP12-gated SNPs were calculated as 100 %, 83 %, and 92 %, respectively. Finally, this modifiable nanoparticle system is a high-performance sensing technique that could take advantage of upcoming point-of-care testing markets for viral infection detections.
Collapse
Affiliation(s)
- Dilara Buse Durdabak
- Department of Biophysics Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| | - Soner Dogan
- Department of Medical Biology Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| | - Serap Demir Tekol
- Department of Clinical MicrobiologyUniversity of Health Sciences Kartal Dr. Lutfi Kirdar City HospitalIstanbul34865Turkey
| | - Caner Celik
- Department of Emergency Medical ServiceMemorial Sisli HospitalIstanbulTurkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology Faculty of MedicineAtilim UniversityAnkara06830Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics Faculty of MedicineYeditepe UniversityIstanbul34755Turkey
| |
Collapse
|
3
|
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:1-48. [PMID: 38220421 DOI: 10.1016/bs.apcsb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
Collapse
Affiliation(s)
- Benjamin T Veenstra
- Department of Math and Sciences, Cedarville University, Cedarville, OH, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH, United States.
| |
Collapse
|
4
|
Reviewing Magnetic Particle Preparation: Exploring the Viability in Biosensing. SENSORS 2020; 20:s20164596. [PMID: 32824330 PMCID: PMC7471997 DOI: 10.3390/s20164596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
In this review article, we conceptually investigated the requirements of magnetic nanoparticles for their application in biosensing and related them to example systems of our thin-film portfolio. Analyzing intrinsic magnetic properties of different magnetic phases, the size range of the magnetic particles was determined, which is of potential interest for biosensor technology. Different e-beam lithography strategies are utilized to identify possible ways to realize small magnetic particles targeting this size range. Three different particle systems from 500 μm to 50 nm are produced for this purpose, aiming at tunable, vertically magnetized synthetic antiferromagnets, martensitic transformation in a single elliptical, disc-shaped Heusler Ni50Mn32.5Ga17.5 particle and nanocylinders of Co2MnSi-Heusler compound. Perspectively, new applications for these particle systems in combination with microfluidics are addressed. Using the concept of a magnetic on–off ratchet, the most suitable particle system of these three materials is validated with respect to magnetically-driven transport in a microfluidic channel. In addition, options are also discussed for improving the magnetic ratchet for larger particles.
Collapse
|
5
|
Nirmalananthan-Budau N, Budau JH, Moldenhauer D, Hermann G, Kraus W, Hoffmann K, Paulus B, Resch-Genger U. Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors. Phys Chem Chem Phys 2020; 22:14142-14154. [PMID: 32555804 DOI: 10.1039/d0cp00413h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a comparative study of the spectroscopic properties of the donor-acceptor-donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles.
Collapse
Affiliation(s)
- Nithiya Nirmalananthan-Budau
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany. and Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Johannes Horst Budau
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Daniel Moldenhauer
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Gunter Hermann
- QoD Technologies GmbH, Altensteinstraße 40, D-14195 Berlin, Germany
| | - Werner Kraus
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Structure Analytics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany
| | - Katrin Hoffmann
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| | - Beate Paulus
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D-14195 Berlin, Germany
| | - Ute Resch-Genger
- Federal Institute for Material Research and Testing (BAM), Department 1, Division Biophotonics, Richard-Willstätter-Straße 11, D-12489 Berlin, Germany.
| |
Collapse
|
6
|
Yamkamon V, Htoo KPP, Yainoy S, Suksrichavalit T, Tangchaikeeree T, Eiamphungporn W. Urinary PCA3 detection in prostate cancer by magnetic nanoparticles coupled with colorimetric enzyme-linked oligonucleotide assay. EXCLI JOURNAL 2020; 19:501-513. [PMID: 32398974 PMCID: PMC7214775 DOI: 10.17179/excli2020-1036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
PCA3 is one of the most prostate cancer-specific genes described to date. Of note, PCA3 expression is detectable at high level in the urine of prostate cancer (PCa) patients. Accordingly, PCA3 is an ideal biomarker for PCa diagnosis. Several techniques for the measurement of this biomarker in urine have been developed but there are still some drawbacks. In this study, magnetic nanoparticle-based PCR coupled with streptavidin-horseradish peroxidase and a substrate for colorimetric detection was established as a potential assay for urinary PCA3 detection. The method provided a high specificity for PCA3 gene in LNCaP prostate cancer cell line. Additionally, this technique could detect PCA3 at femtogram level which was approximately 1,000-fold more sensitive than the conventional RT-PCR followed by agarose gel electrophoresis. The effectiveness of the method was assessed by PCA3 detection in clinical specimens. The relative PCA3 expression of PCa patients determined by this assay was significantly greater than that of benign prostatic hyperplasia (BPH) patients and healthy controls. The results of our test were comparable with the results of qRT-PCR. The proposed method is promising to distinguish between cancerous and non-cancerous groups. Altogether, this simple assay is practicable and useful for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Khin Phyu Pyar Htoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.,Department of Medical Laboratory Technology, University of Medical Technology, Mandalay, Myanmar
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Thummaruk Suksrichavalit
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Hamad EM, Hawamdeh G, Jarrad NA, Yasin O, Al-Gharabli SI, Shadfan R. Detection of Human Chorionic Gonadotropin (hCG) Hormone using Digital Lateral Flow Immunoassay. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3845-3848. [PMID: 30441203 DOI: 10.1109/embc.2018.8513355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The main goal of this work was to establish a hybrid device incorporating an electrochemical-based transducer on a conventional lateral flow assay strip in order to perform an on-chip fast testing method for the detection of various bio-analyses. In this context, the expected development of the digital lateral-flow immunoassay to be considered a reliable low-cost instrument improves the future of the very simple and flexible approach oflateral-flow assays. It is anticipated to achieve a digital quantitative lateral-flow immunoassay by exploring the electrochemical transducers alongwith recognition elements for digitization of commercially available rapid tests. As a preliminary step, the described technique will be validated using two standard electrochemical measurements (amperometric and impedimetric) across two electrodes fixed onto the surface of LFA strip. The LFA strips were prepared at the factory for pregnancy tests and modified by adding two parallel copper electrodes at the lab. These strips were proven by in-vitro experiments to be reusable lasting for 20-30 multiple days. Further on, the detection of hCG Ab-Ag interaction using these strips was performed. Two different types of measurements, namely amperometric and impedimetric, were used which yielded similar results to those reported in literature with screen-printed micro-electrodes. In addition, different concentrations of NaCl and hCG Ag solution were investigated. However, the expected linear concentration response was obtained. A promising proof-of-concept have been achieved through this study. Further studies are needed to complete the development of fully printed disposable electrochemical devices that are able to either display a digital result directly or transmit data to a mobile phone using RFID/NFC.
Collapse
|
8
|
Wang W, Zhu L, Hirano Y, Kariminavargani M, Tada S, Zhang G, Uzawa T, Zhang D, Hirose T, Taiji M, Ito Y. Fluorogenic Enhancement of an in Vitro-Selected Peptide Ligand by Replacement of a Fluorescent Group. Anal Chem 2016; 88:7991-7. [DOI: 10.1021/acs.analchem.6b01032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Wang
- High
Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Liping Zhu
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshinori Hirano
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Marziyeh Kariminavargani
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Seiichi Tada
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Guanxin Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takanori Uzawa
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Deqing Zhang
- Key
Laboratory of Organic Solids, Beijing National Laboratory of Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Takuji Hirose
- Graduate
School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Makoto Taiji
- Laboratory
for Computational Molecular Design, Computational Biology Research
Core, RIKEN Quantitative Biology Center, 2F, QBiC Building B, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Ito
- Nano
Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent
Bioengineering
Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Zikos C, Evangelou A, Karachaliou CE, Gourma G, Blouchos P, Moschopoulou G, Yialouris C, Griffiths J, Johnson G, Petrou P, Kakabakos S, Kintzios S, Livaniou E. Commercially available chemicals as immunizing haptens for the development of a polyclonal antibody recognizing carbendazim and other benzimidazole-type fungicides. CHEMOSPHERE 2015; 119 Suppl:S16-S20. [PMID: 24745558 DOI: 10.1016/j.chemosphere.2014.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Carbendazim is a fungicide widely used for controlling fungi affecting fruits, vegetables, field crops etc. Determination of carbendazim in water, soil and various crops is frequently required to assure compliance with national/European regulations. A polyclonal antibody recognizing carbendazim was developed by using commercially available 2-(2-aminoethyl) benzimidazole, 2-benzimidazole propionic acid and 2-mercaptobenzimidazole as immunizing haptens; each of the above derivatives was directly conjugated to the carrier protein keyhole limpet hemocyanin and a mixture of the conjugates was administered to New Zealand white rabbits. Immunochemical functionality of the antisera and the corresponding isolated antibody (whole IgG fraction) was evaluated through titer and displacement curves in an in-house developed ELISA, which employed a 2-mercaptobenzimidazole - functionalized lysine-dendrimer as the immobilized hapten. As shown with ELISA-displacement curves, the above antibody could recognize carbendazim as well as other benzimidazole-type fungicides, i.e. benomyl and thiabendazole, and also intact benzimidazole, while it did not cross-react with the structurally different pesticides carbaryl and imazalil. Considering the rather simple approach which has led to its development and its highly promising immunochemical profile, the new antibody may be exploited in immunoanalytical systems for detecting benzimidazole-type pesticides e.g. in samples of environmental interest. The above antibody is being currently tested as a biorecognition element in the novel FOODSCAN cell biosensor platform for pesticide residue detection based on the Bioelectric Recognition Assay technology.
Collapse
Affiliation(s)
- Christos Zikos
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Alexandra Evangelou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Georgia Gourma
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Petros Blouchos
- Agricultural University of Athens, Faculty of Biotechnology, Iera Odos 75, 118 55 Athens, Greece
| | - Georgia Moschopoulou
- Agricultural University of Athens, Faculty of Biotechnology, Iera Odos 75, 118 55 Athens, Greece
| | - Constantinos Yialouris
- Agricultural University of Athens, Faculty of Agricultural Economics and Development, Laboratory of Informatics, Iera Odos 75, 118 55 Athens, Greece
| | - John Griffiths
- Uniscan Instruments LTD, 1 Burlow Road, Buxton SK17 9JB, United Kingdom
| | - Graham Johnson
- Uniscan Instruments LTD, 1 Burlow Road, Buxton SK17 9JB, United Kingdom
| | - Panagiota Petrou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Sotirios Kakabakos
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece
| | - Spyridon Kintzios
- Agricultural University of Athens, Faculty of Biotechnology, Iera Odos 75, 118 55 Athens, Greece
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences & Technology, Energy and Safety (INRaSTES), NCSR "Demokritos", 153 10 Athens, Greece.
| |
Collapse
|
10
|
Eickenberg B, Meyer J, Helmich L, Kappe D, Auge A, Weddemann A, Wittbracht F, Hütten A. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface. BIOSENSORS-BASEL 2013; 3:327-40. [PMID: 25586262 PMCID: PMC4263578 DOI: 10.3390/bios3030327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/27/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022]
Abstract
Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR) effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.
Collapse
Affiliation(s)
- Bernhard Eickenberg
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Judith Meyer
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Lars Helmich
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Daniel Kappe
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Alexander Auge
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Alexander Weddemann
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Frank Wittbracht
- Faculty of Arts and Sciences, Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | - Andreas Hütten
- Department of Physics, Thin Films & Physics of Nanostructures, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
11
|
Sousa S, Cardoso L, Reed SG, Reis AB, Martins-Filho OA, Silvestre R, Cordeiro da Silva A. Development of a fluorescent based immunosensor for the serodiagnosis of canine leishmaniasis combining immunomagnetic separation and flow cytometry. PLoS Negl Trop Dis 2013; 7:e2371. [PMID: 23991232 PMCID: PMC3749986 DOI: 10.1371/journal.pntd.0002371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 07/02/2013] [Indexed: 11/30/2022] Open
Abstract
Background An accurate diagnosis is essential for the control of infectious diseases. In the search for effective and efficient tests, biosensors have increasingly been exploited for the development of new and highly sensitive diagnostic methods. Here, we describe a new fluorescent based immunosensor comprising magnetic polymer microspheres coated with recombinant antigens to improve the detection of specific antibodies generated during an infectious disease. As a challenging model, we used canine leishmaniasis due to the unsatisfactory sensitivity associated with the detection of infection in asymptomatic animals where the levels of pathogen-specific antibodies are scarce. Methodology Ni-NTA magnetic microspheres with 1,7 µm and 8,07 µm were coated with the Leishmania recombinant proteins LicTXNPx and rK39, respectively. A mixture of equal proportions of both recombinant protein-coated microspheres was used to recognize and specifically bind anti-rK39 and anti-LicTNXPx antibodies present in serum samples of infected dogs. The microspheres were recovered by magnetic separation and the percentage of fluorescent positive microspheres was quantified by flow cytometry. Principal Findings A clinical evaluation carried out with 129 dog serum samples using the antigen combination demonstrated a sensitivity of 98,8% with a specificity of 94,4%. rK39 antigen alone demonstrated a higher sensitivity for symptomatic dogs (96,9%), while LicTXNPx antigen showed a higher sensitivity for asymptomatic (94,4%). Conclusions Overall, our results demonstrated the potential of a magnetic microsphere associated flow cytometry methodology as a viable tool for highly sensitive laboratorial serodiagnosis of both clinical and subclinical forms of canine leishmaniasis. Dogs are the most important domestic reservoirs of the parasite Leishmania infantum. Some infected animals develop a subclinical infection, without the classical symptoms characteristics of this disease. One of the major challenges in the serodiagnosis of canine leishmaniasis is the detection of actively infected animals that are already able to transmit the parasite to the vector, despite the fact they did not yet show external signs of the disease. In the present work, we have developed a new tool for the laboratorial diagnosis of canine leishmaniasis that clearly improves the performance of canine leishmaniasis serodiagnosis. An immunofluorescence assay was developed combining Leishmania recombinant protein-coated magnetic microspheres and flow cytometry. The antigen-coated microspheres were used to separate anti-Leishmania specific antibodies present in the serum of infected dogs. Flow cytometry allowed the specific quantification of the antibodies. The clinical evaluation of a panel of serum samples from natural infected dogs clearly demonstrates that this method detects with high specificity and sensitivity both clinical and subclinical forms of the disease.
Collapse
Affiliation(s)
- Susana Sousa
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Luís Cardoso
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Alexandre B. Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | - Ricardo Silvestre
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências, Instituto Superior de Ciências da Saúde - Norte, CESPU, CRL, Gandra, Portugal
| | - Anabela Cordeiro da Silva
- Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
12
|
Huang S, Do J, Mahalanabis M, Fan A, Zhao L, Jepeal L, Singh SK, Klapperich CM. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. PLoS One 2013; 8:e60059. [PMID: 23555883 PMCID: PMC3610934 DOI: 10.1371/journal.pone.0060059] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/25/2013] [Indexed: 12/18/2022] Open
Abstract
In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10(-2) pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health.
Collapse
Affiliation(s)
- Shichu Huang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Jaephil Do
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Madhumita Mahalanabis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Andy Fan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Lei Zhao
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lisa Jepeal
- Department of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Satish K. Singh
- Department of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, VA Boston Health Care System, Boston, Massachusetts, United States of America
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Sharif E, Kiely J, Wraith P, Luxton R. The dual role of paramagnetic particles for integrated lysis and measurement in a rapid immunoassay for intracellular proteins. IEEE Trans Biomed Eng 2012; 60:1209-16. [PMID: 23212309 DOI: 10.1109/tbme.2012.2228642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel, integrated lysis and immunoassay methodology and system for intracellular protein measurement are described. The method uses paramagnetic particles both as a lysis agent and assay label resulting in a rapid test requiring minimal operator intervention, the test being homogeneous and completed in less than 10 min. A design study highlights the critical features of the magnetic detection system used to quantify the paramagnetic particles and a novel frequency-locked loop-based magnetometer is presented. A study of paramagnetic particle enhanced lysis demonstrates that the technique is more than twice as efficient at releasing intracellular protein as ultrasonic lysis alone. Results are presented for measurements of intracellular prostate specific antigen in an LNCAP cell line. This model was selected to demonstrate the rapidity and efficiency of intracellular protein quantification. It was shown that, on average, LNCAP cells contained 0.43 fg of prostate specific antigen. This system promises an attractive solution for applications that require a rapid determination of intracellular proteins.
Collapse
Affiliation(s)
- Elham Sharif
- Department of Biomedical Science, Qatar University, Doha 2713, Qatar
| | | | | | | |
Collapse
|
14
|
White RJ, Kallewaard HM, Hsieh W, Patterson AS, Kasehagen JB, Cash KJ, Uzawa T, Soh HT, Plaxco KW. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies. Anal Chem 2012; 84:1098-103. [PMID: 22145706 DOI: 10.1021/ac202757c] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diagnosis, prevention, and treatment of many illnesses, including infectious and autoimmune diseases, would benefit from the ability to measure specific antibodies directly at the point of care. Thus motivated, we designed a wash-free, electrochemical method for the rapid, quantitative detection of specific antibodies directly in undiluted, unprocessed blood serum. Our approach employs short, contiguous polypeptide epitopes coupled to the distal end of an electrode-bound nucleic acid "scaffold" modified with a reporting methylene blue. The binding of the relevant antibody to the epitope reduces the efficiency with which the redox reporter approaches, and thus exchanges electrons with, the underlying sensor electrode, producing readily measurable change in current. To demonstrate the versatility of the approach, we fabricated a set of six such sensors, each aimed at the detection of a different monoclonal antibody. All six sensors are sensitive (subnanomolar detection limits), rapid (equilibration time constants ∼8 min), and specific (no appreciable cross reactivity with the targets of the other five). When deployed in a millimeter-scale, an 18-pixel array with each of the six sensors in triplicate support the simultaneous measurement of the concentrations of multiple antibodies in a single, submilliliter sample volume. The described sensor platform thus appears be a relatively general approach to the rapid and specific quantification of antibodies in clinical materials.
Collapse
Affiliation(s)
- Ryan J White
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cvak B, Pum D, Molinelli A, Krska R. Synthesis and characterization of colloidal gold particles as labels for antibodies as used in lateral flow devices. Analyst 2012; 137:1882-7. [DOI: 10.1039/c2an16108g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Bissonnette L, Bergeron MG. Diagnosing infections--current and anticipated technologies for point-of-care diagnostics and home-based testing. Clin Microbiol Infect 2010; 16:1044-53. [PMID: 20670286 DOI: 10.1111/j.1469-0691.2010.03282.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, we have witnessed many transitions in healthcare systems around the globe. For example, population expansion and ageing, and the human immunodeficiency virus (HIV)-AIDS epidemics, have exerted pressure to decentralize the practice of healthcare outside of traditional settings to bring care to those in need. Upstream of patient management, diagnosis is aimed at adequately orienting medical decisions, and considerable efforts have been made to make this process faster and more efficient. However, there are several diseases and medical conditions that may/will benefit from technologies and tests that can be performed closer to the patient, at the point of care or even in the home. In this review, and in light of the paradox that technology and assay developers and healthcare officials must take into consideration for advancing human health in developed and developing countries, we present an overview of rapid diagnosis of infectious diseases at the point of care and of technologies that may contribute to enhancement of the worldwide point-of-care testing market.
Collapse
Affiliation(s)
- L Bissonnette
- Département microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Lee JH, Yigit MV, Mazumdar D, Lu Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Deliv Rev 2010; 62:592-605. [PMID: 20338204 PMCID: PMC2924639 DOI: 10.1016/j.addr.2010.03.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/03/2010] [Indexed: 12/16/2022]
Abstract
Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents.
Collapse
Affiliation(s)
- Jung Heon Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
The homogeneous immunosensor design described here utilizes the bivalent nature of the antibody. Antigen peptide is conjugated using flexible linkers with short complementary oligonucleotides (signaling oligonucleotides), each of which containing a fluorochrome that can form a fluorescence resonance energy transfer (FRET) donor-acceptor pair. The complementary signaling oligonucleotides are short enough to prevent their annealing on their own. Binding of the peptide-signaling oligonucleotide constructs to bivalent antibody results in a large increase in local concentration of signaling oligonucleotides causing their annealing and appearance of FRET signal. We used simple model system (antibiotin antibody) to obtain proof-of-principle validation of the sensor design. We then constructed two sensors based on two peptides corresponding to the antigens of two antibodies raised against human cardiac troponin I. We demonstrated that these sensors could be used for sensitive detection of the antibody and for competition-based detection of the intact troponin I. Furthermore, we showed that these sensors could be used for detection of kinase activity targeting the antigen peptide. These simple and robust immunosensors may find applications in antibody detection (for example, in diagnosis of autoimmune or infectious disease), in protein detection (especially when speed of detection is essential), and in assays for detecting enzymatic activities involved in post-translational modifications of proteins.
Collapse
Affiliation(s)
- Ling Tian
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
20
|
Warsinke A. Point-of-care testing of proteins. Anal Bioanal Chem 2009; 393:1393-405. [PMID: 19130044 DOI: 10.1007/s00216-008-2572-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/25/2022]
Abstract
Point-of-care testing (POCT) is a fast developing area in clinical diagnostics that is considered to be one of the main driving forces for the future in vitro diagnostic market. POCT means decentralized testing at the site of patient care. The most important POCT devices are handheld blood glucose sensors. In some of these sensors, after the application of less than 1 microl whole blood, the results are displayed in less than 10 s. For protein determination, the most commonly used devices are based on lateral flow technology. Although these devices are convenient to use, the results are often only qualitative or semiquantitative. The review will illuminate some of the current methods employed in POCT for proteins and will discuss the outlook for techniques (e.g., electrochemical immunosensors) that could have a great impact on future POCT of proteins.
Collapse
Affiliation(s)
- Axel Warsinke
- iPOC Research Group, University of Potsdam, Institute of Biochemistry and Biology, Building 25, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany.
| |
Collapse
|
21
|
Krska R, Molinelli A. Rapid test strips for analysis of mycotoxins in food and feed. Anal Bioanal Chem 2008; 393:67-71. [PMID: 18936919 DOI: 10.1007/s00216-008-2424-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/04/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022]
Abstract
An overview is given on recent trends and applications of rapid immunodiagnostic tests for screening of food and feed for mycotoxins. Different test formats are discussed, and challenges in the development of lateral-flow devices for on-site determination of mycotoxins, with requirements such as being robust, fast, and cost-effective, are briefly elucidated.
Collapse
Affiliation(s)
- Rudolf Krska
- Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Tulln, Vienna, Austria.
| | | |
Collapse
|
22
|
Pita M, Cui L, Gaikwad RM, Katz E, Sokolov I. High sensitivity molecular detection with enzyme-linked immuno-sorbent assay (ELISA)-type immunosensing. NANOTECHNOLOGY 2008; 19:375502. [PMID: 21832552 DOI: 10.1088/0957-4484/19/37/375502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here we describe an immunosensing method, which is designed for high sensitivity sensing of various substances utilizing specificity of antigen-antibody (ELISA-type) interaction. The building up of the nanostructured sensing interface and the immunointeraction at the surface were characterized by atomic force microscopy. The proposed design makes potentially feasible attaining ultimate single-molecule sensitivity upon optimization of the system. The first non-optimized prototype described here has already demonstrated sensitivity to the presence of dinitrophenyl (DNP) in concentrations as low as 10 pM, which is 100 times better than reported limits of detection of DNP with a traditional enzyme-linked immuno-sorbent assay setup.
Collapse
Affiliation(s)
- Marcos Pita
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA
| | | | | | | | | |
Collapse
|
23
|
Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2007; 391:943-50. [PMID: 18157524 DOI: 10.1007/s00216-007-1768-z] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/07/2007] [Accepted: 11/22/2007] [Indexed: 12/12/2022]
Abstract
The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle-based assays have been developed for specific detection of bioanalytes of clinical interest. Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functionalization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis. Figure Colorimetric DNA/RNA detection using salt induced aggregation of AuNP-DNA nanoprobes.
Collapse
Affiliation(s)
- Pedro Baptista
- CIGMH/Dept. Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|