1
|
Tambe V, Soderblom EJ, Kayesh R, Aditya V, Xu C, Yue W. Regulation of organic anion transporting polypeptide 1B1 transport function by concurrent phosphorylation and lysine-acetylation: A novel posttranslational regulation mechanism. Mol Pharmacol 2025; 107:100007. [PMID: 40023514 PMCID: PMC11934288 DOI: 10.1016/j.molpha.2024.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 is crucial for hepatic uptake of many drugs and endogenous substrates. The clinically relevant OATP1B1 c.521 T>C (V174A) polymorphism exhibits reduced transport activity in vitro and in vivo in humans. Previously, we reported increased total phosphorylation of V174A-OATP1B1 compared to wild-type (WT)-OATP1B1, although the differentially phosphorylated sites remain to be identified. Lysine-acetylation, a key posttranslational modification (PTM), has not been investigated in OATP1B1. This study aimed to identify differential PTMs of WT-OATP1B1 and V174A-OATP1B1 by quantitatively comparing the relative abundance of modified peptides using liquid chromatography-tandem mass spectrometry-based proteomics and to assess the impact of these PTMs on OATP1B1 transport function using [3H]-estradiol-17-β-D-glucuronide as substrate in transporter-expressing human embryonic kidney 293 cells. We discovered that OATP1B1 is lysine-acetylated at 13 residues. Compared to WT-OATP1B1, V174A-OATP1B1 has increased concurrent phosphorylation at S659 and S663 and concurrent phosphorylation (at S659 and S663) and lysine-acetylation (at K650) (P < .05). Variants mimicking concurrent phosphorylation (S659E-S663E-OATP1B1) and concurrent phosphorylation and acetylation (K650Q-659E-S663E-OATP1B1) both demonstrated reduced substrate transport by 0.86 ± 0.055-fold and 0.65 ± 0.047-fold of WT-OATP1B1 (both P < .05), respectively. Single-site mimics of phosphorylation or lysine-acetylation at K650, S659, and S663 did not affect OATP1B1 transport function, indicating cooperative effects on OATP1B1 by concurrent PTMs. All variants and WT-OATP1B1 were primarily localized to the plasma membrane and colocalized with plasma membrane protein Na/K-ATPase as determined by immunofluorescent staining and confocal microscopy. The current study elucidates a novel mechanism in which concurrent serine-phosphorylation and lysine-acetylation impair OATP1B1-mediated transport, suggesting potential interplay between these PTMs in regulating OATP1B1. SIGNIFICANCE STATEMENT: Understanding organic anion transporting polypeptide (OATP1B1) regulation is key to predicting altered drug disposition. The Val174Ala-OATP1B1 polymorphism exhibits reduced transport activity and is the most effective predictor of statin-induced myopathy. Val174Ala-OATP1B1 was found to be associated with increased serine-phosphorylation at Ser659 and Ser663 and lysine-acetylation at Lys650; concurrent PTMs at these sites reduce OATP1B1 function. These findings revealed a novel mechanism involved in transporter regulation, suggesting potential interplay between these PTMs in governing hepatic drug transport and response.
Collapse
Affiliation(s)
- Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, North Carolina
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | - Vikram Aditya
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma.
| |
Collapse
|
2
|
Boyle AL. Approaches to the Full and Partial Chemical Synthesis of Proteins. Methods Mol Biol 2024; 2819:573-582. [PMID: 39028524 DOI: 10.1007/978-1-0716-3930-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Histones are proteins which help to organize DNA. The way in which they function is complex and is partially controlled by post-translational modifications (PTMs). Histone proteins from numerous organisms can be recombinantly produced in bacteria, but many bacterial strains are incapable of installing the variety of PTMs that histones possess. An alternative method of producing histones, which can be used to introduce PTMs, is native chemical ligation (NCL). This chapter provides a general NCL protocol which can be used to produce synthetic, post-translationally modified, histone proteins. The focus is on the NCL procedure itself and not on producing the modified histone protein fragments as there are many different ways in which these can be synthesized, depending on the modification(s) required. The same NCL protocol is also applicable for expressed protein ligation (EPL) with only small modifications to the purification procedure potentially required.
Collapse
Affiliation(s)
- Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Josephson B, Fehl C, Isenegger PG, Nadal S, Wright TH, Poh AWJ, Bower BJ, Giltrap AM, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap JBI, Kawamura A, Baldwin AJ, Mohammed S, Compton RG, Gouverneur V, Davis BG. Light-driven post-translational installation of reactive protein side chains. Nature 2020; 585:530-537. [PMID: 32968259 DOI: 10.1038/s41586-020-2733-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (β-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent β-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.
Collapse
Affiliation(s)
- Brian Josephson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlie Fehl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Patrick G Isenegger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Simon Nadal
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tom H Wright
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Adeline W J Poh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ben J Bower
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew M Giltrap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Lifu Chen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Grace Roper
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Oluwatobi Arisa
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeroen B I Sap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew J Baldwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Veronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- The Rosalind Franklin Institute, Harwell, UK.
| |
Collapse
|
4
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Qi YK, Tang S, Huang YC, Pan M, Zheng JS, Liu L. Hmb(off/on) as a switchable thiol protecting group for native chemical ligation. Org Biomol Chem 2018; 14:4194-8. [PMID: 27102373 DOI: 10.1039/c6ob00450d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. and High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yi-Chao Huang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Man Pan
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Gibson MD, Brehove M, Luo Y, North J, Poirier MG. Methods for Investigating DNA Accessibility with Single Nucleosomes. Methods Enzymol 2017; 581:379-415. [PMID: 27793287 DOI: 10.1016/bs.mie.2016.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleosomes are the fundamental organizing unit of all eukaryotic genomes. Understanding how proteins gain access to DNA-binding sites located within nucleosomes is important for understanding DNA processing including transcription, replication, and repair. Single-molecule total internal reflection fluorescence (smTIRF) microscopy measurements can provide key insight into how proteins gain and maintain access to DNA sites within nucleosomes. Here, we describe methods for smTIRF experiments including the preparation of fluorophore-labeled nucleosomes, the smTIRF system, data acquisition, analysis, and controls. These methods are presented for investigating transcription factor binding within nucleosomes. However, they are applicable for investigating the binding of any site-specific DNA-binding protein within nucleosomes.
Collapse
Affiliation(s)
- M D Gibson
- The Ohio State University, Columbus, OH, United States
| | - M Brehove
- The Ohio State University, Columbus, OH, United States
| | - Y Luo
- The Ohio State University, Columbus, OH, United States
| | - J North
- The Ohio State University, Columbus, OH, United States
| | - M G Poirier
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
7
|
Qi YK, He QQ, Ai HS, Guo J, Li JB. The convergent chemical synthesis of histone H3 protein for site-specific acetylation at Lys56 and ubiquitination at Lys122. Chem Commun (Camb) 2017; 53:4148-4151. [DOI: 10.1039/c7cc01721a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first total chemical synthesis of modified H3 bearing Lys56 acetylation and Lys122 ubiquitination.
Collapse
Affiliation(s)
- Yun-Kun Qi
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qiao-Qiao He
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Hua-Song Ai
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jing Guo
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Jia-Bin Li
- Tsinghua-Peking Center for Life Sciences
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
8
|
Li YT, Huang YC, Xu Y, Pan M, Li YM. Ubiquitin 7-amino-4-carbamoylmethylcoumarin as an improved fluorogenic substrate for deubiquitinating enzymes. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Huang Y, Chen C, Gao S, Wang Y, Xiao H, Wang F, Tian C, Li Y. Synthesis of
l
‐ and
d
‐Ubiquitin by One‐Pot Ligation and Metal‐Free Desulfurization. Chemistry 2016; 22:7623-8. [DOI: 10.1002/chem.201600101] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi‐Chao Huang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chen‐Chen Chen
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Shuai Gao
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Ye‐Hai Wang
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Hua Xiao
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Feng Wang
- Department of Chemistry School of Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Chang‐Lin Tian
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230026 P. R. China
| | - Yi‐Ming Li
- School of Medical Engineering Hefei University of Technology Hefei 230009 P. R. China
- State Key Laboratory of Medicinal Chemical Biology NanKai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Yu RR, Mahto SK, Justus K, Alexander MM, Howard CJ, Ottesen JJ. Hybrid phase ligation for efficient synthesis of histone proteins. Org Biomol Chem 2016; 14:2603-7. [PMID: 26821702 PMCID: PMC4767651 DOI: 10.1039/c5ob02195b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We introduce a hybrid solid-solution phase ligation approach that combines the efficiency of solid phase ligation with solution phase ligation in the total synthesis of modified histone proteins. A two linker strategy allows analysis throughout work on the solid phase and maximizes yields through cleavage at an external Rink, while an internal HMBA linker allows the native carboxyl terminus for any protein sequence. We demonstrate this approach for two histone proteins: triple-acetylated H4-K5ac, K12ac, K91ac and CENP-A-K124ac.
Collapse
Affiliation(s)
- Ruixuan R Yu
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Santosh K Mahto
- Department of Chemistry & Biochemistry, The Ohio State University, USA
| | - Kurt Justus
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | - Cecil J Howard
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Jennifer J Ottesen
- Department of Chemistry & Biochemistry, The Ohio State University, USA and Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Ali Shah MI, Xu ZY, Liu L, Jiang YY, Shi J. Mechanism for the enhanced reactivity of 4-mercaptoprolyl thioesters in native chemical ligation. RSC Adv 2016. [DOI: 10.1039/c6ra13793h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ring-strain-precluded strategy benefiting from entropy effects and n → π* orbital interaction, enhances the reactivity of C-terminal prolyl thioesters in NCL.
Collapse
Affiliation(s)
| | - Zhe-Yuan Xu
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Lei Liu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yuan-Ye Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Jing Shi
- Collaborative Innovation Center of Chemistry for Energy Materials
- CAS Key Laboratory of Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
12
|
Fischle W, Mootz HD, Schwarzer D. Synthetic histone code. Curr Opin Chem Biol 2015; 28:131-40. [PMID: 26256563 DOI: 10.1016/j.cbpa.2015.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/04/2015] [Accepted: 07/12/2015] [Indexed: 01/17/2023]
Abstract
Chromatin is the universal template of genetic information in all eukaryotic cells. This complex of DNA and histone proteins not only packages and organizes genomes but also regulates gene expression. A multitude of posttranslational histone modifications and their combinations are thought to constitute a code for directing distinct structural and functional states of chromatin. Methods of protein chemistry, including protein semisynthesis, amber suppression technology, and cysteine bioconjugation, have enabled the generation of so-called designer chromatin containing histones in defined and homogeneous modification states. Several of these approaches have matured from proof-of-concept studies into efficient tools and technologies for studying the biochemistry of chromatin regulation and for interrogating the histone code. We summarize pioneering experiments and recent developments in this exciting field of chemical biology.
Collapse
Affiliation(s)
- Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, 48149 Muenster, Germany.
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|