1
|
Kong SH, Yoo J, Lee D, Moon S, Sung KS, Park SH, Shim JK, Choi RJ, Yoon SJ, Moon JH, Kim EH, Lee SJ, Chang JH, Kang SG. Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Med J 2021; 62:936-942. [PMID: 34558873 PMCID: PMC8470561 DOI: 10.3349/ymj.2021.62.10.936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE A critical indicator of the overall survival of patients with high-grade glioma is the successful isolation of tumor mesenchymal stem-like cells (tMSLCs), which play important roles in glioma progression. However, attempts to isolate tMSLCs from surgical specimens have not always been successful, and the reasons for this remain unclear. Considering that the amount of surgical high-grade glioma specimens varies, we hypothesized that larger surgical specimens would be better for tMSLC isolation. MATERIALS AND METHODS We assessed 51 fresh, high-grade glioma specimens and divided them into two groups according to the success or failure of tMSLC isolation. The success of tMSLC isolation was confirmed by plastic adherence, presenting antigens, tri-lineage differentiation, and non-tumorigenicity. Differences in characteristics between the two groups were tested using independent two sample t-tests, chi-square tests, or Kaplan-Meier survival analysis. RESULTS The mean specimen weights of the groups differed from each other (tMSLC-negative group: 469.9±341.9 mg, tMSLC positive group: 546.7±618.9 mg), but the difference was not statistically significant. The optimal cut-off value of specimen weight was 180 mg, and the area under the curve value was 0.599. CONCLUSION Our results suggested a minimum criterion for specimen collection, and found that the specimen amount was not deeply related to tMSLC detection. Collectively, our findings imply that the ability to isolate tMSLCs is determined by factors other than the specimen amount.
Collapse
Affiliation(s)
| | - Jihwan Yoo
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongkyu Lee
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sohyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea
| | - So Hee Park
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Jin Yoon
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Imboden S, Liu X, Lee BS, Payne MC, Hsieh CJ, Lin NYC. Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging. Sci Rep 2021; 11:6728. [PMID: 33762607 PMCID: PMC7991643 DOI: 10.1038/s41598-021-85905-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays. Performing such measurements non-invasively and at scale has remained challenging as conventional methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation and laborious sample preparation. Here, we developed an artificial intelligence (AI)-based method that converts transmitted light microscopy images of MSCs into quantitative measurements of protein expression levels. By training a U-Net+ conditional generative adversarial network (cGAN) model that accurately (mean [Formula: see text] = 0.77) predicts expression of 8 MSC-specific markers, we showed that expression of surface markers provides a heterogeneity characterization that is complementary to conventional cell-level morphological analyses. Using this label-free imaging method, we also observed a multi-marker temporal-spatial fluctuation of protein distributions in live MSCs. These demonstrations suggest that our AI-based microscopy can be utilized to perform quantitative, non-invasive, single-cell, and multi-marker characterizations of heterogeneous live MSC culture. Our method provides a foundational step toward the instant integrative assessment of MSC properties, which is critical for high-throughput screening and quality control in cellular therapies.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Brandon S Lee
- Department of Bioengineering, University of California, Los Angeles, 90095, USA
| | - Marie C Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 90095, USA
| |
Collapse
|
3
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
4
|
Rossig C, Kailayangiri S, Jamitzky S, Altvater B. Carbohydrate Targets for CAR T Cells in Solid Childhood Cancers. Front Oncol 2018; 8:513. [PMID: 30483473 PMCID: PMC6240699 DOI: 10.3389/fonc.2018.00513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Abstract
Application of the CAR targeting strategy in solid tumors is challenged by the need for adequate target antigens. As a consequence of their tissue origin, embryonal cancers can aberrantly express membrane-anchored gangliosides. These are carbohydrate molecules consisting of a glycosphingolipid linked to sialic acids residues. The best-known example is the abundant expression of ganglioside GD2 on the cell surface of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are involved in various cellular functions, including signal transduction, cell proliferation, differentiation, adhesion and cell death. In addition, transformation of human cells to cancer cells can be associated with distinct glycosylation profiles which provide advantages for tumor growth and dissemination and can serve as immune targets. Both gangliosides and aberrant glycosylation of proteins escape the direct molecular and proteomic screening strategies currently applied to identify further immune targets in cancers. Due to their highly restricted expression and their functional roles in the malignant behavior, they are attractive targets for immune engineering strategies. GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4, and oncofetal glycosylation variants. This review summarizes knowledge on the role and function of some membrane-expressed non-protein antigens, including gangliosides and abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR targets in pediatric solid cancers.
Collapse
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
5
|
Abstract
Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation.
Collapse
|
6
|
Latchney SE, Calvi LM. The aging hematopoietic stem cell niche: Phenotypic and functional changes and mechanisms that contribute to hematopoietic aging. Semin Hematol 2016; 54:25-32. [PMID: 28088984 DOI: 10.1053/j.seminhematol.2016.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/13/2016] [Indexed: 11/11/2022]
Abstract
The hematopoietic system has the remarkable ability to provide a lifelong supply of mature cells that make up the entire blood and immune system. However, similar to other adult stem cell niches, the hematopoietic system is vulnerable to the detrimental effects of aging. This is a substantial health concern as the trend for population aging continues to increase. Identifying mechanisms that underlie hematopoietic aging is vital for understanding hematopoietic-related diseases. In this review, we first discuss the cellular hierarchy of the hematopoietic system and the components that make up the surrounding hematopoietic niche. We then provide an overview of the major phenotypes associated with hematopoietic aging and discuss recent research investigating cell-intrinsic and cell-extrinsic mechanisms of hematopoietic stem cell (HSCs) aging. We end by discussing the exciting new concept of possibly reversing the HSC aging process along with outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- Sarah E Latchney
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY
| | - Laura M Calvi
- Endocrine Metabolism Division, University of Rochester School of Medicine and Dentistry, Rochester NY; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester NY.
| |
Collapse
|
7
|
Skog MS, Nystedt J, Korhonen M, Anderson H, Lehti TA, Pajunen MI, Finne J. Expression of neural cell adhesion molecule and polysialic acid in human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:113. [PMID: 27528376 PMCID: PMC4986182 DOI: 10.1186/s13287-016-0373-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/28/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In order to develop novel clinical applications and to gain insights into possible therapeutic mechanisms, detailed molecular characterization of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) is needed. Neural cell adhesion molecule (NCAM, CD56) is a transmembrane glycoprotein modulating cell-cell and cell-matrix interactions. An additional post-translational modification of NCAM is the α2,8-linked polysialic acid (polySia). Because of its background, NCAM is often considered a marker of neural lineage commitment. Generally, hBM-MSCs are considered to be devoid of NCAM expression, but more rigorous characterization is needed. METHODS We have studied NCAM and polySia expression in five hBM-MSC lines at mRNA and protein levels. Cell surface localization was confirmed by immunofluorescence staining and expression frequency in the donor-specific lines by flow cytometry. For the detection of poorly immunogenic polySia, a fluorochrome-tagged catalytically defective enzyme was employed. RESULTS All five known NCAM isoforms are expressed in these cells at mRNA level and the three main isoforms are present at protein level. Both polysialyltransferases, generally responsible for NCAM polysialylation, are expressed at mRNA level, but only very few cells express polySia at the cell surface. CONCLUSIONS Our results underline the need for a careful control of methods and conditions in the characterization of MSCs. This study shows that, against the generally held view, clinical-grade hBM-MSCs do express NCAM. In contrast, although both polysialyltransferase genes are transcribed in these cells, very few express polySia at the cell surface. NCAM and polySia represent new candidate molecules for influencing MSC interactions.
Collapse
Affiliation(s)
- Maria S Skog
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Johanna Nystedt
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Matti Korhonen
- Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, FI-00310, Helsinki, Finland
| | - Heidi Anderson
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Genoscoper Laboratories Oy, P.O. Box 1040, FI-00251, Helsinki, Finland
| | - Timo A Lehti
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Maria I Pajunen
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Present Address: Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Jukka Finne
- Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
8
|
Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A, Kanz L, Niederfellner G, Bühring HJ. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 2015; 25:902-17. [PMID: 25978997 DOI: 10.1093/glycob/cwv032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- Kavitha Sivasubramaniyan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Abhishek Harichandan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Stem Cell Transplantation, University Children's Hospital, Tübingen 72076, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Lothar Kanz
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Gerhard Niederfellner
- Discovery Oncology, Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| |
Collapse
|