1
|
Vasiliades MA, Govender NS, Govender A, Crous R, Moodley D, Botha T, Efstathiou AM. The Effect of H 2 Pressure on the Carbon Path of Methanation Reaction on Co/γ-Al 2O 3: Transient Isotopic and Operando Methodology Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michalis A. Vasiliades
- Department of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, University Campus,
P.O. Box 20537, Nicosia, CY2109, Cyprus
| | - Nilenindran S. Govender
- Research and Technology, Energy Operations and Technology, Sasol South Africa, 1 Klasie Havenga Street, Sasolburg1947, South Africa
| | - Ashriti Govender
- Research and Technology, Energy Operations and Technology, Sasol South Africa, 1 Klasie Havenga Street, Sasolburg1947, South Africa
| | - Renier Crous
- Research and Technology, Energy Operations and Technology, Sasol South Africa, 1 Klasie Havenga Street, Sasolburg1947, South Africa
| | - Denzil Moodley
- Research and Technology, Energy Operations and Technology, Sasol South Africa, 1 Klasie Havenga Street, Sasolburg1947, South Africa
| | - Thys Botha
- Research and Technology, Energy Operations and Technology, Sasol South Africa, 1 Klasie Havenga Street, Sasolburg1947, South Africa
| | - Angelos M. Efstathiou
- Department of Chemistry, Heterogeneous Catalysis Laboratory, University of Cyprus, University Campus,
P.O. Box 20537, Nicosia, CY2109, Cyprus
| |
Collapse
|
2
|
Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: Synthesis and enhanced photocatalytic properties. J Colloid Interface Sci 2016; 481:13-9. [DOI: 10.1016/j.jcis.2016.07.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/15/2016] [Accepted: 07/17/2016] [Indexed: 11/21/2022]
|
3
|
Sterckx H, De Houwer J, Mensch C, Caretti I, Tehrani KA, Herrebout WA, Van Doorslaer S, Maes BUW. Mechanism of the Cu II-catalyzed benzylic oxygenation of (aryl)(heteroaryl)methanes with oxygen. Chem Sci 2016; 7:346-357. [PMID: 29861987 PMCID: PMC5952523 DOI: 10.1039/c5sc03530a] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022] Open
Abstract
A mechanistic study of the copper-catalyzed oxidation of the methylene group of aryl(di)azinylmethanes was performed. Initial reaction rates were measured making use of in situ IR reaction monitoring and a kinetic analysis of the reaction was executed. The reaction proved to be first order in oxygen concentration. For substrate and acid concentration, saturation kinetics due to O2 mass transfer limitation were observed. The occurrence of mass transfer limitation was further confirmed by examining the effect of the stirring rate on the initial reaction rate. Interestingly, the effect of the concentration of the catalyst on the rate shows that higher loadings result in a maximal initial rate, followed initially by a steady decrease and subsequently a rate plateau when the concentration is increased further. Mass transfer limitation and increased concentration of dinuclear catalytically active species rationalizes this hitherto unprecedented rate behavior. Continuous-wave and pulsed electron paramagnetic resonance methods were used to characterize the catalytic species present in the solution during the reaction and confirmed the presence of both mono- and dinuclear copper species. Analysis of a diverse substrate scope points towards imine-enamine tautomerization as a crucial process in the oxidation reaction. DFT calculations of these equilibrium constants (pKeq) provided us with a qualitative tool to predict whether or not a substrate is viable for oxidation under the reaction conditions developed.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium .
| | - Johan De Houwer
- Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium .
| | - Carl Mensch
- Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium .
| | - Ignacio Caretti
- Department of Physics , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | | | - Wouter A Herrebout
- Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium .
| | - Sabine Van Doorslaer
- Department of Physics , University of Antwerp , Universiteitsplein 1 , B-2610 Antwerp , Belgium
| | - Bert U W Maes
- Department of Chemistry , University of Antwerp , Groenenborgerlaan 171 , B-2020 Antwerp , Belgium .
| |
Collapse
|
4
|
|
5
|
Carter E, Murphy DM. The Role of Low Valent Transition Metal Complexes in Homogeneous Catalysis: An EPR Investigation. Top Catal 2015. [DOI: 10.1007/s11244-015-0417-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Gallo E, Glatzel P. Valence to core X-ray emission spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7730-46. [PMID: 24861500 DOI: 10.1002/adma.201304994] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/15/2014] [Indexed: 05/20/2023]
Abstract
This Progress Report discusses the chemical sensitivity of Kβ valence to core X-ray emission spectroscopy (vtc-XES) and its applications for investigating 3d-transition-metal based materials. Vtc-XES can be used for ligand identification and for the characterization of the valence electronic levels. The technique provides information that is similar to valence band photoemission spectroscopy but the sample environment can be chosen freely and thus allows measurements in presence of gases and liquids and it can be applied for measurements under in situ/operando or extreme conditions. The theoretical basis of the technique is presented using a one-electron approach and the vtc-XES spectral features are interpreted using ground state density functional theory calculations. Some recent results obtained by vtc-XES in various scientific fields are discussed to demonstrate the potential and future applications of this technique. Resonant X-ray emission spectroscopy is briefly introduced with some applications for the study of 3d and 5d-transition-metal based systems.
Collapse
Affiliation(s)
- Erik Gallo
- ESRF - The European Synchrotron, 71 Avenue des Martyres, Grenoble, 38000, France
| | | |
Collapse
|
7
|
Ledesma C, Yang J, Chen D, Holmen A. Recent Approaches in Mechanistic and Kinetic Studies of Catalytic Reactions Using SSITKA Technique. ACS Catal 2014. [DOI: 10.1021/cs501264f] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cristian Ledesma
- Department
of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jia Yang
- SINTEF
Materials
and Chemistry, N-7465 Trondheim, Norway
| | - De Chen
- Department
of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Anders Holmen
- Department
of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|