1
|
Saleem J, Baig MZK, Luyt AS, Shakoor RA, Mansour S, McKay G. Reusable Macroporous Oil Sorbent Films from Plastic Wastes. Polymers (Basel) 2022; 14:polym14224867. [PMID: 36432992 PMCID: PMC9699559 DOI: 10.3390/polym14224867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plastic waste comprises 15% of the total municipal solid waste and can be a rich source for producing value-added materials. Among them, polyethylene (PE) and polypropylene (PP) account for 60% of the total plastic waste, mainly due to their low-end and one-time-use applications. Herein, we report reusable oil sorbent films made by upcycling waste PE and PP. The as-prepared oil sorbent had an uptake capacity of 55 g/g. SEM analysis revealed a macroporous structure with a pore size range of 1-10 µm, which facilitates oil sorption. Similarly, the contact angle values reflected the oleophilic nature of the sorbent. Moreover, thermal properties and crystallinity were examined using DSC, while mechanical properties were calculated using tensile testing. Lastly, 95% of the sorbed oil could be easily recovered by squeezing mechanically or manually.
Collapse
Affiliation(s)
- Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Correspondence:
| | | | | | - Rana Abdul Shakoor
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Said Mansour
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Sabbagh F, Kim BS. Microneedles for transdermal drug delivery using clay-based composites. Expert Opin Drug Deliv 2022; 19:1099-1113. [DOI: 10.1080/17425247.2022.2119220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
3
|
Hernández-García E, Vargas M, Chiralt A, González-Martínez C. Biodegradation of PLA-PHBV Blend Films as Affected by the Incorporation of Different Phenolic Acids. Foods 2022; 11:foods11020243. [PMID: 35053974 PMCID: PMC8774519 DOI: 10.3390/foods11020243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Films based on a 75:25 polylactic acid (PLA) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blend, containing 2% (w/w) of different phenolic acids (ferulic, p-coumaric or protocatechuic acid), and plasticised with 15 wt. % polyethylene glycol (PEG 1000), were obtained by melt blending and compression moulding. The disintegration and biodegradation of the film under thermophilic composting conditions was studied throughout 35 and 45 days, respectively, in order to analyse the effect of the incorporation of the antimicrobial phenolic acids into the films. Sample mass loss, thermo-degradation behaviour and visual appearance were analysed at different times of the composting period. No effect of phenolic acids was observed on the film disintegration pattern, and the films were completely disintegrated at the end of the composting period. The biodegradation analysis through the CO2 measurements revealed that PLA-PHBV blend films without phenolic acids, and with ferulic acid, completely biodegraded after 20 composting days, while p-coumaric and protocatechuic slightly retarded full biodegradation (21 and 26 days, respectively). Phenolic acids mainly extended the induction period, especially protocatechuic acid. PLA-PHBV blend films with potential antimicrobial activity could be used to preserve fresh foodstuff susceptible to microbial spoilage, with their biodegradation under composting conditions being ensured.
Collapse
|
4
|
Padmakumar S, Varghese MM, Menon D. Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:241-252. [PMID: 35796448 DOI: 10.2174/2667387816666220707143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drug laden implantable systems can provide drug release over several hours to years, which eventually aid in the therapy of both acute and chronic diseases. The present study focuses on a fundamental evaluation of the influence of implant properties such as morphology, architecture, porosity, surface area, and wettability in regulating the drug release kinetics from drug-loaded polymeric matrices. METHODS For this, Polydioxanone (PDS) was selected as the polymer and Paclitaxel (Ptx) as the model drug. Two different forms of the matrix implants, viz., reservoir type capsules developed by dip coating and matrix type membranes fabricated by phase inversion and electrospinning, were utilized for the study. Drug release from all the four different matrices prepared by simple techniques was evaluated in vitro in PBS and ex vivo in peritoneal wash fluid for ~4 weeks. The drug release profiles were thereafter correlated with the physicochemical parameters of the polymeric implants. RESULTS Reservoir-type capsules followed a slow and steady zero-order kinetics, while matrix-type electrospun and phase inversion membranes displayed typical biphasic kinetics. CONCLUSION It was inferred that the slow degradation rate of PDS polymer as well as the implant properties like porosity and wettability play an important role in controlling the drug release rates.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Merin Mary Varghese
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
5
|
A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes (Basel) 2021. [DOI: 10.3390/pr9101796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The utilization of natural gum polysaccharides as the vehicle for drug delivery systems and other biomedical applications has increased in recent decades. Their biocompatibility, biodegradability, and price are much cheaper than other materials. It is also renewable and available in massive amounts, which are the main reasons for its use in pharmaceutical applications. Gum can be easily functionalized with other natural polymers to enhance their applications. Various aspects of the utilization of natural gums in the forms of polyelectrolyte complexes (PECs) for drug delivery systems are discussed in this review. The application of different mathematical models were used to represent the drug release mechanisms from PECs; these models include a zero-order equation, first-order equation, Higuchi, simplified Higuchi, Korsmeyer–Peppas, and Peppas–Sahlin.
Collapse
|
6
|
Oh HS, Lee CH, Kim NK, An T, Kim GH. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers (Basel) 2021; 13:2478. [PMID: 34372081 PMCID: PMC8347500 DOI: 10.3390/polym13152478] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients' quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.
Collapse
Affiliation(s)
- Hyeon Seok Oh
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Chung Hyeon Lee
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Na Kyoung Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Taechang An
- Department of Mechanical & Robotics Engineering, Andong National University (ANU), 1375, Gyeong-dong-ro, Andong-si 36729, Gyeongsangbuk-do, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| |
Collapse
|
7
|
Teodoro KBR, Sanfelice RC, Migliorini FL, Pavinatto A, Facure MHM, Correa DS. A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sens 2021; 6:2473-2496. [PMID: 34182751 DOI: 10.1021/acssensors.1c00473] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sensors and biosensors play a key role as an analytical tool for the rapid, reliable, and early diagnosis of human diseases. Such devices can also be employed for monitoring environmental pollutants in air and water in an expedited way. More recently, nanomaterials have been proposed as an alternative in sensor fabrication to achieve gains in performance in terms of sensitivity, selectivity, and portability. In this direction, the use of cellulose nanomaterials (CNM), such as cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC), has experienced rapid growth in the fabrication of varied types of sensors. The advantageous properties are related to the supramolecular structures that form the distinct CNM, their biocompatibility, and highly reactive functional groups that enable surface functionalization. The CNM can be applied as hydrogels and xerogels, thin films, nanopapers and other structures interesting for sensor design. Besides, CNM can be combined with other materials (e.g., nanoparticles, enzymes, carbon nanomaterials, etc.) and varied substrates to advanced sensors and biosensors fabrication. This review explores recent advances on CNM and composites applied in the fabrication of optical, electrical, electrochemical, and piezoelectric sensors for detecting analytes ranging from environmental pollutants to human physiological parameters. Emphasis is given to how cellulose nanomaterials can contribute to enhance the performance of varied sensors as well as expand novel sensing applications, which could not be easily achieved using standard materials. Finally, challenges and future trends on the use of cellulose-based materials in sensors and biosensors are also discussed.
Collapse
Affiliation(s)
- Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Rafaela C. Sanfelice
- Science and Technology Institute, Federal University of Alfenas, Rodovia José Aurélio Vilela, 11999, BR 267, Km 533, CEP 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Fernanda L. Migliorini
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute of Brazil University, 235 Carolina Fonseca Street, São Paulo 08230-030, São Paulo, Brazil
| | - Murilo H. M. Facure
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970, São Carlos, São Paulo, Brazil
- PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Mat Yazik MH, Sultan MTH, Jawaid M, Abu Talib AR, Mazlan N, Md Shah AU, Safri SNA. Effect of Nanofiller Content on Dynamic Mechanical and Thermal Properties of Multi-Walled Carbon Nanotube and Montmorillonite Nanoclay Filler Hybrid Shape Memory Epoxy Composites. Polymers (Basel) 2021; 13:700. [PMID: 33669149 PMCID: PMC7956654 DOI: 10.3390/polym13050700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of the present study has been to evaluate the effect of hybridization of montmorillonite (MMT) and multi-walled carbon nanotubes (MWCNT) on the thermal and viscoelastic properties of shape memory epoxy polymer (SMEP) nanocomposites. In this study, ultra-sonication was utilized to disperse 1%, 3%, and 5% MMT in combination with 0.5%, 1%, and 1.5% MWCNT into the epoxy system. The fabricated SMEP hybrid nanocomposites were characterized via differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis. The storage modulus (E'), loss modulus (E"), tan δ, decomposition temperature, and decomposition rate, varied upon the addition of the fillers. Tan δ indicated a reduction of glass transition temperature (Tg) for all the hybrid SMEP nanocomposites. 3% MMT/1% MWCNT displayed best overall performance compared to other hybrid filler concentrations and indicated a better mechanical property compared to neat SMEP. These findings open a way to develop novel high-performance composites for various potential applications, such as morphing structures and actuators, as well as biomedical devices.
Collapse
Affiliation(s)
- Muhamad Hasfanizam Mat Yazik
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.H.M.Y.); (A.R.A.T.); (N.M.); (A.U.M.S.)
| | - Mohamed Thariq Hameed Sultan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.H.M.Y.); (A.R.A.T.); (N.M.); (A.U.M.S.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.J.); (S.N.A.S.)
- Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, Cyberjaya 63000, Selangor Darul Ehsan, Malaysia
| | - Mohammad Jawaid
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.J.); (S.N.A.S.)
| | - Abd Rahim Abu Talib
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.H.M.Y.); (A.R.A.T.); (N.M.); (A.U.M.S.)
| | - Norkhairunnisa Mazlan
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.H.M.Y.); (A.R.A.T.); (N.M.); (A.U.M.S.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.J.); (S.N.A.S.)
- Aerospace Malaysia Research Centre, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia
| | - Ain Umaira Md Shah
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.H.M.Y.); (A.R.A.T.); (N.M.); (A.U.M.S.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.J.); (S.N.A.S.)
| | - Syafiqah Nur Azrie Safri
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor Darul Ehsan, Malaysia; (M.J.); (S.N.A.S.)
| |
Collapse
|
9
|
Nanoparticles as Vaccines to Prevent Arbovirus Infection: A Long Road Ahead. Pathogens 2021; 10:pathogens10010036. [PMID: 33466440 PMCID: PMC7824877 DOI: 10.3390/pathogens10010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are a significant public health problem worldwide. Vaccination is considered one of the most effective ways to control arbovirus diseases in the human population. Nanoparticles have been widely explored as new vaccine platforms. Although nanoparticles' potential to act as new vaccines against infectious diseases has been identified, nanotechnology's impact on developing new vaccines to prevent arboviruses is unclear. Thus, we used a comprehensive bibliographic survey to integrate data concerning the use of diverse nanoparticles as vaccines against medically important arboviruses. Our analysis showed that considerable research had been conducted to develop and evaluate nanovaccines against Chikungunya virus, Dengue virus, Zika virus, Japanese encephalitis virus, and West Nile virus. The main findings indicate that nanoparticles have great potential for use as a new vaccine system against arboviruses. Most of the studies showed an increase in neutralizing antibody production after mouse immunization. Nevertheless, even with significant advances in this field, further efforts are necessary to address the nanoparticles' potential to act as a vaccine against these arboviruses. To promote advances in the field, we proposed a roadmap to help researchers better characterize and evaluate nanovaccines against medically important arboviruses.
Collapse
|
10
|
Pakade VE, Tavengwa NT, Madikizela LM. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 2019; 9:26142-26164. [PMID: 35531021 PMCID: PMC9070541 DOI: 10.1039/c9ra05188k] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Chromium exists mainly in two forms in environmental matrices, namely, the hexavalent (Cr(vi)) and trivalent (Cr(iii)) chromium. While Cr(iii) is a micronutrient, Cr(vi) is a known carcinogen, and that warrants removal from environmental samples. Amongst the removal techniques reported in the literature, adsorption methods are viewed as superior to other methods because they use less chemicals; consequently, they are less toxic and easy to handle. Mitigation of chromium using adsorption methods has been achieved by exploiting the physical, chemical, and biological properties of Cr(vi) due to its dissolution tendencies in aqueous solutions. Many adsorbents, including synthetic polymers, activated carbons, biomass, graphene oxide, and nanoparticles as well as bioremediation, have been successfully applied in Cr(vi) remediation. Initially, adsorbents were used singly in their natural form, but recent literature shows that more composite materials are generated and applied. This review focused on the recent advances, insights, and project future directions for these adsorbents as well as compare and contrast the performances achieved by the mentioned adsorbents and their variants.
Collapse
Affiliation(s)
- Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology Private Bag X 021 Vanderbijlpark South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, University of Venda Private Bag X5050 Thohoyandou 0950 South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology PO Box 1334 Durban 4000 South Africa
| |
Collapse
|
11
|
Tiwari I, Mahanwar PA. Polyacrylate/silica hybrid materials: A step towards multifunctional properties. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1489276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ingita Tiwari
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| | - P. A. Mahanwar
- Department of Polymer and Surface Engineering, Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
12
|
Chatterjee T, Dutta J, Naskar K. Unique shape memory behavior of polyolefinic blends with special reference to creep behavior, stress relaxation, and melt rheological study. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tuhin Chatterjee
- Rubber Technology Centre; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| | - Joyeeta Dutta
- Rubber Technology Centre; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| | - Kinsuk Naskar
- Rubber Technology Centre; Indian Institute of Technology; Kharagpur West Bengal 721302 India
| |
Collapse
|
13
|
|