1
|
Hanumanthu R, Sharma P, Ethridge A, Weaver JD. Co-Catalytic Coupling of Alkyl Halides and Alkenes: the Curious Role of Lutidine. J Am Chem Soc 2025; 147:5238-5246. [PMID: 39895054 PMCID: PMC11827002 DOI: 10.1021/jacs.4c15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Continuous pressure to shorten synthetic sequences along with the concomitant expansion of scope makes the use of alkyl bromides, chlorides, and oxygen based leaving groups- which are abundant and readily available feedstocks, highly attractive for C-C bond synthesis. However, selective activation of these bonds to generate radical intermediates remains challenging and is generally unfeasible using traditional activation strategies. Herein, we report a dual catalytic activation strategy to access primary, secondary, and tertiary alkyl radicals from respective alkyl chlorides and bromides, as well as primary tosylates and trifluoroacetates. While the method relies on visible light and a photocatalyst to facilitate electron transfer, based on reduction potentials, the substrates are not expected to be reduceable, and yet they are reduced in the presence of lutidine. Ultimately, our investigation revealed that lutidine was a precatalyst and ultimately led to the use of lutidinium iodide salt which served as a critical cocatalyst that resulted in improved reaction profiles. Our studies revealed two critical roles that lutidinium iodide salts play which made it possible to engage otherwise unreactive substrates: nucleophilic exchange and halogen atom transfer by the lutidinium radical. In short, this work converts unactivated alkyl chlorides, bromides, tosylates, and trifluoroacetates to radicals that can be used for C-C bond formation without the need for preactivation─effectively expediting synthesis.
Collapse
Affiliation(s)
| | | | - Avery Ethridge
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jimmie D. Weaver
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
2
|
Calogero F, Wilczek L, Pinosa E, Gualandi A, Dorta R, Herrera A, Dai Y, Rossignol A, Negri F, Ziani Z, Fermi A, Ceroni P, Cozzi PG. Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202411074. [PMID: 39078744 DOI: 10.1002/anie.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 10/25/2024]
Abstract
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Leonie Wilczek
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Emanuele Pinosa
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Arthur Rossignol
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Zakaria Ziani
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
3
|
Hodgson JW, Folgueiras-Amador AA, Pletcher D, Harrowven DC, Denuault G, Brown RCD. Spatio-temporal detachment of homogeneous electron transfer in controlling selectivity in mediated organic electrosynthesis. Faraday Discuss 2023; 247:302-323. [PMID: 37522856 DOI: 10.1039/d3fd00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
In electrosynthesis, electron transfer (ET) mediators are normally chosen such that they are more easily reduced (or oxidised) than the substrate for cathodic (or anodic) processes; setting the electrode potential to the mediator therefore ensures selective heterogeneous ET with the mediator at the electrode, rather than the substrate. The current work investigates the opposite, and counter intuitive, situation for a successful mediated electroreductive process where the mediator (phenanthrene) has a reduction potential that is negative to that of the substrate, and the cathode potential is set negative to both (Eele < EM < Es). Simulations reveal a complex interplay between mass transport, the relative concentrations of the mediator and substrate as well as the heterogeneous and homogeneous rate constants for multiple steps, which under suitable conditions, leads to separation of the homogeneous chemistry in a reaction layer detached from the electrode. Reaction layer detachment is a spatio-temporal effect arising due to opposing fluxes of the mediator radical anion M˙- and the substrate 1, which ultimately prevents 1 from reaching the electrode, thereby affording a different reaction pathway. Simulations representative of unstirred batch (1D) and flow (2D) electrolysis are presented, which qualitatively reproduce the experimental selectivity outcomes for mediated and unmediated electroreductive cyclisation of aryl iodide 1. The potential to use highly reducing homogeneous ET agents, possessing reduction potentials beyond those of the substrates, offers exciting opportunities in mediated electrosynthesis.
Collapse
Affiliation(s)
- Jack W Hodgson
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | | | - Derek Pletcher
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - David C Harrowven
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Guy Denuault
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Richard C D Brown
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
4
|
Folgueiras‐Amador AA, Teuten AE, Salam‐Perez M, Pearce JE, Denuault G, Pletcher D, Parsons PJ, Harrowven DC, Brown RCD. Cathodic Radical Cyclisation of Aryl Halides Using a Strongly-Reducing Catalytic Mediator in Flow. Angew Chem Int Ed Engl 2022; 61:e202203694. [PMID: 35790060 PMCID: PMC9543573 DOI: 10.1002/anie.202203694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/13/2022]
Abstract
Electro-reductive radical cyclisation of aryl halides affords the corresponding hetero- and carbo-cycles in an undivided flow reactor equipped with steel and carbon electrodes using an organic mediator. A dissolving metal anode is not needed, and the mediator can be employed in a sub-stoichiometric amount (0.05 equiv), increasing the practical utility of cathodic radical cyclisation. The methodology is applied to O-, N-, and C-tethers, yielding tricyclic fused and spiro systems. In the absence of mediator, the major pathway is hydrogenolysis of the C-X bond, a 2 e- process occurring at the cathode. Predominance of the radical pathway in presence of a strongly reducing mediator (M) is consistent with homogeneous electron-transfer in a reaction layer detached from the cathode surface, where the flux of M.- leaving the electrode is such that little aryl halide reaches the cathode.
Collapse
Affiliation(s)
| | | | - Mateo Salam‐Perez
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - James E. Pearce
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Guy Denuault
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Derek Pletcher
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | - Philip J. Parsons
- Department of ChemistryImperial College LondonWhite City CampusLondonW12 0BZUK
| | - David C. Harrowven
- School of ChemistryUniversity of SouthamptonHighfieldSouthamptonSO17 1BJUK
| | | |
Collapse
|
5
|
Folgueiras-Amador A, Teuten A, Salam-Perez M, Pearce J, Denuault G, Pletcher D, Parsons P, Harrowven D, Brown RCD. Cathodic Radical Cyclisation of Aryl Halides Using a Strongly‐Reducing Catalytic Mediator in Flow. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - James Pearce
- University of Southampton School of Chemistry UNITED KINGDOM
| | - Guy Denuault
- University of Southampton School of Chemistry UNITED KINGDOM
| | - Derek Pletcher
- University of Southampton School of Chemistry UNITED KINGDOM
| | - Philip Parsons
- Imperial College London Department of Chemistry UNITED KINGDOM
| | - David Harrowven
- University of Southampton School of Chemistry UNITED KINGDOM
| | | |
Collapse
|
6
|
Fischer O, Heinrich MR. 2-Fluoro-5-nitrophenyldiazonium: A Novel Sanger-Type Reagent for the Versatile Functionalization of Alcohols. Chemistry 2021; 27:5417-5421. [PMID: 33481282 PMCID: PMC8048593 DOI: 10.1002/chem.202100187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 12/15/2022]
Abstract
As a novel Sanger-type reagent, 2-fluoro-5-nitrophenyldiazonium tetrafluoroborate enabled the versatile functionalization of primary and secondary aliphatic alcohols. Based on a mild nucleophilic aromatic substitution of the fluorine atom under unprecedented, base-free conditions, the diazonium unit on the aromatic core of the resulting aryl-alkyl ether could be employed for such diverse transformations as radical C-H activation and cyclization, as well as palladium catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Oliver Fischer
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
7
|
Tian YM, Guo XN, Braunschweig H, Radius U, Marder TB. Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem Rev 2021; 121:3561-3597. [PMID: 33596057 DOI: 10.1021/acs.chemrev.0c01236] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organoboron compounds have important synthetic value and can be applied in numerous transformations. The development of practical and convenient ways to synthesize boronate esters has thus attracted significant interest. Photoinduced borylations originated from stoichiometric reactions of alkanes and arenes with well-defined metal-boryl complexes. Now, photoredox-initiated borylations, catalyzed by either transition metal or organic photocatalysts, and photochemical borylations with high efficiency have become a burgeoning area of research. In this Focus Review, we summarize research on photoinduced borylations, especially emphasizing recent developments and trends. This includes the photoinduced borylation of arenes, alkanes, aryl/alkyl halides, activated carboxylic acids, amines, alcohols, and so on based on transition metal catalysis, metal-free organocatalysis, and direct photochemical activation. We focus on reaction mechanisms involving single-electron transfer, triplet-energy transfer, and other radical processes.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Xiao-Ning Guo
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Bugaenko DI, Volkov AA, Karchava AV, Yurovskaya MA. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arylation methods based on the generation and use of aryl radicals have been a rapidly growing field of research in recent years and currently represent a powerful strategy for carbon – carbon and carbon – heteroatom bond formation. The progress in this field is related to advances in the methods for generation of aryl radicals. The currently used aryl radical precursors include aryl halides, aryldiazonium and diaryliodonium salts, arylcarboxylic acids and their derivatives, arylboronic acids, arylhydrazines, organosulfur(II, VI) compounds and some other compounds. Aryl radicals are generated under mild conditions by single electron reduction or oxidation of precursors induced by conventional reagents, visible light or electric current. A crucial role in the development of the radical arylation methodology belongs to photoredox processes either catalyzed by transition metal complexes or organic dyes or proceeding without catalysts. Unlike the conventional transition metal-catalyzed arylation methods, radical arylation reactions proceed very often at room temperature and have high functional group tolerance. Without claiming to be exhaustive, this review covers the most important advances of the current decade in the generation and synthetic applications of (het)aryl radicals. Examples of reactions are given and mechanistic insights are highlighted.
The bibliography includes 341 references.
Collapse
|
9
|
Constantin T, Juliá F, Sheikh NS, Leonori D. A case of chain propagation: α-aminoalkyl radicals as initiators for aryl radical chemistry. Chem Sci 2020; 11:12822-12828. [PMID: 34094477 PMCID: PMC8163300 DOI: 10.1039/d0sc04387g] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of aryl radicals from the corresponding halides by redox chemistry is generally considered a difficult task due to their highly negative reduction potentials. Here we demonstrate that α-aminoalkyl radicals can be used as both initiators and chain-carriers for the radical coupling of aryl halides with pyrrole derivatives, a transformation often employed to evaluate new highly reducing photocatalysts. This mode of reactivity obviates for the use of strong reducing species and was also competent in the formation of sp2 C-P bonds. Mechanistic studies have delineated some of the key features operating that trigger aryl radical generation and also propagate the chain process.
Collapse
Affiliation(s)
- Timothée Constantin
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Fabio Juliá
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| | - Nadeem S Sheikh
- Department of Chemistry, College of Science, King Faisal University P. O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Daniele Leonori
- Department of Chemistry, University of Manchester Manchester M13 9PL UK https://leonoriresearchgroup.com
| |
Collapse
|
10
|
Firth JD, Fairlamb IJS. A Need for Caution in the Preparation and Application of Synthetically Versatile Aryl Diazonium Tetrafluoroborate Salts. Org Lett 2020; 22:7057-7059. [DOI: 10.1021/acs.orglett.0c02685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James D. Firth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
11
|
|
12
|
Garrido-Castro AF, Salaverri N, Maestro MC, Alemán J. Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Org Lett 2019; 21:5295-5300. [DOI: 10.1021/acs.orglett.9b01911] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Noelia Salaverri
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - M. Carmen Maestro
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - José Alemán
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
13
|
Ouyang XH, Cheng J, Li JH. 1,2-Diarylation of alkenes with aryldiazonium salts and arenes enabled by visible light photoredox catalysis. Chem Commun (Camb) 2018; 54:8745-8748. [DOI: 10.1039/c8cc04526g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visible light-driven three-component alkene 1,2-diarylation with aryldiazonium salts and arenes involving aryl C(sp2)–H functionalization is described.
Collapse
Affiliation(s)
- Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Applied Organic Chemistry
| |
Collapse
|
14
|
|
15
|
Ruch J, Aubin A, Erbland G, Fortunato A, Goddard JP. Metal-free arylation of pyrimidines through a photochemical process. Chem Commun (Camb) 2016; 52:2326-9. [PMID: 26728790 DOI: 10.1039/c5cc08927a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pyrimidinyl and pyrazinyl radicals were generated under moderate energetic irradiation conditions (UVA), and proved to be prompt to undergo C-C bond formation processes. Hetero-biaryl derivatives were obtained in good to high yields with highly interesting functional group selectivities. Bis hetero-biaryls were also easily accessible leading to original compounds, ready for further transformations. Experiments supporting radical processes have been reported.
Collapse
Affiliation(s)
- Jonas Ruch
- Laboratoire de Chimie Organique et Bioorganique EA 4566, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France.
| | - Ariane Aubin
- Laboratoire de Chimie Organique et Bioorganique EA 4566, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France.
| | - Guillaume Erbland
- Laboratoire de Chimie Organique et Bioorganique EA 4566, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France.
| | - Audrey Fortunato
- Laboratoire de Chimie Organique et Bioorganique EA 4566, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France.
| | - Jean-Philippe Goddard
- Laboratoire de Chimie Organique et Bioorganique EA 4566, Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France.
| |
Collapse
|
16
|
Matcha K, Antonchick AP. Cascade Multicomponent Synthesis of Indoles, Pyrazoles, and Pyridazinones by Functionalization of Alkenes. Angew Chem Int Ed Engl 2014; 53:11960-4. [DOI: 10.1002/anie.201406464] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Indexed: 01/22/2023]
|
17
|
Matcha K, Antonchick AP. Mehrkomponentenkaskade zur Synthese von Indolen, Pyrazolen und Pyridazinonen durch Funktionalisierung von Alkenen. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Zhang N, Samanta SR, Rosen BM, Percec V. Single Electron Transfer in Radical Ion and Radical-Mediated Organic, Materials and Polymer Synthesis. Chem Rev 2014; 114:5848-958. [DOI: 10.1021/cr400689s] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Na Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shampa R. Samanta
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Brad M. Rosen
- DuPont Titanium Technologies, Chestnut Run Plaza, Wilmington, Delaware 19805, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
19
|
Fehler SK, Maschauer S, Höfling SB, Bartuschat AL, Tschammer N, Hübner H, Gmeiner P, Prante O, Heinrich MR. Fast and efficient (18) F-labeling by [(18) f]fluorophenylazocarboxylic esters. Chemistry 2013; 20:370-5. [PMID: 24339325 DOI: 10.1002/chem.201303409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 01/19/2023]
Abstract
Introduction of [(18) F]fluoride ion into the aromatic core of phenylazocarboxylic esters was achieved in only 30 seconds, with radiochemical yields of up to 95 % (85(±10) %). For labeling purposes, the resulting (18) F-substituted azoester can be further converted in radical-arylation reactions to give biaryls, or in substitutions at its carbonyl unit to produce azocarboxamides.
Collapse
Affiliation(s)
- Stefanie K Fehler
- Abteilung für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dewanji A, Murarka S, Curran DP, Studer A. Phenyl hydrazine as initiator for direct arene C-H arylation via base promoted homolytic aromatic substitution. Org Lett 2013; 15:6102-5. [PMID: 24251964 DOI: 10.1021/ol402995e] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A simple and efficient direct radical arylation of unactivated arenes is described which uses cheap and commercially available phenyl hydrazine as an initiator. The reaction occurs through a base promoted homolytic aromatic substitution (BHAS) mechanism involving aryl radicals and aryl radical anions as intermediates and offers a practical approach for preparation of an array of substituted biaryls.
Collapse
Affiliation(s)
- Abhishek Dewanji
- Organisch-Chemisches Institut, NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität , Corrensstrasse 40, 48149 Münster, Germany, and Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | |
Collapse
|
21
|
Kütt A, Werner F, Kaljurand I, Leito I, Koppel IA. Pentakis(trifluoromethyl)benzenediazonium Cation: A Useful Building Block for the Syntheis of Trifluoromethyl-Substituted Derivatives. Chempluschem 2013; 78:932-936. [PMID: 31986712 DOI: 10.1002/cplu.201300160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 12/29/2022]
Abstract
The sterically crowded, highly electron-deficient diazonium salt C6 (CF3 )5 N2 + BF4 - has been synthesized and sample dediazotization reactions were carried out. New compounds, C6 (CF3 )5 I, C6 (CF3 )5 NO2 , and C6 (CF3 )5 NO were isolated and identified. Also, a more convenient route to C6 (CF3 )5 NH2 that gave good yield was achieved.
Collapse
Affiliation(s)
- Agnes Kütt
- Institute of Chemistry, University of Tartu, 14 A Ravila Street, Tartu, 50411 (Estonia)
| | - Franz Werner
- Department of Chemistry, Tallinn University of Technology, 15 Akadeemia tee, 12618, Tallinn (Estonia)
| | - Ivari Kaljurand
- Institute of Chemistry, University of Tartu, 14 A Ravila Street, Tartu, 50411 (Estonia)
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, 14 A Ravila Street, Tartu, 50411 (Estonia)
| | - Ilmar A Koppel
- Institute of Chemistry, University of Tartu, 14 A Ravila Street, Tartu, 50411 (Estonia)
| |
Collapse
|
22
|
Baralle A, Fensterbank L, Goddard JP, Ollivier C. Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence for a CuII/CuIMechanism. Chemistry 2013; 19:10809-13. [DOI: 10.1002/chem.201301449] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 11/06/2022]
|
23
|
McBurney RT, Walton JC. Interplay of ortho- with spiro-cyclisation during iminyl radical closures onto arenes and heteroarenes. Beilstein J Org Chem 2013; 9:1083-92. [PMID: 23766822 PMCID: PMC3678706 DOI: 10.3762/bjoc.9.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/09/2013] [Indexed: 12/05/2022] Open
Abstract
Sensitised photolyses of ethoxycarbonyl oximes of aromatic and heteroaromatic ketones yielded iminyl radicals, which were characterised by EPR spectroscopy. Iminyls with suitably placed arene or heteroarene acceptors underwent cyclisations yielding phenanthridine-type products from ortho-additions. For benzofuran and benzothiophene acceptors, spiro-cyclisation predominated at low temperatures, but thermodynamic control ensured ortho-products, benzofuro- or benzothieno-isoquinolines, formed at higher temperatures. Estimates by steady-state kinetic EPR established that iminyl radical cyclisations onto aromatics took place about an order of magnitude more slowly than prototypical C-centred radicals. The cyclisation energetics were investigated by DFT computations, which gave insights into factors influencing the two cyclisation modes.
Collapse
Affiliation(s)
- Roy T McBurney
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - John C Walton
- EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
24
|
Donck S, Baroudi A, Fensterbank L, Goddard JP, Ollivier C. Visible-Light Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300040] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Wertz S, Leifert D, Studer A. Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): synthesis of fluorenones and xanthones. Org Lett 2013; 15:928-31. [PMID: 23373757 DOI: 10.1021/ol4000857] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross dehydrogenative coupling reactions occurring via base-promoted homolytic aromatic substitutions (BHASs) are reported. Fluorenones and xanthones are readily prepared via CDC starting with readily available ortho-formyl biphenyls and ortho-formyl biphenylethers, respectively. The commercially available and cheap tBuOOH is used as an oxidant. Initiation of the radical chain reaction is best achieved with small amounts of FeCp(2) (0.1 or 1 mol %).
Collapse
Affiliation(s)
- Sebastian Wertz
- Fachbereich Chemie, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | | | | |
Collapse
|
26
|
McBurney RT, Eisenschmidt A, Slawin AMZ, Walton JC. Rapid and selective spiro-cyclisations of O-centred radicals onto aromatic acceptors. Chem Sci 2013. [DOI: 10.1039/c3sc50500f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|