1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Ahuja P, Singh M, Ujjain SK. Advancements in Electrochemical Biosensors for Comprehensive Glycosylation Assessment of Biotherapeutics. SENSORS (BASEL, SWITZERLAND) 2025; 25:2064. [PMID: 40218579 PMCID: PMC11991509 DOI: 10.3390/s25072064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
Proteins represent a significant portion of the global therapeutics market, surpassing hundreds of billions of dollars annually. Among the various post-translational modifications, glycosylation plays a crucial role in influencing protein structure, stability, and function. This modification is especially important in biotherapeutics, where the precise characterization of glycans is vital for ensuring product efficacy and safety. Although mass spectrometry-based techniques have become essential tools for glycomic analysis due to their high sensitivity and resolution, their complexity and lengthy processing times limit their practical application. In contrast, electrochemical methods provide a rapid, cost-effective, and sensitive alternative for glycosylation assessment, enabling the real-time analysis of glycan structures on biotherapeutic proteins. These electrochemical techniques, often used in conjunction with complementary methods, offer valuable insights into the glycosylation profiles of both isolated glycoproteins and intact cells. This review examines the latest advancements in electrochemical biosensors for glycosylation analysis, highlighting their potential in enhancing the characterization of biotherapeutics and advancing the field of precision medicine.
Collapse
Affiliation(s)
- Preety Ahuja
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Manpreet Singh
- Department of Mechanical Engineering, College of Engineering and Information Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| | - Sanjeev Kumar Ujjain
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA;
| |
Collapse
|
3
|
Yehuda S, Padler-Karavani V. Cracking the diversity of sweet drugs. Nat Chem Biol 2024; 20:1397-1398. [PMID: 39448845 DOI: 10.1038/s41589-024-01755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Affiliation(s)
- Sharon Yehuda
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Helm J, Grünwald-Gruber C, Thader A, Urteil J, Führer J, Stenitzer D, Maresch D, Neumann L, Pabst M, Altmann F. Bisecting Lewis X in Hybrid-Type N-Glycans of Human Brain Revealed by Deep Structural Glycomics. Anal Chem 2021; 93:15175-15182. [PMID: 34723506 PMCID: PMC8600501 DOI: 10.1021/acs.analchem.1c03793] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The importance of
protein glycosylation in the biomedical field
requires methods that not only quantitate structures by their monosaccharide
composition, but also resolve and identify the many isomers expressed
by mammalian cells. The art of unambiguous identification of isomeric
structures in complex mixtures, however, did not yet catch up with
the fast pace of advance of high-throughput glycomics. Here, we present
a strategy for deducing structures with the help of a deci-minute
accurate retention time library for porous graphitic carbon chromatography
with mass spectrometric detection. We implemented the concept for
the fundamental N-glycan type consisting of five
hexoses, four N-acetylhexosamines and one fucose
residue. Nearly all of the 40 biosynthetized isomers occupied unique
elution positions. This result demonstrates the unique isomer selectivity
of porous graphitic carbon. With the help of a rather tightly spaced
grid of isotope-labeled internal N-glycan, standard
retention times were transposed to a standard chromatogram. Application
of this approach to animal and human brain N-glycans
immediately identified the majority of structures as being of the
bisected type. Most notably, it exposed hybrid-type glycans with galactosylated
and even Lewis X containing bisected N-acetylglucosamine,
which have not yet been discovered in a natural source. Thus, the
time grid approach implemented herein facilitated discovery of the
still missing pieces of the N-glycome in our most
noble organ and suggests itself—in conjunction with collision
induced dissociation—as a starting point for the overdue development
of isomer-specific deep structural glycomics.
Collapse
Affiliation(s)
- Johannes Helm
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Andreas Thader
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Jonathan Urteil
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Johannes Führer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - David Stenitzer
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Pabst
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
5
|
Feichtinger RG, Hüllen A, Koller A, Kotzot D, Grote V, Rapp E, Hofbauer P, Brugger K, Thiel C, Mayr JA, Wortmann SB. A spoonful of L-fucose-an efficient therapy for GFUS-CDG, a new glycosylation disorder. EMBO Mol Med 2021; 13:e14332. [PMID: 34468083 PMCID: PMC8422078 DOI: 10.15252/emmm.202114332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Congenital disorders of glycosylation are a genetically and phenotypically heterogeneous family of diseases affecting the co- and posttranslational modification of proteins. Using exome sequencing, we detected biallelic variants in GFUS (NM_003313.4) c.[632G>A];[659C>T] (p.[Gly211Glu];[Ser220Leu]) in a patient presenting with global developmental delay, mild coarse facial features and faltering growth. GFUS encodes GDP-L-fucose synthase, the terminal enzyme in de novo synthesis of GDP-L-fucose, required for fucosylation of N- and O-glycans. We found reduced GFUS protein and decreased GDP-L-fucose levels leading to a general hypofucosylation determined in patient's glycoproteins in serum, leukocytes, thrombocytes and fibroblasts. Complementation of patient fibroblasts with wild-type GFUS cDNA restored fucosylation. Making use of the GDP-L-fucose salvage pathway, oral fucose supplementation normalized fucosylation of proteins within 4 weeks as measured in serum and leukocytes. During the follow-up of 19 months, a moderate improvement of growth was seen, as well as a clear improvement of cognitive skills as measured by the Kaufmann ABC and the Nijmegen Pediatric CDG Rating Scale. In conclusion, GFUS-CDG is a new glycosylation disorder for which oral L-fucose supplementation is promising.
Collapse
Affiliation(s)
- René G Feichtinger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Andreas Hüllen
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Andreas Koller
- Research Program for Experimental OphthalmologyDepartment of Ophthalmology and OptometrySalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Dieter Kotzot
- Clinical Genetics UnitSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
- glyXera GmbHMagdeburgGermany
| | - Peter Hofbauer
- Department of ProductionLandesapotheke SalzburgHospital PharmacySalzburgAustria
| | - Karin Brugger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Christian Thiel
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Johannes A Mayr
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Saskia B Wortmann
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
- Department of PediatricsAmalia Children’s HospitalRadboud Center for Mitochondrial MedicineRadboudumcNijmegenThe Netherlands
| |
Collapse
|
6
|
Chuzel L, Fossa SL, Boisvert ML, Cajic S, Hennig R, Ganatra MB, Reichl U, Rapp E, Taron CH. Combining functional metagenomics and glycoanalytics to identify enzymes that facilitate structural characterization of sulfated N-glycans. Microb Cell Fact 2021; 20:162. [PMID: 34419057 PMCID: PMC8379841 DOI: 10.1186/s12934-021-01652-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. RESULTS Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. CONCLUSION The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.
Collapse
Affiliation(s)
- Léa Chuzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- New England Biolabs, Ipswich, MA, 01938, USA
| | | | | | - Samanta Cajic
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Erdmann Rapp
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106, Magdeburg, Germany
- glyXera GmbH, 39120, Magdeburg, Germany
| | | |
Collapse
|
7
|
Lisacek F, Alagesan K, Hayes C, Lippold S, de Haan N. Bioinformatics in Immunoglobulin Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:205-233. [PMID: 34687011 DOI: 10.1007/978-3-030-76912-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Analytical methods developed for studying immunoglobulin glycosylation rely heavily on software tailored for this purpose. Many of these tools are now used in high-throughput settings, especially for the glycomic characterization of IgG. A collection of these tools, and the databases they rely on, are presented in this chapter. Specific applications are detailed in examples of immunoglobulin glycomics and glycoproteomics data processing workflows. The results obtained in the glycoproteomics workflow are emphasized with the use of dedicated visualizing tools. These tools enable the user to highlight glycan properties and their differential expression.
Collapse
Affiliation(s)
- Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
- Computer Science Department, University of Geneva, Geneva, Switzerland.
- Section of Biology, University of Geneva, Geneva, Switzerland.
| | | | - Catherine Hayes
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Steffen Lippold
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|