1
|
Wang M, Shi Z, Wang F, Wang C, Wang H. Integrating structure-activity relationships, computational approaches, and experimental validation to unlock the therapeutic potential of indole-3-carbinol and its derivatives. Biochem Pharmacol 2025; 238:116968. [PMID: 40318812 DOI: 10.1016/j.bcp.2025.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Indole-3-carbinol (I3C) a bioactive compound derived from cruciferous vegetables, has garnered significant attention for its role in cancer prevention and its broad-spectrum biological activities, including anti-inflammatory properties and the modulation of critical signaling pathways. This review explores the structure-activity relationship (SAR) of I3C and its derivatives, emphasizing their molecular mechanisms and therapeutic potential. Key cellular targets, such as estrogen receptors, and pathways, including NF-κB, Wnt/β-catenin, and PI3K/Akt, are highlighted for their roles in apoptosis, autophagy, and the disruption of mitogenic signaling. The SAR analysis reveals the influence of molecular modifications, particularly in dimeric forms like diindolylmethane (DIM) on pharmacokinetics and bioactivity. Computational approaches, including molecular docking, molecular dynamics simulations, and density functional theory (DFT) provide insights into ligand-receptor interactions, binding energetics, and electronic properties, facilitating biological activity predictions. Experimental evidence from in vitro assays and synergistic studies underscores the cytotoxic efficacy and combinatorial benefits of I3C with conventional chemotherapeutics. Challenges in clinical translation, such as bioavailability and targeted delivery, are addressed, highlighting the potential of integrating computational and experimental findings to develop novel I3C-based therapeutics. This comprehensive analysis positions I3C as a promising scaffold for designing effective agents against cancer and other diseases.
Collapse
Affiliation(s)
- Mingjie Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Zihan Shi
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Fangfang Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China
| | - Cunqin Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| | - Hongting Wang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, School of Pharmacy, Wannan Medical College, Wuhu, PR China.
| |
Collapse
|
2
|
NMK-BH2, a novel microtubule-depolymerising bis (indolyl)-hydrazide-hydrazone, induces apoptotic and autophagic cell death in cervical cancer cells by binding to tubulin at colchicine - site. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118762. [PMID: 32502617 DOI: 10.1016/j.bbamcr.2020.118762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Microtubules, the key components of the eukaryotic cytoskeleton and mitotic spindle, are one of the most sought-after targets for cancer chemotherapy, especially due to their indispensible role in mitosis. Cervical cancer is a prevalent malignancy among women of developing countries including India. In spite of the remarkable therapeutic advancement, the non-specificity of chemotherapeutic drugs adversely affect the patients' survival and well-being, thus, necessitating the quest for novel indole-based anti-microtubule agent against cervical cancer, with high degree of potency and selectivity. METHODS For in vitro studies, we used MTT assay, confocal microscopy, fluorescence microscopy, flow cytometry and Western blot analysis. Study in cell free system was accomplished by spectrophotometry, fluorescence spectroscopy and TEM and computational analysis was done by AutodockTools 1.5.6. RESULTS NMK-BH2 exhibited significant and selective anti-proliferative activity against cervical cancer HeLa cells (IC50 = 1.5 μM) over normal cells. It perturbed the cytoskeletal and spindle microtubules of HeLa cells leading to mitotic block and cell death by apoptosis and autophagy. Furthermore, NMK-BH2 targeted the tubulin-microtubule system through fast and strong binding to the αβ-tubulin heterodimers at colchicine-site. CONCLUSION This study identifies and characterises NMK-BH2 as a novel anti-microtubule agent and provides insights into its key anti-cancer mechanism through two different cell death pathways: apoptosis and autophagy, which are mutually independent. GENERAL SIGNIFICANCE It navigates the potential of the novel bis (indolyl)-hydrazide-hydrazone, NMK-BH2, to serve as lead for development of new generation microtubule-disrupting chemotherapeutic with improved efficacy and remarkable selectivity towards better cure of cervical cancer.
Collapse
|
3
|
Delta-Tocotrienol Modulates Glutamine Dependence by Inhibiting ASCT2 and LAT1 Transporters in Non-Small Cell Lung Cancer (NSCLC) Cells: A Metabolomic Approach. Metabolites 2019; 9:metabo9030050. [PMID: 30871192 PMCID: PMC6468853 DOI: 10.3390/metabo9030050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
The growth and development of non-small cell lung cancer (NSCLC) primarily depends on glutamine. Both glutamine and essential amino acids (EAAs) have been reported to upregulate mTOR in NSCLC, which is a bioenergetics sensor involved in the regulation of cell growth, cell survival, and protein synthesis. Seen as novel concepts in cancer development, ASCT2 and LAT transporters allow glutamine and EAAs to enter proliferating tumors as well as send a regulatory signal to mTOR. Blocking or downregulating these glutamine transporters in order to inhibit glutamine uptake would be an excellent therapeutic target for treatment of NSCLC. This study aimed to validate the metabolic dysregulation of glutamine and its derivatives in NSCLC using cellular 1H-NMR metabolomic approach while exploring the mechanism of delta-tocotrienol (δT) on glutamine transporters, and mTOR pathway. Cellular metabolomics analysis showed significant inhibition in the uptake of glutamine, its derivatives glutamate and glutathione, and some EAAs in both cell lines with δT treatment. Inhibition of glutamine transporters (ASCT2 and LAT1) and mTOR pathway proteins (P-mTOR and p-4EBP1) was evident in Western blot analysis in a dose-dependent manner. Our findings suggest that δT inhibits glutamine transporters, thus inhibiting glutamine uptake into proliferating cells, which results in the inhibition of cell proliferation and induction of apoptosis via downregulation of the mTOR pathway.
Collapse
|
4
|
Li X, Dong W, Nalin AP, Wang Y, Pan P, Xu B, Zhang Y, Tun S, Zhang J, Wang LS, He X, Caligiuri MA, Yu J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 2018; 7:e1431085. [PMID: 29872557 DOI: 10.1080/2162402x.2018.1431085] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022] Open
Abstract
Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinxin Li
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ansel P Nalin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bo Xu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Steven Tun
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.,The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.,The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
5
|
Kim BR, Van de Laar E, Cabanero M, Tarumi S, Hasenoeder S, Wang D, Virtanen C, Suzuki T, Bandarchi B, Sakashita S, Pham NA, Lee S, Keshavjee S, Waddell TK, Tsao MS, Moghal N. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis. PLoS Biol 2016; 14:e1002581. [PMID: 27880766 PMCID: PMC5120804 DOI: 10.1371/journal.pbio.1002581] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022] Open
Abstract
Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and worse clinical outcome. We propose that early pathogenesis of most SQCCs involves stabilization of the squamous injury state in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9 possibly being exploited in a subset of SQCCs in later stages.
Collapse
Affiliation(s)
- Bo Ram Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Emily Van de Laar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Cabanero
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shintaro Tarumi
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Hasenoeder
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Carl Virtanen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Takaya Suzuki
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Bizhan Bandarchi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sharon Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Division of Thoracic Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Pulito C, Mori F, Sacconi A, Casadei L, Ferraiuolo M, Valerio MC, Santoro R, Goeman F, Maidecchi A, Mattoli L, Manetti C, Di Agostino S, Muti P, Blandino G, Strano S. Cynara scolymus affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget 2016; 6:18134-50. [PMID: 26136339 PMCID: PMC4627240 DOI: 10.18632/oncotarget.4017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022] Open
Abstract
Malignant pleural mesothelioma is a poorly treated neoplasia arising from the pleural mesothelial lining. Here we document that the leaf extract of Cynara scolymus exerts broad antitumoral effects both in vitro and in vivo on mesothelioma cell lines. We found that Cynara scolymus treatment affects strongly cell growth, migration and tumor engraftment of mesothelioma cell lines. Strikingly, dietary feeding with Cynara scolymus leaf extract reduces the growth of mesothelioma xenografted tumors similarly to pemetrexed, a commonly employed drug in the treatment of mesothelioma. In aggregate our findings suggest that leaf extract of Cynara scolymus holds therapeutic potential for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Casadei
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Maria Ferraiuolo
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Raffaela Santoro
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Cesare Manetti
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| | - Silvia Di Agostino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| | - Sabrina Strano
- Molecular Chemoprevention Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy.,Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Martinez VD, MacAulay CE, Guillaud M, Lam WL, Zhang L, Corbett KK, Rosin MP. Targeting of chemoprevention to high-risk potentially malignant oral lesions: challenges and opportunities. Oral Oncol 2014; 50:1123-30. [PMID: 25240917 PMCID: PMC4539364 DOI: 10.1016/j.oraloncology.2014.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 08/11/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
Abstract
Worldwide, oral cancer is responsible for 170,000 deaths per year. Intervention to prevent this disease is a long sought after goal. Chemoprevention studies have focused on clinicopathological features of potentially malignant lesions (PML) in an effort to prevent their progression to cancer. However, prediction of future behavior for such lesions is difficult and remains a major challenge to such intervention. Different approaches to this problem have been tested in the past 20years. Early genetic progression models identified critical regions of allelic imbalance at 3p and 9p, and provided the basis for molecular markers to identify progressing PMLs. Subsequently, technological advances, such as genome-wide high-throughput array platforms, computer imaging, visualization technology and next generation sequencing, have broadened the scope for marker development and have the potential of further improving our ability to identify high-risk lesions in the near future either alone or in combination. In this article, we examine the milestones in the development of markers for PML progression. We emphasize the critical importance of networks among scientists, health professionals and community to facilitate the validation and application of putative markers into clinical practice. With a growing number of new agents to validate, it is necessary to coordinate the design and implementation of strategies for patient recruitment, integration of marker assessment, and the final translation of such approaches into clinical use.
Collapse
Affiliation(s)
- Victor D Martinez
- BC Cancer Research Centre, Department of Integrative Oncology, Vancouver, Canada
| | - Calum E MacAulay
- BC Cancer Research Centre, Department of Integrative Oncology, Vancouver, Canada
| | - Martial Guillaud
- BC Cancer Research Centre, Department of Integrative Oncology, Vancouver, Canada
| | - Wan L Lam
- BC Cancer Research Centre, Department of Integrative Oncology, Vancouver, Canada
| | - Lewei Zhang
- Faculty of Dentistry, Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Kitty K Corbett
- School of Public Health and Health Systems, University of Waterloo, Ontario, Canada
| | - Miriam P Rosin
- BC Cancer Research Centre, Department of Cancer Control Research, Vancouver, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|