1
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
2
|
Plapp BV, Gakhar L, Subramanian R. Dependence of crystallographic atomic displacement parameters on temperature (25-150 K) for complexes of horse liver alcohol dehydrogenase. Acta Crystallogr D Struct Biol 2022; 78:1221-1234. [PMID: 36189742 PMCID: PMC9527765 DOI: 10.1107/s2059798322008361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes catalyze reactions by binding and orienting substrates with dynamic interactions. Horse liver alcohol dehydrogenase catalyzes hydrogen transfer with quantum-mechanical tunneling that involves fast motions in the active site. The structures and B factors of ternary complexes of the enzyme with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or NAD+ and 2,2,2-trifluoroethanol were determined to 1.1-1.3 Å resolution below the `glassy transition' in order to extract information about the temperature-dependent harmonic motions, which are reflected in the crystallographic B factors. The refinement statistics and structures are essentially the same for each structure at all temperatures. The B factors were corrected for a small amount of radiation decay. The overall B factors for the complexes are similar (13-16 Å2) over the range 25-100 K, but increase somewhat at 150 K. Applying TLS refinement to remove the contribution of pseudo-rigid-body displacements of coenzyme binding and catalytic domains provided residual B factors of 7-10 Å2 for the overall complexes and of 5-10 Å2 for C4N of NAD+ and the methylene carbon of the alcohols. These residual B factors have a very small dependence on temperature and include local harmonic motions and apparently contributions from other sources. Structures at 100 K show complexes that are poised for hydrogen transfer, which involves atomic displacements of ∼0.3 Å and is compatible with the motions estimated from the residual B factors and molecular-dynamics simulations. At 298 K local conformational changes are also involved in catalysis, as enzymes with substitutions of amino acids in the substrate-binding site have similar positions of NAD+ and pentafluorobenzyl alcohol and similar residual B factors, but differ by tenfold in the rate constants for hydride transfer.
Collapse
Affiliation(s)
- Bryce V. Plapp
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52252, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, Carver College of Medicine, The University of Iowa, Iowa City, IA 52252, USA
| | - Ramaswamy Subramanian
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52252, USA
| |
Collapse
|
3
|
Shrestha UR, Mamontov E, O'Neill HM, Zhang Q, Kolesnikov AI, Chu X. Experimental mapping of short-wavelength phonons in proteins. Innovation (N Y) 2022; 3:100199. [PMID: 35059681 PMCID: PMC8760453 DOI: 10.1016/j.xinn.2021.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Phonons are quasi-particles, observed as lattice vibrations in periodic materials, that often dampen in the presence of structural perturbations. Nevertheless, phonon-like collective excitations exist in highly complex systems, such as proteins, although the origin of such collective motions has remained elusive. Here we present a picture of temperature and hydration dependence of collective excitations in green fluorescent protein (GFP) obtained by inelastic neutron scattering. Our results provide evidence that such excitations can be used as a measure of flexibility/softness and are possibly associated with the protein’s activity. Moreover, we show that the hydration water in GFP interferes with the phonon propagation pathway, enhancing the structural rigidity and stability of GFP. Quantum phenomena in biology have long fascinated people around the world This work presents a direct experimental observation of phonons, the quantum vibrations in a protein The collective excitations or phonons in proteins were detected by utilizing inelastic neutron scattering technique at Oak Ridge National Laboratory Our results illustrate the flexibility-activity relationship in proteins by mapping the temperature and hydration dependence of these collective excitations
Collapse
Affiliation(s)
- Utsab R. Shrestha
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hugh M. O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Qiu Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Xiangqiang Chu
- Department of Nuclear Science and Technology, Graduate School of China Academy of Engineering Physics, Beijing 100193, China
- Corresponding author
| |
Collapse
|
4
|
Singh P, Vandemeulebroucke A, Li J, Schulenburg C, Fortunato G, Kohen A, Hilvert D, Cheatum CM. Evolution of the Chemical Step in Enzyme Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | | | - Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Cindy Schulenburg
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Gabriel Fortunato
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
5
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
6
|
Pagano P, Guo Q, Ranasinghe C, Schroeder E, Robben K, Häse F, Ye H, Wickersham K, Aspuru-Guzik A, Major DT, Gakhar L, Kohen A, Cheatum CM. Oscillatory Active-site Motions Correlate with Kinetic Isotope Effects in Formate Dehydrogenase. ACS Catal 2019; 9:11199-11206. [PMID: 33996196 PMCID: PMC8118594 DOI: 10.1021/acscatal.9b03345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thermal motions of enzymes have been invoked to explain the temperature dependence of kinetic isotope effects (KIE) in enzyme-catalyzed hydride transfers. Formate dehydrogenase (FDH) from Candida boidinii exhibits a temperature independent KIE that becomes temperature dependent upon mutation of hydrophobic residues in the active site. Ternary complexes of FDH that mimic the transition state structure allow investigation of how these mutations influence active-site dynamics. A combination of X-ray crystallography, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamic simulations characterize the structure and dynamics of the active site. FDH exhibits oscillatory frequency fluctuations on the picosecond timescale, and the amplitude of these fluctuations correlates with the temperature dependence of the KIE. Both the kinetic and dynamic phenomena can be reproduced computationally. These results provide experimental evidence for a connection between the temperature dependence of KIEs and motions of the active site in an enzyme-catalyzed reaction consistent with activated tunneling models of the hydride transfer reaction.
Collapse
Affiliation(s)
- Philip Pagano
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Chethya Ranasinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Evan Schroeder
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Kevin Robben
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Florian Häse
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Hepeng Ye
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Kyle Wickersham
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
- Senior Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1Z8, Canada
| | - Dan T. Major
- Chemistry Department, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Lokesh Gakhar
- Protein Crystallography Facility and Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
7
|
Ranasinghe C, Pagano P, Sapienza PJ, Lee AL, Kohen A, Cheatum CM. Isotopic Labeling of Formate Dehydrogenase Perturbs the Protein Dynamics. J Phys Chem B 2019; 123:10403-10409. [PMID: 31696711 DOI: 10.1021/acs.jpcb.9b08426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isotope substitution of enzymes has become a means of addressing the participation of protein motions in enzyme-catalyzed reactions. The idea is that only the enzyme mass will be altered and not the electrostatics, so that the protein dynamics are essentially the same but at lower frequencies because of the mass change. In this study, we variably label all carbon atoms in formate dehydrogenase (FDH) with 13C, all nitrogen atoms with 15N, and all nonexchangeable hydrogen atoms with deuterium and investigate the impact that isotopic substitution has on the dynamics at the active site by two-dimensional infrared spectroscopy and compare with the measurements of the temperature dependence of the intrinsic kinetic isotope effects (KIEs). We show that 15N labeling of FDH has the largest effect and makes the active site more heterogeneous, whereas the addition of nonexchangeable deuterium appears to have the opposite effect of 15N on active-site dynamics, resulting in a behavior similar to that of native FDH. Nevertheless, the temperature dependence of the KIEs shows a monotonic trend with protein mass that does not correspond with the changes in dynamics. These results suggest that isotope labeling has more than just a mass effect on enzyme dynamics and may influence electrostatics in ways that complicate the interpretation of the protein isotope effect.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Philip Pagano
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Amnon Kohen
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| | - Christopher M Cheatum
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1727 , United States
| |
Collapse
|
8
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
9
|
Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Protein Sci 2018; 27:750-768. [PMID: 29271062 DOI: 10.1002/pro.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.
Collapse
Affiliation(s)
- Karthik K Shanmuganatham
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Diagnostic Virology Laboratory, USDA, Ames, IA, 50010
| | - Rachel S Wallace
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Ann Ting-I Lee
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,No 92, Jing Mao 1st Rd., Taichung, Taiwan, 406, Republic of China
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109
| |
Collapse
|
10
|
Ranasinghe C, Guo Q, Sapienza PJ, Lee AL, Quinn DM, Cheatum CM, Kohen A. Protein Mass Effects on Formate Dehydrogenase. J Am Chem Soc 2017; 139:17405-17413. [PMID: 29083897 PMCID: PMC5800309 DOI: 10.1021/jacs.7b08359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isotopically labeled enzymes (denoted as "heavy" or "Born-Oppenheimer" enzymes) have been used to test the role of protein dynamics in catalysis. The original idea was that the protein's higher mass would reduce the frequency of its normal-modes without altering its electrostatics. Heavy enzymes have been used to test if the vibrations in the native enzyme are coupled to the chemistry it catalyzes, and different studies have resulted in ambiguous findings. Here the temperature-dependence of intrinsic kinetic isotope effects of the enzyme formate dehydrogenase is used to examine the distribution of H-donor to H-acceptor distance as a function of the protein's mass. The protein dynamics are altered in the heavy enzyme to diminish motions that determine the transition state sampling in the native enzyme, in accordance with a Born-Oppenheimer-like effect on bond activation. Findings of this work suggest components related to fast frequencies that can be explained by Born-Oppenheimer enzyme hypothesis (vibrational) and also slower time scale events that are non-Born-Oppenheimer in nature (electrostatic), based on evaluations of protein mass dependence of donor-acceptor distance and forward commitment to catalysis along with steady state and single turnover measurements. Together, the findings suggest that the mass modulation affected both local, fast, protein vibrations associated with the catalyzed chemistry and the protein's macromolecular electrostatics at slower time scales; that is, both Born-Oppenheimer and non-Born-Oppenheimer effects are observed. Comparison to previous studies leads to the conclusion that isotopic labeling of the protein may have different effects on different systems, however, making heavy enzyme studies a very exciting technique for exploring the dynamics link to catalysis in proteins.
Collapse
Affiliation(s)
- Chethya Ranasinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Qi Guo
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | - Paul J. Sapienza
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel M. Quinn
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242-1727, USA
| |
Collapse
|
11
|
Stevenson P, Tokmakoff A. Ultrafast Fluctuations of High Amplitude Electric Fields in Lipid Membranes. J Am Chem Soc 2017; 139:4743-4752. [DOI: 10.1021/jacs.6b12412] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Paul Stevenson
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Ave., Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, James Frank Institute, and The Institute
for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Shrestha UR, Bhowmik D, Van Delinder KW, Mamontov E, O’Neill H, Zhang Q, Alatas A, Chu XQ. Collective Excitations in Protein as a Measure of Balance Between its Softness and Rigidity. J Phys Chem B 2017; 121:923-930. [DOI: 10.1021/acs.jpcb.6b10245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Utsab R. Shrestha
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Debsindhu Bhowmik
- Computational
Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kurt W. Van Delinder
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Eugene Mamontov
- Chemical
and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Hugh O’Neill
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Qiu Zhang
- Biology
and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Ahmet Alatas
- Advanced
Photon Source, Argonne National laboratory, Argonne, IL 60439, United States
| | - Xiang-Qiang Chu
- Department
of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
13
|
Reppert M, Tokmakoff A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu Rev Phys Chem 2016; 67:359-86. [DOI: 10.1146/annurev-physchem-040215-112055] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
14
|
Francis K, Sapienza PJ, Lee AL, Kohen A. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase. Biochemistry 2016; 55:1100-6. [PMID: 26813442 DOI: 10.1021/acs.biochem.5b00945] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.
Collapse
Affiliation(s)
- Kevin Francis
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
15
|
Abstract
![]()
The role of the enzyme’s dynamic motions
in catalysis is at the center of heated contemporary debates among
both theoreticians and experimentalists. Resolving these apparent
disputes is of both intellectual and practical importance: incorporation
of enzyme dynamics could be critical for any calculation of enzymatic
function and may have profound implications for structure-based drug
design and the design of biomimetic catalysts. Analysis of the
literature suggests that while part of the dispute may reflect substantial
differences between theoretical approaches, much of the debate is
semantic. For example, the term “protein dynamics” is
often used by some researchers when addressing motions that are in
thermal equilibrium with their environment, while other researchers
only use this term for nonequilibrium events. The last cases are those
in which thermal energy is “stored” in a specific protein
mode and “used” for catalysis before it can dissipate
to its environment (i.e., “nonstatistical dynamics”).
This terminology issue aside, a debate has arisen among theoreticians
around the roles of nonstatistical vs statistical dynamics in catalysis.
However, the author knows of no experimental findings available today
that examined this question in enzyme catalyzed reactions. Another
source of perhaps nonsubstantial argument might stem from the varying
time scales of enzymatic motions, which range from seconds to femtoseconds.
Motions at different time scales play different roles in the many
events along the catalytic cascade (reactant binding, reprotonation
of reactants, structural rearrangement toward the transition state,
product release, etc.). In several cases, when various experimental
tools have been used to probe catalytic events at differing time scales,
illusory contradictions seem to have emerged. In this Account, recent
attempts to sort the merits of those questions are discussed along
with possible future directions. A possible summary of current
studies could be that enzyme, substrate, and solvent dynamics contribute
to enzyme catalyzed reactions in several ways: first via mutual “induced-fit”
shifting of their conformational ensemble upon binding; then via thermal
search of the conformational space toward the reaction’s transition-state
(TS) and the rare event of the barrier crossing toward products, which
is likely to be on faster time scales then the first and following
events; and finally via the dynamics associated with products release,
which are rate-limiting for many enzymatic reactions. From a chemical
perspective, close to the TS, enzymatic systems seem to stiffen, restricting
motions orthogonal to the chemical coordinate and enabling dynamics
along the reaction coordinate to occur selectively. Studies of how
enzymes evolved to support those efficient dynamics at various time
scales are still in their infancy, and further experiments and calculations
are needed to reveal these phenomena in both enzymes and uncatalyzed
reactions.
Collapse
Affiliation(s)
- Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Abstract
The role of evolutionary pressure on the chemical step catalyzed by enzymes is somewhat enigmatic, in part because chemistry is not rate-limiting for many optimized systems. Herein, we present studies that examine various aspects of the evolutionary relationship between protein dynamics and the chemical step in two paradigmatic enzyme families, dihydrofolate reductases and alcohol dehydrogenases. Molecular details of both convergent and divergent evolution are beginning to emerge. The findings suggest that protein dynamics across an entire enzyme can play a role in adaptation to differing physiological conditions. The growing tool kit of kinetics, kinetic isotope effects, molecular biology, biophysics, and bioinformatics provides means to link evolutionary changes in structure-dynamics function to the vibrational and conformational states of each protein.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and the California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720 and.
| | - Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242-1294.
| |
Collapse
|
17
|
Yahashiri A, Rubach JK, Plapp BV. Effects of cavities at the nicotinamide binding site of liver alcohol dehydrogenase on structure, dynamics and catalysis. Biochemistry 2014; 53:881-94. [PMID: 24437493 PMCID: PMC3969020 DOI: 10.1021/bi401583f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A role
for protein dynamics in enzymatic catalysis of hydrogen
transfer has received substantial scientific support, but the connections
between protein structure and catalysis remain to be established.
Valine residues 203 and 207 are at the binding site for the nicotinamide
ring of the coenzyme in liver alcohol dehydrogenase and have been
suggested to facilitate catalysis with “protein-promoting vibrations”
(PPV). We find that the V207A substitution has small effects on steady-state
kinetic constants and the rate of hydrogen transfer; the introduced
cavity is empty and is tolerated with minimal effects on structure
(determined at 1.2 Å for the complex with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to
support a role for Val-207 in the dynamics of catalysis. The protein
structures and ligand geometries (including donor–acceptor
distances) in the V203A enzyme complexed with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined
at 1.1 Å) are very similar to those for the wild-type enzyme,
except that the introduced cavity accommodates a new water molecule
that contacts the nicotinamide ring. The structures of the V203A enzyme
complexes suggest, in contrast to previous studies, that the diminished
tunneling and decreased rate of hydride transfer (16-fold, relative
to that of the wild-type enzyme) are not due to differences in ground-state
ligand geometries. The V203A substitution may alter the PPV and the
reorganization energy for hydrogen transfer, but the protein scaffold
and equilibrium thermal motions within the Michaelis complex may be
more significant for enzyme catalysis.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Biochemistry, The University of Iowa , Iowa City, Iowa 52242-1109, United States
| | | | | |
Collapse
|
18
|
Francis K, Stojković V, Kohen A. Preservation of protein dynamics in dihydrofolate reductase evolution. J Biol Chem 2013; 288:35961-8. [PMID: 24158440 PMCID: PMC3861645 DOI: 10.1074/jbc.m113.507632] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/09/2013] [Indexed: 11/06/2022] Open
Abstract
The hydride transfer reaction catalyzed by dihydrofolate reductase (DHFR) is a model for examining how protein dynamics contribute to enzymatic function. The relationship between functional motions and enzyme evolution has attracted significant attention. Recent studies on N23PP Escherichia coli DHFR (ecDHFR) mutant, designed to resemble parts of the human enzyme, indicated a reduced single turnover rate. NMR relaxation dispersion experiments with that enzyme showed rigidification of millisecond Met-20 loop motions (Bhabha, G., Lee, J., Ekiert, D. C., Gam, J., Wilson, I. A., Dyson, H. J., Benkovic, S. J., and Wright, P. E. (2011) Science 332, 234-238). A more recent study of this mutant, however, indicated that fast motions along the reaction coordinate are actually more dispersed than for wild-type ecDHFR (WT). Furthermore, a double mutant (N23PP/G51PEKN) that better mimics the human enzyme seems to restore both the single turnover rates and narrow distribution of fast dynamics (Liu, C. T., Hanoian, P., French, T. H., Hammes-Schiffer, S., and Benkovic, S. J. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 10159-11064). Here, we measured intrinsic kinetic isotope effects for both N23PP and N23PP/G51PEKN double mutant DHFRs over a temperature range. The findings indicate that although the C-H→C transfer and dynamics along the reaction coordinate are impaired in the altered N23PP mutant, both seem to be restored in the N23PP/G51PEKN double mutant. This indicates that the evolution of G51PEKN, although remote from the Met-20 loop, alleviated the loop rigidification that would have been caused by N23PP, enabling WT-like H-tunneling. The correlation between the calculated dynamics, the nature of C-H→C transfer, and a phylogenetic analysis of DHFR sequences are consistent with evolutionary preservation of the protein dynamics to enable H-tunneling from well reorganized active sites.
Collapse
Affiliation(s)
- Kevin Francis
- From the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242
| | - Vanja Stojković
- From the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242
| | - Amnon Kohen
- From the Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
19
|
Abstract
The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and the California Institute for Quantitative Sciences, University of California, Berkeley, California 94720;
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294;
| |
Collapse
|