1
|
Iacobucci I, Monaco V, Hovasse A, Dupouy B, Keumoe R, Cichocki B, Elhabiri M, Meunier B, Strub JM, Monti M, Cianférani S, Blandin SA, Schaeffer-Reiss C, Davioud-Charvet E. Proteomic Profiling of Antimalarial Plasmodione Using 3-Benz(o)ylmenadione Affinity-Based Probes. Chembiochem 2024; 25:e202400187. [PMID: 38639212 DOI: 10.1002/cbic.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Understanding the mechanisms of drug action in malarial parasites is crucial for the development of new drugs to combat infection and to counteract drug resistance. Proteomics is a widely used approach to study host-pathogen systems and to identify drug protein targets. Plasmodione is an antiplasmodial early-lead drug exerting potent activities against young asexual and sexual blood stages in vitro with low toxicity to host cells. To elucidate its molecular mechanisms, an affinity-based protein profiling (AfBPP) approach was applied to yeast and P. falciparum proteomes. New (pro-) AfBPP probes based on the 3-benz(o)yl-6-fluoro-menadione scaffold were synthesized. With optimized conditions of both photoaffinity labeling and click reaction steps, the AfBPP protocol was then applied to a yeast proteome, yielding 11 putative drug-protein targets. Among these, we found four proteins associated with oxidoreductase activities, the hypothesized type of targets for plasmodione and its metabolites, and other proteins associated with the mitochondria. In Plasmodium parasites, the MS analysis revealed 44 potential plasmodione targets that need to be validated in further studies. Finally, the localization of a 3-benzyl-6-fluoromenadione AfBPP probe was studied in the subcellular structures of the parasite at the trophozoite stage.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Vittoria Monaco
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Baptiste Dupouy
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Rodrigue Keumoe
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Bogdan Cichocki
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Mourad Elhabiri
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette Cedex, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant' Angelo, Via Cintia 26, I-80126, Napoli, Italy
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Stéphanie A Blandin
- Institut de Biologie Moléculaire et Cellulaire, INSERM U1257 - CNRS UPR9022 - Université de Strasbourg, 2, Allée Konrad Roentgen, -67084, Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, F-67087, Strasbourg, France
| | - Elisabeth Davioud-Charvet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, 25, rue Becquerel, F-67087, Strasbourg, France
| |
Collapse
|
2
|
Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun 2022; 13:5950. [PMID: 36216817 PMCID: PMC9549030 DOI: 10.1038/s41467-022-33559-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1. The deubiquitinase UCHL1 has been linked to cancer invasiveness and neurodegeneration yet its molecular roles have remained poorly defined. Here the authors reveal the structural basis for how UCHL1 can be specifically inhibited and how chemogenomic probes can be used to dissect its functions in living cells.
Collapse
Affiliation(s)
- Christian Grethe
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Mirko Schmidt
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Gian-Marvin Kipka
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Rachel O'Dea
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Kai Gallant
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, Dortmund, Germany
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany. .,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany.
| |
Collapse
|
3
|
Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Chembiochem 2021; 22:2591-2599. [PMID: 33999499 PMCID: PMC8373781 DOI: 10.1002/cbic.202100155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Indexed: 12/16/2022]
Abstract
Emerging Plasmodium parasite drug resistance is threatening progress towards malaria control and elimination. While recent efforts in cell-based, high-throughput drug screening have produced first-in-class drugs with promising activities against different Plasmodium life cycle stages, most of these antimalarial agents have elusive mechanisms of action. Though challenging to address, target identification can provide valuable information to facilitate lead optimization and preclinical drug prioritization. Recently, proteome-wide methods for direct assessment of drug-protein interactions have emerged as powerful tools in a number of systems, including Plasmodium. In this review, we will discuss current chemoproteomic strategies that have been adapted to antimalarial drug target discovery, including affinity- and activity-based protein profiling and the energetics-based techniques thermal proteome profiling and stability of proteins from rates of oxidation. The successful application of chemoproteomics to the Plasmodium blood stage highlights the potential of these methods to link inhibitors to their molecular targets in more elusive Plasmodium life stages and intracellular pathogens in the future.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
4
|
Xia D, Liu B, Xu X, Ding Y, Zheng Q. Drug target discovery by magnetic nanoparticles coupled mass spectrometry. J Pharm Anal 2020; 11:122-127. [PMID: 33717618 PMCID: PMC7930636 DOI: 10.1016/j.jpha.2020.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/24/2019] [Accepted: 02/04/2020] [Indexed: 11/25/2022] Open
Abstract
Drug target discovery is the basis of drug screening. It elucidates the cause of disease and the mechanism of drug action, which is the essential of drug innovation. Target discovery performed in biological systems is complicated as proteins are in low abundance and endogenous compounds may interfere with drug binding. Therefore, methods to track drug-target interactions in biological matrices are urgently required. In this work, a Fe3O4 nanoparticle-based approach was developed for drug-target screening in biofluids. A known ligand-protein complex was selected as a principle-to-proof example to validate the feasibility. After incubation in cell lysates, ligand-modified Fe3O4 nanoparticles bound to the target protein and formed complexes that were separated from the lysates by a magnet for further analysis. The large surface-to-volume ratio of the nanoparticles provides more active sites for the modification of chemical drugs. It enhances the opportunity for ligand-protein interactions, which is beneficial for capturing target proteins, especially for those with low abundance. Additionally, a one-step magnetic separation simplifies the pre-processing of ligand-protein complexes, so it effectively reduces the endogenous interference. Therefore, the present nanoparticle-based approach has the potential to be used for drug target screening in biological systems. Fe3O4 NPs were made hydrophilic to adequately disperse in the cell lysate and fully contact with target proteins. The magnetic property of the NPs allowed one-step isolation while maintaining ligand-protein non-covalent bindings. It enabled the capture of low abundant targets in biological matrices while eliminated the endogenous interference.
Collapse
Affiliation(s)
- Dandan Xia
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Baoling Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ya Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuling Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
5
|
Ravindran MS, Wenk MR. Activity-Based Lipid Esterase Profiling of M. bovis BCG at Different Metabolic States Using Tetrahydrolipstatin (THL) as Bait. Methods Mol Biol 2018; 1491:75-85. [PMID: 27778282 DOI: 10.1007/978-1-4939-6439-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This chapter provides a step-by-step protocol using activity-based protein profiling (ABPP) as a chemical-proteomic tool to survey the antibiotic properties of a small molecule. Here, we investigate the molecular mechanism behind the bactericidal activity of tetrahydrolipstatin (THL). ABPP relies on small molecule probes that target the active site of specific enzymes in complex proteomes. These probes in turn are equipped with a reporter tag that allows capturing, visualization, enrichment, identification, and quantification of its targets either in vitro or in situ. THL possesses bactericidal activities, but its precise spectrum of molecular targets is poorly characterized. Here, we used THL analogs functionalized to enable Huisgen-base cycloaddition, commonly known as "click chemistry," to identify target proteins after enrichment from mycobacterial cell lysates obtained from different physiological conditions.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore, 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Markus R Wenk
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), Singapore, 117456, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117456, Singapore. .,Department of Biological Sciences, National University of Singapore (NUS), Singapore, 117456, Singapore. .,Swiss Tropical and Public Health Institute, University of Basel, 4051, Basel, Switzerland.
| |
Collapse
|
6
|
Abstract
Activity-based protein profiling (ABPP) has become a powerful chemoproteomic technology allowing for the dissection of complex ligand-protein interactions in their native cellular environment. One of the biggest challenges for ABPP is the extension of the proteome coverage. In this chapter a new ABPP strategy dedicated to monoamine oxidases (MAO) is presented. These enzymes are representative examples of flavin-dependent oxidases, playing a crucial role in the regulation of nervous system signaling.
Collapse
Affiliation(s)
- Joanna Krysiak
- Chair of Organic Chemistry II, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria.
| |
Collapse
|
7
|
Abstract
Understanding the molecular mechanisms of bacterial pathogenesis and virulence is of great importance from both an academic and clinical perspective, especially in view of an alarming increase in bacterial resistance to existing antibiotics and antibacterial agents. Use of small molecules to dissect the basis of these dynamic processes is a very attractive approach due to their ability for rapid spatiotemporal control of specific biochemical functions. Activity-based protein profiling (ABPP), employing small molecule probes to interrogate enzyme activities in complex proteomes, has emerged as a powerful tool to study bacterial pathogenesis. In this chapter, we present a set of ABPP methods to identify and analyze enzymes essential for growth, metabolism and virulence of different pathogens including S. aureus and L. monocytogenes using natural product-inspired activity-based probes.
Collapse
|
8
|
Wells SM, Widen JC, Harki DA, Brummond KM. Alkyne Ligation Handles: Propargylation of Hydroxyl, Sulfhydryl, Amino, and Carboxyl Groups via the Nicholas Reaction. Org Lett 2016; 18:4566-9. [PMID: 27570975 DOI: 10.1021/acs.orglett.6b02088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Nicholas reaction has been applied to the installation of alkyne ligation handles. Acid-promoted propargylation of hydroxyl, sulfhydryl, amino, and carboxyl groups using dicobalt hexacarbonyl-stabilized propargylium ions is reported. This method is useful for introduction of propargyl groups into base-sensitive molecules, thereby expanding the toolbox of methods for the incorporation of alkynes for bio-orthogonal reactions. High-value molecules are used as the limiting reagent, and various propargylium ion precursors are compared.
Collapse
Affiliation(s)
- Sarah M Wells
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Kay M Brummond
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15206, United States
| |
Collapse
|
9
|
Hütten M, Geukes M, Misas-Villamil JC, van der Hoorn RAL, Grundler FMW, Siddique S. Activity profiling reveals changes in the diversity and activity of proteins in Arabidopsis roots in response to nematode infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:36-43. [PMID: 26408809 DOI: 10.1016/j.plaphy.2015.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Cyst nematodes are obligate, sedentary endoparasites with a highly specialised biology and a huge economic impact in agriculture. Successful parasitism involves morphological and physiological modifications of the host cells which lead to the formation of specialised syncytial feeding structures in roots. The development of the syncytium is aided by a cocktail of nematode effectors that manipulate the host plant activities in a complex network of interactions through post-translational modifications. Traditional transcriptomic and proteomic approaches cannot display this functional proteomic information. Activity-based protein profiling (ABPP) is a powerful technology that can be used to investigate the activity of the proteome through activity-based probes. To better understand the functional proteomics of syncytium, ABPP was conducted on syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots. Our results demonstrated that the activity of several enzymes is differentially regulated in the syncytium compared to the control roots. Among those specifically activated in the syncytium are a putative S-formyl-glutathione hydrolase (SFGH), a putative methylesterase (MES) and two unidentified enzymes. In contrast, the activities of vacuolar processing enzymes (VPEs) are specifically suppressed in the syncytium. Competition labelling, quantitative gene expression and T-DNA knock-out mutants were used to further characterise the roles of the differentially regulated enzymes during plant-nematode interaction. In conclusion, our study will open the door to generate a comprehensive and integrated view of the host-pathogen warfare that results in the formation of long-term feeding sites for pathogens.
Collapse
Affiliation(s)
- Marion Hütten
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Melanie Geukes
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Johana C Misas-Villamil
- Plant Chemetics Lab, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.
| | - Renier A L van der Hoorn
- Plant Chemetics Lab, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; Plant Chemetics Lab, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3UB Oxford, UK.
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany.
| |
Collapse
|
10
|
Gamo AM, González-Vera JA, Rueda-Zubiaurre A, Alonso D, Vázquez-Villa H, Martín-Couce L, Palomares Ó, López JA, Martín-Fontecha M, Benhamú B, López-Rodríguez ML, Ortega-Gutiérrez S. Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5-HT1A
and 5-HT6
Receptors. Chemistry 2015; 22:1313-21. [DOI: 10.1002/chem.201503101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ana M. Gamo
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Juan A. González-Vera
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Dulce Alonso
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Lidia Martín-Couce
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Óscar Palomares
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Juan A. López
- Proteomics Unit; Centro Nacional de Investigaciones Cardiovasculares, CNIC; 28029 Madrid Spain
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Bellinda Benhamú
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| |
Collapse
|
11
|
Vendrell-Navarro G, Brockmeyer A, Waldmann H, Janning P, Ziegler S. Identification of the targets of biologically active small molecules using quantitative proteomics. Methods Mol Biol 2015; 1263:263-286. [PMID: 25618352 DOI: 10.1007/978-1-4939-2269-7_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Currently, cell-based screenings yield a multitude of small molecule modulators of diverse biological processes. The most demanding step in the course of elucidation of the mode of action of biologically active compounds is the identification of the target proteins. Although there is no generic approach available, affinity-based chemical proteomics is the most widely applied methodology. Particularly, quantitative chemical proteomics has proven very powerful in the identification of the putative targets of small molecules. Here we describe the procedure for identification of target proteins for small molecules employing affinity chromatography and the stable isotope labeling in cell culture (SILAC) for quantitative proteomics.
Collapse
Affiliation(s)
- Glòria Vendrell-Navarro
- Abteilung Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11, Dortmund, 44227, Germany
| | | | | | | | | |
Collapse
|
12
|
Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules--mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 2014; 21:260-92. [PMID: 24382094 PMCID: PMC4060780 DOI: 10.1089/ars.2013.5489] [Citation(s) in RCA: 486] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/07/2013] [Accepted: 01/01/2014] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. RECENT ADVANCES The development of high-throughput "omics" technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. CRITICAL ISSUES In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. FUTURE DIRECTIONS Throughout the review, the synergy of combined "omics" technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
13
|
Janero DR. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Expert Opin Drug Discov 2014; 9:847-58. [PMID: 24965547 DOI: 10.1517/17460441.2014.925876] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.
Collapse
Affiliation(s)
- David R Janero
- Northeastern University, Bouvé College of Health Sciences, Center for Drug Discovery, Department of Pharmaceutical Sciences, Health Sciences Entrepreneurs , 360 Huntington Avenue, 116 Mugar Life Sciences Hall, Boston, MA 02115-5000 , USA +1 617 373 2208 ; +1 617 373 7493 ;
| |
Collapse
|
14
|
Kolb R, Bach NC, Sieber SA. β-Sultams exhibit discrete binding preferences for diverse bacterial enzymes with nucleophilic residues. Chem Commun (Camb) 2014; 50:427-9. [DOI: 10.1039/c3cc46002a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Rudolf GC, Sieber SA. Copper-assisted click reactions for activity-based proteomics: fine-tuned ligands and refined conditions extend the scope of application. Chembiochem 2013; 14:2447-55. [PMID: 24166841 DOI: 10.1002/cbic.201300551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Copper-catalysed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) is the predominantly used bioconjugation method in the field of activity-based protein profiling (ABPP). Several limitations, however, including conversion efficiency, protein denaturation and buffer compatibility, restrict the scope of established procedures. We introduce an ABPP customised click methodology based on refined CuAAC conditions together with new accelerating copper ligands. A screen of several triazole compounds revealed the cationic quaternary {3-[4-({bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]propyl}trimethylammonium trifluoroacetate (TABTA) to be a superior ligand. TABTA exhibited excellent in vitro conjugation kinetics and optimal ABPP labelling activity while almost exclusively preserving the native protein fold. The application of this CuAAC-promoting system is amenable to existing protocols with minimal perturbations and is even compatible with previously unusable buffer systems such as Tris⋅HCl.
Collapse
Affiliation(s)
- Georg C Rudolf
- Fakultät für Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany)
| | | |
Collapse
|
16
|
|
17
|
Sommer S, Weikart ND, Linne U, Mootz HD. Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol–alkyne addition. Bioorg Med Chem 2013; 21:2511-7. [DOI: 10.1016/j.bmc.2013.02.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 12/11/2022]
|
18
|
Wang K, Yang T, Wu Q, Zhao X, Nice EC, Huang C. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 2013; 9:293-310. [PMID: 22809208 DOI: 10.1586/epr.12.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug target deconvolution, a process that identifies targets to small molecules in complex biological samples, which underlie the biological responses that are observed when a drug is administered, plays an important role in current drug discovery. Despite the fact that genomics and proteomics have provided a flood of information that contributes to the progress of drug target identification and validation, the current approach to drug target deconvolution still poses dilemmas. Chemistry-based functional proteomics, a multidisciplinary strategy, has become the preferred method of choice to deconvolute drug target pools, based on direct interactions between small molecules and their protein targets. This approach has already identified a broad panel of previously undefined enzymes with potential as drug targets and defined targets that can rationalize side effects and toxicity for new drug candidates and existing therapeutics. Herein, the authors discuss both activity-based protein profiling and compound-centric chemical proteomics approaches used in chemistry-based functional proteomics and their applications for the identification and characterization of small molecular targets.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Souchelnytskyi S, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. INDIVIDUALIZATION OF CANCER TREATMENT: CONTRIBUTION OF OMICS TECHNOLOGIES TO CANCER DIAGNOSTIC. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.04.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Messana I, Cabras T, Iavarone F, Vincenzoni F, Urbani A, Castagnola M. Unraveling the different proteomic platforms. J Sep Sci 2012; 36:128-39. [PMID: 23212829 DOI: 10.1002/jssc.201200830] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 01/06/2023]
Abstract
This review is addressed to scientists working outside the field of proteomics and wishes to shed a light on the possibility offered by the latest proteomics strategies. Bottom-up and top-down platforms are critically examined outlining advantages and limitations of their application to qualitative and quantitative investigations. Discovery, directed and targeted proteomics as different options for the management of the MS instrument are defined emphasizing their integration in the experimental plan to accomplish meaningful results. The issue of data validation is analyzed and discussed. The most common qualitative proteomic platforms are described, with a particular emphasis on enrichment methods to elucidate PTMs codes (i.e. ubiquitin and histone codes). Label-free and labeled methods for relative and absolute quantification are critically compared. The possible contribution of proteomics platforms to the transition from structural proteomics to functional proteomics (study of the functional connections between different proteins) and to the challenging system biology (integrated study of all the functional cellular functions) is also briefly discussed.
Collapse
Affiliation(s)
- Irene Messana
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Vinkenborg JL, Mayer G, Famulok M. Aptamer-based affinity labeling of proteins. Angew Chem Int Ed Engl 2012; 51:9176-80. [PMID: 22865679 DOI: 10.1002/anie.201204174] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 12/20/2022]
Abstract
A most able label: Labeled aptamers can be cross-linked to their target structures in a light-dependent and highly specific manner as a result of a new strategy termed aptamer-based affinity labeling (ABAL) of proteins. The aptamer-protein complexes can be enriched in vitro, from a cellular lysate and from the surface of living cells, opening new ways to study aptamer interactions in biological contexts.
Collapse
|
22
|
Vinkenborg JL, Mayer G, Famulok M. Aptamer-basierte Affinitätsmarkierung von Proteinen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Gersch M, Kreuzer J, Sieber SA. Electrophilic natural products and their biological targets. Nat Prod Rep 2012; 29:659-82. [DOI: 10.1039/c2np20012k] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Eirich J, Burkhart JL, Ullrich A, Rudolf GC, Vollmar A, Zahler S, Kazmaier U, Sieber SA. Pretubulysin derived probes as novel tools for monitoring the microtubule network via activity-based protein profiling and fluorescence microscopy. MOLECULAR BIOSYSTEMS 2012; 8:2067-75. [DOI: 10.1039/c2mb25144b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|