1
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
2
|
Khosravi Z, Mirzaeian L, Ghorbanian MT, Rostami F. Lovastatin Combination Therapy Increases the Survival and Proliferation of Rat Bone Marrow-Derived Mesenchymal Stem Cells Against the Inflammatory Activity of Lipopolysaccharide. Cell Biochem Biophys 2024; 82:2585-2595. [PMID: 38963603 DOI: 10.1007/s12013-024-01372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/05/2024]
Abstract
Oxidative stress hurts the survival of transplanted mesenchymal stem cells (MSCs). Lipopolysaccharide (LPS) preconditioning inhibits apoptotic death in MSCs. Also, Lovastatin's protective effect was reported on MSCs. Here, we investigated the potential of LPS and Lovastatin combination therapy on the survival and proliferation of MSCs. MSCs harvested from adult rats (240-260 g) femur and tibia bone marrow. Third passage MSCs were divided into 6 groups control group, LPS, LPS + Lovastatin (10 and 15 µM), and Lovastatin (10 and 15 µM). Cell survival and proliferation were assessed using an MTT assay 24 h after LPS, Lovastatin, or LPS + Lovastatin treatment. Also, Malondialdehyde (MDA) as a lipid peroxidation marker and antioxidant enzymes such as Glutathione peroxidase (GPX) and Superoxide dismutase (SOD) activity levels evaluated. Finally, the expression level of tumor protein P53 (P53) and octamer-binding transcription factor 4 (OCT4) genes were measured by qRT-PCR test. Lovastatin 10 μM potentiated proliferation and survival of MSCs. It can increase the activity of GPX and SOD. 10 µM Lovastatin could not affect MDA amounts but decreased the expression levels of P53 and Oct4 significantly. Nevertheless, treatment with LPS reduced the survival and proliferation of MSCs, along with a significant reduction in GPX activity. LPS + Lovastatin could increase SOD activity, however, GPX enzyme activity and MSCs proliferation did not change so, and it was not effective. We propose Lovastatin at the dose of 10 µM as a suitable combination agent to increase the survival and proliferation of MSCs in oxidative stress conditions.
Collapse
Affiliation(s)
- Ziba Khosravi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | | | - Farzaneh Rostami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Liu C, Xiao K, Xie L. Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome. Front Cell Dev Biol 2022; 10:951764. [PMID: 36036014 PMCID: PMC9399751 DOI: 10.3389/fcell.2022.951764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) develops rapidly and has high mortality. ALI/ARDS is mainly manifested as acute or progressive hypoxic respiratory failure. At present, there is no effective clinical intervention for the treatment of ALI/ARDS. Mesenchymal stromal cells (MSCs) show promise for ALI/ARDS treatment due to their biological characteristics, easy cultivation, low immunogenicity, and abundant sources. The therapeutic mechanisms of MSCs in diseases are related to their homing capability, multidirectional differentiation, anti-inflammatory effect, paracrine signaling, macrophage polarization, the polarization of the MSCs themselves, and MSCs-derived exosomes. In this review, we discuss the pathogenesis of ALI/ARDS along with the biological characteristics and mechanisms of MSCs in the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Kun Xiao
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- Center of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
4
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
5
|
Zhang Y, Ravikumar M, Ling L, Nurcombe V, Cool SM. Age-Related Changes in the Inflammatory Status of Human Mesenchymal Stem Cells: Implications for Cell Therapy. Stem Cell Reports 2021; 16:694-707. [PMID: 33636113 PMCID: PMC8072029 DOI: 10.1016/j.stemcr.2021.01.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem/stromal cell (hMSC)-based cell therapies are promising for treating a variety of diseases. The unique immunomodulatory properties of hMSCs have extended their therapeutic potential beyond tissue regeneration. However, extensive pre-clinical culture expansion inevitably drives cells toward replicative “aging” and a consequent decline in quality. These “in vitro-aged” hMSCs resemble biologically aged cells, which have been reported to show senescence signatures, diminished immunosuppressive capacity, and weakened regenerative potential as well as pro-inflammatory features. In this review, we have surveyed the literature to explore the intimate relationship between the inflammatory status of hMSCs and their in vitro aging process. We posit that a shift from an anti-inflammatory to a pro-inflammatory phenotype of culture-expanded hMSCs contributes to a deterioration in their therapeutic efficacy. Potential molecular and cellular mechanisms underpinning this phenomenon have been discussed. We have also highlighted studies that leverage these mechanisms to make culture-expanded hMSCs more amenable for clinical use. Aged MSCs have reduced immunosuppressive potential Chronic inflammatory microenvironments can exacerbate MSC senescence and aging The immunomodulatory potential of MSCs should be assessed prior to clinical use MSC immunomodulatory properties may be modified in vitro by bioengineering means
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Maanasa Ravikumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore
| | - Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University-Imperial College London, Singapore 636921, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore.
| |
Collapse
|
6
|
Liu X, Yin M, Liu X, Da J, Zhang K, Zhang X, Liu L, Wang J, Jin H, Liu Z, Zhang B, Li Y. Analysis of Hub Genes Involved in Distinction Between Aged and Fetal Bone Marrow Mesenchymal Stem Cells by Robust Rank Aggregation and Multiple Functional Annotation Methods. Front Genet 2020; 11:573877. [PMID: 33424919 PMCID: PMC7793715 DOI: 10.3389/fgene.2020.573877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Stem cells from fetal tissue protect against aging and possess greater proliferative capacity than their adult counterparts. These cells can more readily expand in vitro and senesce later in culture. However, the underlying molecular mechanisms for these differences are still not fully understood. In this study, we used a robust rank aggregation (RRA) method to discover robust differentially expressed genes (DEGs) between fetal bone marrow mesenchymal stem cells (fMSCs) and aged adult bone marrow mesenchymal stem cells (aMSCs). Multiple methods, including gene set enrichment analysis (GSEA), Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation of the robust DEGs, and the results were visualized using the R software. The hub genes and other genes with which they interacted directly were detected by protein–protein interaction (PPI) network analysis. Correlation of gene expression was measured by Pearson correlation coefficient. A total of 388 up-regulated and 289 down-regulated DEGs were identified between aMSCs and fMSCs. We found that the down-regulated genes were mainly involved in the cell cycle, telomerase activity, and stem cell proliferation. The up-regulated DEGs were associated with cell adhesion molecules, extracellular matrix (ECM)–receptor interactions, and the immune response. We screened out four hub genes, MYC, KIF20A, HLA-DRA, and HLA-DPA1, through PPI-network analysis. The MYC gene was negatively correlated with TXNIP, an age-related gene, and KIF20A was extensively involved in the cell cycle. The results suggested that MSCs derived from the bone marrow of an elderly donor present a pro-inflammatory phenotype compared with that of fMSCs, and the HLA-DRA and HLA-DPA1 genes are related to the immune response. These findings provide new insights into the differences between aMSCs and fMSCs and may suggest novel strategies for ex vivo expansion and application of adult MSCs.
Collapse
Affiliation(s)
- Xiaoyao Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingjing Yin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinjian Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongshuang Liu
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Ross CL, Zhou Y, McCall CE, Soker S, Criswell TL. The Use of Pulsed Electromagnetic Field to Modulate Inflammation and Improve Tissue Regeneration: A Review. Bioelectricity 2019; 1:247-259. [PMID: 34471827 PMCID: PMC8370292 DOI: 10.1089/bioe.2019.0026] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pulsed electromagnetic field (PEMF) is emerging as innovative treatment for regulation of inflammation, which could have significant effects on tissue regeneration. PEMF modulates inflammatory processes through the regulation of pro- and anti-inflammatory cytokine secretion during different stages of inflammatory response. Consistent outcomes in studies involving animal and human tissue have shown promise for the use of PEMF as an alternative or complementary treatment to pharmaceutical therapies. Thus, PEMF treatment could provide a novel nonpharmaceutical means of modulating inflammation in injured tissues resulting in enhanced functional recovery. This review examines the effect of PEMF on immunomodulatory cells (e.g., mesenchymal stem/stromal cells [MSCs] and macrophages [MΦ]) to better understand the potential for PEMF therapy to modulate inflammatory signaling pathways and improve tissue regeneration. This review cites published data that support the use of PEMF to improve tissue regeneration. Our studies included herein confirm anti-inflammatory effects of PEMF on MSCs and MΦ.
Collapse
Affiliation(s)
- Christina L. Ross
- Center for Integrative Medicine, Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Yu Zhou
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Charles E. McCall
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Shay Soker
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Tracy L. Criswell
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
8
|
Yin K, Zhu R, Wang S, Zhao RC. Low level laser (LLL) attenuate LPS-induced inflammatory responses in mesenchymal stem cells via the suppression of NF-κB signaling pathway in vitro. PLoS One 2017; 12:e0179175. [PMID: 28594941 PMCID: PMC5464618 DOI: 10.1371/journal.pone.0179175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 11/26/2022] Open
Abstract
Background Considering promising results in animal models and patients, therapeutic use of MSCs for immune disease is likely to undergo continued evaluation. Low-lever laser (LLL) has been widely applied to retard the inflammatory reaction. LLL treatment can potentially be applied in anti-inflammatory therapy followed by stem cell therapy. Aim of the study The purpose of this study was to investigate the effect of LLL (660 nm) on the inflammatory reaction induced by LPS in human adipose derived mesenchymal stem cells (hADSCs) and pertinent mechanism. Materials and methods Anti-inflammatory activity of LLL was investigated by LPS-induced mesenchymal stem cells. The production and expression of pro-inflammatory cytokines were evaluated by ELISA kits and RT-qPCR. Nuclear translocation of NF-κB was indicated by immunofluorescent staining. Phosphorylation status of NF-κB p65 and IκBα were illustrated by western blot assay. ROS generation was measured with CM-H2DCFDA, and NO secretion was determined by DAF-FM. We studied surface expression of lymphocyte activation markers when Purified peripheral blood mononuclear cell (PBMC) were activated by phytohaemagglutinin (PHA) in the presence of 3 types of treated MSCs. Results LLL reduced the secretion of IL-1β, IL-6, IL8, ROS and NO in LPS treated MSCs. Immunofluorescent assay demonstrated the nuclear translocation decrease of NF-κB in LLL treated LPS induced MSCs. Western blot analysis also suggested that LLL suppressed NF-κB activation via regulating the phosphorylation of p65 and IκBα. MSC significantly reduced the expression of activation markers CD25 and CD69 on PHA-stimulated lymphocytes. Conclusion The results indicate that LLL suppressed the activation of NF-κB signaling pathway in LPS treated MSCs through inhibiting phosphorylation of p65 and IκBα, which results in good anti-inflammatory effect. In addition, LLL attenuated activation-associated markers CD25 and CD69 in co-cultures of PBMC and 3 types of treated MSCs.
Collapse
Affiliation(s)
- Kan Yin
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongjia Zhu
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shihua Wang
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Robert Chunhua Zhao
- Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
9
|
Naranjo JD, Scarritt ME, Huleihel L, Ravindra A, Torres CM, Badylak SF. Regenerative Medicine: lessons from Mother Nature. Regen Med 2016; 11:767-775. [PMID: 27885899 DOI: 10.2217/rme-2016-0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine strategies for the restoration of functional tissue have evolved from the concept of ex vivo creation of engineered tissue toward the broader concept of in vivo induction of functional tissue reconstruction. Multidisciplinary approaches are being investigated to achieve this goal using evolutionarily conserved principles of stem cell biology, developmental biology and immunology, current methods of engineering and medicine. This evolution from ex vivo tissue engineering to the manipulation of fundamental in vivo tenets of development and regeneration has the potential to capitalize upon the incredibly complex and only partially understood ability of cells to adapt, proliferate, self-organize and differentiate into functional tissue.
Collapse
Affiliation(s)
- Juan Diego Naranjo
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michelle E Scarritt
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Luai Huleihel
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anjani Ravindra
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Division of Pediatric Pulmonary Medicine, Allergy & Immunology, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Crisanto M Torres
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Interactions between MSCs and immune cells: implications for bone healing. J Immunol Res 2015; 2015:752510. [PMID: 26000315 PMCID: PMC4427002 DOI: 10.1155/2015/752510] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
It is estimated that, of the 7.9 million fractures sustained in the United States each year, 5% to 20% result in delayed or impaired healing requiring therapeutic intervention. Following fracture injury, there is an initial inflammatory response that plays a crucial role in bone healing; however, prolonged inflammation is inhibitory for fracture repair. The precise spatial and temporal impact of immune cells and their cytokines on fracture healing remains obscure. Some cytokines are reported to be proosteogenic while others inhibit bone healing. Cell-based therapy utilizing mesenchymal stromal cells (MSCs) is an attractive option for augmenting the fracture repair process. Osteoprogenitor MSCs not only differentiate into bone, but they also exert modulatory effects on immune cells via a variety of mechanisms. In this paper, we review the current literature on both in vitro and in vivo studies on the role of the immune system in fracture repair, the use of MSCs in the enhancement of fracture healing, and interactions between MSCs and immune cells. Insight into this paradigm can provide valuable clues in identifying cellular and noncellular targets that can potentially be modulated to enhance both natural bone healing and bone repair augmented by the exogenous addition of MSCs.
Collapse
|
11
|
Raza K, Larsen T, Samaratunga N, Price AP, Meyer C, Matson A, Ehrhardt MJ, Fogas S, Tolar J, Hertz MI, Panoskaltsis-Mortari A. MSC therapy attenuates obliterative bronchiolitis after murine bone marrow transplant. PLoS One 2014; 9:e109034. [PMID: 25272285 PMCID: PMC4182803 DOI: 10.1371/journal.pone.0109034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/03/2014] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Obliterative bronchiolitis (OB) is a significant cause of morbidity and mortality after lung transplant and hematopoietic cell transplant. Mesenchymal stromal cells (MSCs) have been shown to possess immunomodulatory properties in chronic inflammatory disease. OBJECTIVE Administration of MSCs was evaluated for the ability to ameliorate OB in mice using our established allogeneic bone marrow transplant (BMT) model. METHODS Mice were lethally conditioned and received allogeneic bone marrow without (BM) or with spleen cells (BMS), as a source of OB-causing T-cells. Cell therapy was started at 2 weeks post-transplant, or delayed to 4 weeks when mice developed airway injury, defined as increased airway resistance measured by pulmonary function test (PFT). BM-derived MSC or control cells [mouse pulmonary vein endothelial cells (PVECs) or lung fibroblasts (LFs)] were administered. Route of administration [intratracheally (IT) and IV] and frequency (every 1, 2 or 3 weeks) were compared. Mice were evaluated at 3 months post-BMT. MEASUREMENTS AND MAIN RESULTS No ectopic tissue formation was identified in any mice. When compared to BMS mice receiving control cells or no cells, those receiving MSCs showed improved resistance, compliance and inspiratory capacity. Interim PFT analysis showed no difference in route of administration. Improvements in PFTs were found regardless of dose frequency; but once per week worked best even when administration began late. Mice given MSC also had decreased peribronchiolar inflammation, lower levels of hydroxyproline (collagen) and higher frequencies of macrophages staining for the alternatively activated macrophage (AAM) marker CD206. CONCLUSIONS These results warrant study of MSCs as a potential management option for OB in lung transplant and BMT recipients.
Collapse
Affiliation(s)
- Kashif Raza
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Trevor Larsen
- Breck High School, Edina, Minnesota, United States of America
| | | | - Andrew P Price
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Carolyn Meyer
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Amy Matson
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Michael J Ehrhardt
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Samuel Fogas
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Jakub Tolar
- Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| | - Marshall I Hertz
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Angela Panoskaltsis-Mortari
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America; Pediatric Blood and Bone Marrow Transplant Program, University of Minnesota Cancer Center, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Ylostalo JH, Bartosh TJ, Tiblow A, Prockop DJ. Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy 2014; 16:1486-1500. [PMID: 25231893 DOI: 10.1016/j.jcyt.2014.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AIMS Human mesenchymal stromal cells (MSCs) are being used in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3 dimensions (3D). We compared the activation of MSCs in 3D in fetal bovine serum containing medium and in multiple xeno-free media formulations. METHODS MSC aggregation and sphere formation was studied with the use of hanging drop cultures with medium containing fetal bovine serum or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with the use of gene expression and protein secretion measurements and with functional studies with the use of macrophages and cancer cells. RESULTS MSCs did not condense into tight spheroids and express a full complement of therapeutic genes in α-minimum essential medium or several commercial stem-cell media. However, we identified a chemically defined xeno-free media, which, when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (prostaglandin E2, TSG-6 TNF-alpha induced gene/protein 6) and anti-cancer molecules (TRAIL TNF-related apoptosis-inducing ligand, interleukin-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in a lipopolysaccharide-stimulated macrophage system and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death. CONCLUSIONS We demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed in the present study for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications.
Collapse
Affiliation(s)
- Joni H Ylostalo
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine at Scott & White, Temple, TX, USA
| | - Thomas J Bartosh
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine at Scott & White, Temple, TX, USA
| | - April Tiblow
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine at Scott & White, Temple, TX, USA
| | - Darwin J Prockop
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine at Scott & White, Temple, TX, USA.
| |
Collapse
|