1
|
Xu D, Tian Y, Tie D, Hu S, Xing R, Chen X. Multichannel microperfusion cell-capture system for screening anticancer active ingredients in traditional Chinese medicine formulas. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3122-3131. [PMID: 40177720 DOI: 10.1039/d5ay00205b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The screening of effective active ingredients from traditional Chinese medicine (TCM) formulas is currently a key focus of research. In this study, a multichannel microperfusion cell-capture system utilizing human hepatocellular carcinoma HepG2 cells was established and used to screen for anticancer active ingredients in the ancient formula Huangqisan. A polypropylene solid film carrying HepG2 cells was used as the cell-capture platform, and a multichannel microperfusion system was utilized for perfusion, enabling the screening of multiple ingredients' activities. This study optimized the main factors influencing the screening results and conducted a methodological examination under the optimal screening conditions. The method was coupled with high-performance liquid chromatography (HPLC) to analyze and identify the anticancer ingredients in Huangqisan. The optimal conditions were determined as follows: use of a polypropylene film as the cell support, a 7 mL sample phase solution (3 μg mL-1) for perfusion, and a screening duration of 30 min. After screening, eight anticancer active ingredients in Huangqisan, namely, calycosin, calycosin glycoside, formononetin, ononin, genistein, isorhamnetin, puerarin, and morin, were preliminarily determined by comparing their chromatographic retention times and peak areas with standard substances. The cell fishing factor (CFF) of these ingredients ranged from 1.1 to 19.8. In summary, the use of a multichannel microperfusion cell-capture system combined with HPLC enabled the screening of the anticancer active ingredients in Huangqisan. This method thus provides a new approach for screening complex TCM matrices and holds promising prospects for future development.
Collapse
Affiliation(s)
- Doudou Xu
- School of Pharmacy, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan 030001, China.
| | - Yi Tian
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Dan Tie
- School of Pharmacy, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan 030001, China.
| | - Shuang Hu
- School of Pharmacy, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan 030001, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Xing
- School of Pharmacy, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan 030001, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Xuan Chen
- School of Pharmacy, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan 030001, China.
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Fan R, Wu J, Duan S, Jin L, Zhang H, Zhang C, Zheng A. Droplet-based microfluidics for drug delivery applications. Int J Pharm 2024; 663:124551. [PMID: 39106935 DOI: 10.1016/j.ijpharm.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
The microfluidic method primainly utilizes two incompatible liquids as continuous phase and dispersed phase respectively. It controls the formation of droplets by managing the microchannel structure and the flow rate ratio of the two phases. Droplet-based microfluidics is a rapidly expanding interdisciplinary research field encompassing physics, biochemistry, and Microsystems engineering. Droplet microfluidics offer a diverse and practical toolset that enables chemical and biological experiments to be conducted at high speeds and with greater efficiency compared to traditional instruments. The applications of droplet-based microfluidics are vast, including areas such as drug delivery, owing to its compatibility with numerous chemical and biological reagents and its ability to carry out various operations. This technology has been extensively researched due to its promising features. In this review, we delve into the materials used in droplet generation-based microfluidic devices, manufacturing techniques, methods for droplet generation in channels, and, finally, we summarize the applications of droplet generation-based microfluidics in drug delivery vectors, encompassing nanoparticles, microspheres, microcapsules, and hydrogel particles. We also discuss the challenges and future prospects of this technology across a wide array of applications.
Collapse
Affiliation(s)
- Ranran Fan
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jie Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Shuwei Duan
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Kidney Diseases, Beijing, 100853, China
| | - Lili Jin
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Hui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Changhao Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| | - Aiping Zheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
3
|
He V, Cadarso VJ, Seibt S, Boyd BJ, Neild A. A novel droplet-based approach to study phase transformations in lyotropic liquid crystalline systems. J Colloid Interface Sci 2023; 641:459-469. [PMID: 36948101 DOI: 10.1016/j.jcis.2023.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
HYPOTHESIS Lyotropic liquid crystals (LLC) and their phase transformations in response to stimuli have gathered much interest for controlled and 'on-demand' drug applications. Bulk methods of preparation impose limitations on studying the transformations, especially induced by compositional changes, such as enzymatic changes to lipid structure. Here we hypothesise that controlled microfluidic production and coalescence of dissimilar aqueous and lipid droplets emulsified in a third mutually immiscible liquid will provide a new approach to the spatio-temporal study of structure formation in lyotropic liquid crystalline materials. EXPERIMENTS Separate lipid and aqueous droplets, dispersed in a fluorocarbon oil were generated using a microfluidic format. The chip, prepared as a hybrid polydimethylsiloxane (PDMS) and glass microfluidic device, was constructed to enable in-situ acquisition of time-resolved synchrotron small angle X-ray scattering (SAXS) and crossed polarised light microscopy of the coalesced droplets to determine the structures present during aging. FINDINGS Janus-like droplets formed upon coalesce, with distinct lipid and aqueous portions with a gradient between the two sides of the merged droplet. SAXS and polarised light microscopy revealed a progression of mesophases as the lipid portion was hydrated by the aqueous portion via the diffusion limited interface which separated the portions. Thus demonstrating, on a droplet scale, a new approach for studying the phase transformation kinetics and identification of non-equilibrium phase in droplet-based lyotropic liquid systems.
Collapse
Affiliation(s)
- Vincent He
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Susanne Seibt
- SAXS/WAXS Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, VIC 3150, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
4
|
Liu M, Zhao D, Lv H, Liang Y, Yang Y, Hong Z, Liu J, Dai K, Xiao X. Controllable Fabrication and Oil-Water Separation Properties of Polyethylene Terephthaloyl-Ethylenediamine-IPN-poly(N-Isopropylacrylamide) Microcapsules. Polymers (Basel) 2022; 15:polym15010053. [PMID: 36616403 PMCID: PMC9824317 DOI: 10.3390/polym15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report a microcapsule embedded PNIPAN in P (TPC-EDA) shell and it can be regarded as an interpenetrating polymer network (IPN) structure, which can accelerate the penetration of oily substances at a certain temperature, and the microcapsules are highly monodisperse and dimensionally reproducible. The proposed microcapsules were fabricated in a three-step process. The first step was the optimization of the conditions for preparing oil in water emulsions by microfluidic device. In the second step, monodisperse polyethylene terephthaloyl-ethylenediamine (P(TPC-EDA)) microcapsules were prepared by interfacial polymerization. In the third step, the final microcapsules with poly(N-isopropylacrylamide) (PNIPAM)-based interpenetrating polymer network (IPN) structure in P(TPC-EDA) shells were finished by free radical polymerization. We conducted careful data analysis on the size of the emulsion prepared by microfluidic technology and used a very intuitive functional relationship to show the production characteristics of microfluidics, which is rarely seen in other literatures. The results show that when the IPN-structured system swelled for 6 h, the adsorption capacity of kerosene was the largest, which was promising for water-oil separation or extraction and separation of hydrophobic drugs. Because we used microfluidic technology, the products obtained have good monodispersity and are expected to be produced in large quantities in industry.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Dan Zhao
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Hui Lv
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yunjing Liang
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yannan Yang
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Zongguo Hong
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jingxue Liu
- The College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Kang Dai
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (K.D.); (X.X.)
| | - Xincai Xiao
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (K.D.); (X.X.)
| |
Collapse
|
5
|
Li X, Liu T, Chang C, Lei Y, Mao X. Analytical Methodologies for Agrometallomics: A Critical Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6100-6118. [PMID: 34048228 DOI: 10.1021/acs.jafc.1c00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Agrometallomics, as an independent interdiscipline, is first defined and described in this review. Metallic elements widely exist in agricultural plants, animals and edible fungi, seed, fertilizer, pesticide, feedstuff, as well as the agricultural environment and ecology, and even functional and pathogenic microorganisms. So, the agrometallome plays a vital role in molecular and organismic mechanisms like environmetallomics, metabolomics, proteomics, lipidomics, glycomics, immunomics, genomics, etc. To further reveal the inner and mutual mechanism of the agrometallome, comprehensive and systematic methodologies for the analysis of beneficial and toxic metals are indispensable to investigate elemental existence, concentration, distribution, speciation, and forms in agricultural lives and media. Based on agrometallomics, this review summarizes and discusses the advanced technical progress and future perspectives of metallic analytical approaches, which are categorized into ultrasensitive and high-throughput analysis, elemental speciation and state analysis, and spatial- and microanalysis. Furthermore, the progress of agrometallomic innovativeness greatly depends on the innovative development of modern metallic analysis approaches including, but not limited to, high sensitivity, elemental coverage, and anti-interference; high-resolution isotopic analysis; solid sampling and nondestructive analysis; metal chemical species and metal forms, associated molecular clusters, and macromolecular complexes analysis; and metal-related particles or metal within the microsize and even single cell or subcellular analysis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tengpeng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chunyan Chang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yajie Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
6
|
Longwell SA, Fordyce PM. micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output. LAB ON A CHIP 2020; 20:93-106. [PMID: 31701110 PMCID: PMC6923132 DOI: 10.1039/c9lc00512a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic devices are an enabling technology for many labs, facilitating a wide range of applications spanning high-throughput encapsulation, molecular separations, and long-term cell culture. In many cases, however, their utility is limited by a 'world-to-chip' barrier that makes it difficult to serially interface samples with these devices. As a result, many researchers are forced to rely on low-throughput, manual approaches for managing device input and output (IO) of samples, reagents, and effluent. Here, we present a hardware-software platform for automated microfluidic IO (micrIO). The platform, which is uniquely compatible with positive-pressure microfluidics, comprises an 'AutoSipper' for input and a 'Fraction Collector' for output. To facilitate widespread adoption, both are open-source builds constructed from components that are readily purchased online or fabricated from included design files. The software control library, written in Python, allows the platform to be integrated with existing experimental setups and to coordinate IO with other functions such as valve actuation and assay imaging. We demonstrate these capabilities by coupling both the AutoSipper and Fraction Collector to two microfluidic devices: a simple, valved inlet manifold and a microfluidic droplet generator that produces beads with distinct spectral codes. Analysis of the collected materials in each case establishes the ability of the platform to draw from and output to specific wells of multiwell plates with negligible cross-contamination between samples.
Collapse
Affiliation(s)
- Scott A Longwell
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA. and Department of Genetics, Stanford University, Stanford, CA, USA and ChEM-H Institute, Stanford University, Stanford, CA, USA and Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
7
|
Zhu XD, Chu J, Wang YH. Advances in Microfluidics Applied to Single Cell Operation. Biotechnol J 2018; 13. [DOI: 10.1002/biot.201700416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xu-Dong Zhu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Ju Chu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yong-Hong Wang
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
8
|
Khademi M, Wang W, Reitinger W, Barz DPJ. Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10473-10482. [PMID: 28915350 DOI: 10.1021/acs.langmuir.7b02487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The addition of surfactants can considerably impact the electrical characteristics of an interface, and the zeta potential measurement is the standard method for its characterization. In this article, a comprehensive study of the zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous solutions containing an anionic, a cationic, or a zwitterionic surfactant at different pH and ionic strength values is conducted. Electrophoretic mobilities are inferred from electrophoretic light scattering measurements of the particulate PMMA. These values can be converted into zeta potentials using permittivity and viscosity measurements of the continuous phase. Different behaviors are observed for each surfactant type, which can be explained with the various adsorption mechanisms on PMMA. For the anionic surfactant, the absolute zeta potential value below the critical micelle concentration (CMC) increases with the concentration, while it becomes rather constant around the CMC. At concentrations above the CMC, the absolute zeta potential increases again. We propose that hydrophobic-based adsorption and, at higher concentrations, the competing micellization process drive this behavior. The addition of cationic surfactant results in an isoelectric point below the CMC where the negative surface charge is neutralized by a layer of adsorbed cationic surfactant. At concentrations near the CMC, the positive zeta potential is rather constant. In this case, we propose that electrostatic interactions combined with hydrophobic adsorption are responsible for the observed behavior. The zeta potential in the presence of zwitterionic surfactant is influenced by the adsorption, because of hydrophobic interactions between the surfactant tail and the PMMA surface. However, there is less influence, compared to the ionic surfactants. For all three surfactant types, the zeta potential changes to more-negative or less-positive values for alkaline pH values, because of hydroxide adsorption. An increase of the ionic strength decreases the absolute value of the zeta potential, because of the shielding effects.
Collapse
Affiliation(s)
- Mahmoud Khademi
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Wuchun Wang
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Wolfgang Reitinger
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Dominik P J Barz
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
9
|
Piradashvili K, Alexandrino EM, Wurm FR, Landfester K. Reactions and Polymerizations at the Liquid–Liquid Interface. Chem Rev 2015; 116:2141-69. [DOI: 10.1021/acs.chemrev.5b00567] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Keti Piradashvili
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Frederik R. Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers (Basel) 2012. [DOI: 10.3390/polym4031349] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|