1
|
Dahlberg P, Pozzi S, Bulmer L, Golluscio A, Nilsson M, Nygren A, Larsson HP, Pantazis A, Gummesson A. Clinical and electrophysiological characterization of a SCN5A gain-of-function mutation associated with CPVT-like arrhythmia. J Mol Cell Cardiol 2025; 203:47-58. [PMID: 40209984 DOI: 10.1016/j.yjmcc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
The present study aimed to characterize the SCN5A variant I1333V, found in five families with a history of suspected catecholaminergic polymorphic ventricular tachycardia (CPVT). SCN5A encodes the pore-forming subunit of the cardiac voltage-gated sodium channel NaV1.5. Gain of SCN5A function causes long QT syndrome type 3 (LQT3), but its involvement in CPVT is disputed. Nineteen patients harboring the I1333V variant were identified across five families, commonly presenting with exercise-induced arrhythmia, including polymorphic premature ventricular contractions, ventricular bigeminy, couplets, and ventricular tachycardias. Prolonged QT interval was a less consistent finding, and structural myocardial changes were absent. Human NaV1.5/β1 complexes were expressed in Xenopus laevis oocytes, using RNA combinations to emulate homozygous wild-type, heterozygous and homozygous I1333V-mutant conditions. Cells were studied using the cut-open oocyte Vaseline gap voltage-clamp to evaluate effects of I1333V on NaV1.5 function. NaV1.5(I1333V) channels required less depolarization to activate, classifying this variant as gain-of-function. Fast inactivation was unaffected, and action-potential (AP) clamp showed no significant differences in late Na+ current. A computational model of human ventricular myocyte excitability predicted no effect of I1333V on AP duration; instead, it showed stronger Na+ influx during the AP upstroke, concurrent with elevated Ca2+ import via the sodium‑calcium exchanger. Finally, NaV1.5(I1333V) channels exhibited a diminished response to cAMP (emulating adrenergic stimulation), which also likely contributes to arrhythmogenesis. In conclusion, I1333V is a gain-of-function variant of SCN5A with a unique set of functional consequences. It is associated with cardiac arrhythmia disease characterized by overlapping CPVT-like and LQT3 features. Our findings support that SCN5A should be considered in genetic screening of suspected CPVT.
Collapse
Affiliation(s)
- Pia Dahlberg
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Serena Pozzi
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Linda Bulmer
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessia Golluscio
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Michelle Nilsson
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anders Nygren
- Pediatric Heart Center, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - H Peter Larsson
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Antonios Pantazis
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden; Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden.
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Paydas S, Gergerli MA, Celik A. Hypokalemic periodic paralysis, a rare yet critical condition: A case report. MEDICINE INTERNATIONAL 2025; 5:21. [PMID: 40013235 PMCID: PMC11863296 DOI: 10.3892/mi.2025.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Hypokalemic periodic paralysis (HPP) is a rare disease. Due to channelopathy caused by mutations in skeletal muscle ion channels, episodes of sudden flaccid muscle weakness and hypokalemia develop as a result of various trigger factors. The present study reports the case of a 25-year-old male patient with HPP admitted with acute onset numbness and paralysis in the extremities accompanying hypokalemia (2.66 mEq/l). The patient became asymptomatic following treatment with a potassium (K) supplement and was diagnosed with HPP. The present study describes this case of HPP in an aim to remind colleagues of the possibility of HPP in hypokalemic patients with muscle weakness and flaccid paralysis.
Collapse
Affiliation(s)
| | - Mehmet Ali Gergerli
- Mehmet Akif Inan Training and Research Hospital, Republic of Turkey Ministry of Health, Şanlıurfa 63040, Turkey
| | - Ahmet Celik
- Mehmet Akif Inan Training and Research Hospital, Republic of Turkey Ministry of Health, Şanlıurfa 63040, Turkey
| |
Collapse
|
3
|
Eltokhi A, Lundstrom BN, Li J, Zweifel LS, Catterall WA, Gamal El-Din TM. Pathogenic gating pore current conducted by autism-related mutations in the Na V1.2 brain sodium channel. Proc Natl Acad Sci U S A 2024; 121:e2317769121. [PMID: 38564633 PMCID: PMC11009634 DOI: 10.1073/pnas.2317769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Brian Nils Lundstrom
- Department of Neurology in the Division of Epilepsy, Mayo Clinic, Rochester, MN55905
| | - Jin Li
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA98195
| | | | | |
Collapse
|
4
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Sasaki T, Ikeda K, Nakajima T, Kawabata-Iwakawa R, Iizuka T, Dharmawan T, Tamura S, Niwamae N, Tange S, Nishiyama M, Kaneko Y, Kurabayashi M. Multiple arrhythmic and cardiomyopathic phenotypes associated with an SCN5A A735E mutation. J Electrocardiol 2021; 65:122-127. [PMID: 33610078 DOI: 10.1016/j.jelectrocard.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND SCN5A mutations are associated with multiple arrhythmic and cardiomyopathic phenotypes including Brugada syndrome (BrS), sinus node dysfunction (SND), atrioventricular block, supraventricular tachyarrhythmias (SVTs), long QT syndrome (LQTS), dilated cardiomyopathy and left ventricular noncompaction. Several single SCN5A mutations have been associated with overlap of some of these phenotypes, but never with overlap of all the phenotypes. OBJECTIVE We encountered two pedigrees with multiple arrhythmic phenotypes with or without cardiomyopathic phenotypes, and sought to identify a responsible mutation and reveal its functional abnormalities. METHODS Target panel sequencing of 72 genes, including inherited arrhythmia syndromes- and cardiomyopathies-related genes, was employed in two probands. Cascade screening was performed by Saner sequencing. Wild-type or identified mutant SCN5A were expressed in tsA201 cells, and whole-cell sodium currents (INa) were recorded using patch-clamp techniques. RESULTS We identified an SCN5A A735E mutation in these probands, but did not identify any other mutations. All eight mutation carriers exhibited at least one of the arrhythmic phenotypes. Two patients exhibited multiple arrhythmic phenotypes: one (15-year-old girl) exhibited BrS, SND, and exercise and epinephrine-induced QT prolongation, the other (4-year-old boy) exhibited BrS, SND, and SVTs. Another one (30-year-old male) exhibited all arrhythmic and cardiomyopathic phenotypes, except for LQTS. One male suddenly died at age 22. Functional analysis revealed that the mutant did not produce functional INa. CONCLUSIONS A non-functional SCN5A A735E mutation could be associated with multiple arrhythmic and cardiomyopathic phenotypes, although there remains a possibility that other unidentified factors may be involved in the phenotypic variability of the mutation carriers.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Kentaro Ikeda
- Department of Cardiology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Takashi Iizuka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Nogiku Niwamae
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | | | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
6
|
Zaucha J, Heinzinger M, Kulandaisamy A, Kataka E, Salvádor ÓL, Popov P, Rost B, Gromiha MM, Zhorov BS, Frishman D. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins. Brief Bioinform 2020; 22:5872174. [PMID: 32672331 DOI: 10.1093/bib/bbaa132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein's functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.
Collapse
Affiliation(s)
- Jan Zaucha
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - A Kulandaisamy
- Department of Biotechnology of the IIT Bhupat and Jyoti Mehta School of BioSciences in Madras, India
| | - Evans Kataka
- Department of Bioinformatics of the TUM School of Life Sciences Weihenstephan in Freising, Germany
| | - Óscar Llorian Salvádor
- Department of Informatics, Bioinformatics and Computational Biology of the TUM Faculty of Informatics in Garching, Germany
| | - Petr Popov
- Center for Computational and Data-Intensive Science and Engineering of the Skolkovo Institute of Science and Technology in Moscow, Russia
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology at the TUM Faculty of Informatics in Garching, Germany
| | | | - Boris S Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University in Hamilton, Canada
| | - Dmitrij Frishman
- Department of Bioinformatics at the TUM School of Life Sciences Weihenstephan in Freising, Germany
| |
Collapse
|
7
|
Nakajima T, Kaneko Y, Dharmawan T, Kurabayashi M. Role of the voltage sensor module in Na v domain IV on fast inactivation in sodium channelopathies: The implication of closed-state inactivation. Channels (Austin) 2020; 13:331-343. [PMID: 31357904 PMCID: PMC6713248 DOI: 10.1080/19336950.2019.1649521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The segment 4 (S4) voltage sensor in voltage-gated sodium channels (Navs) have domain-specific functions, and the S4 segment in domain DIV (DIVS4) plays a key role in the activation and fast inactivation processes through the coupling of arginine residues in DIVS4 with residues of putative gating charge transfer center (pGCTC) in DIVS1-3. In addition, the first four arginine residues (R1-R4) in Nav DIVS4 have position-specific functions in the fast inactivation process, and mutations in these residues are associated with diverse phenotypes of Nav-related diseases (sodium channelopathies). R1 and R2 mutations commonly display a delayed fast inactivation, causing a gain-of-function, whereas R3 and R4 mutations commonly display a delayed recovery from inactivation and profound use-dependent current attenuation, causing a severe loss-of-function. In contrast, mutations of residues of pGCTC in Nav DIVS1-3 can also alter fast inactivation. Such alterations in fast inactivation may be caused by disrupted interactions of DIVS4 with DIVS1-3. Despite fast inactivation of Navs occurs from both the open-state (open-state inactivation; OSI) and closed state (closed-state inactivation; CSI), changes in CSI have received considerably less attention than those in OSI in the pathophysiology of sodium channelopathies. CSI can be altered by mutations of arginine residues in DIVS4 and residues of pGCTC in Navs, and altered CSI can be an underlying primary biophysical defect of sodium channelopathies. Therefore, CSI should receive focus in order to clarify the pathophysiology of sodium channelopathies.
Collapse
Affiliation(s)
- Tadashi Nakajima
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Yoshiaki Kaneko
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Tommy Dharmawan
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| | - Masahiko Kurabayashi
- a Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine , Maebashi , Gunma , Japan
| |
Collapse
|
8
|
Groome JR, Bayless-Edwards L. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Front Pharmacol 2020; 11:160. [PMID: 32180723 PMCID: PMC7059764 DOI: 10.3389/fphar.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels share a common structure typified by peripheral, voltage sensor domains. Their S4 segments respond to alteration in membrane potential with translocation coupled to ion permeation through a central pore domain. The mechanisms of gating in these channels have been intensely studied using pioneering methods such as measurement of charge displacement across a membrane, sequencing of genes coding for voltage-gated ion channels, and the development of all-atom molecular dynamics simulations using structural information from prokaryotic and eukaryotic channel proteins. One aspect of this work has been the description of the role of conserved negative countercharges in S1, S2, and S3 transmembrane segments to promote sequential salt-bridge formation with positively charged residues in S4 segments. These interactions facilitate S4 translocation through the lipid bilayer. In this review, we describe functional and computational work investigating the role of these countercharges in S4 translocation, voltage sensor domain hydration, and in diseases resulting from countercharge mutations.
Collapse
Affiliation(s)
- James R. Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Landon Bayless-Edwards
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Oregon Health and Sciences University School of Medicine, Portland, OR, United States
| |
Collapse
|
9
|
Myshkin MY, Männikkö R, Krumkacheva OA, Kulbatskii DS, Chugunov AO, Berkut AA, Paramonov AS, Shulepko MA, Fedin MV, Hanna MG, Kullmann DM, Bagryanskaya EG, Arseniev AS, Kirpichnikov MP, Lyukmanova EN, Vassilevski AA, Shenkarev ZO. Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Na v1.4 Channel. Front Pharmacol 2019; 10:953. [PMID: 31555136 PMCID: PMC6737007 DOI: 10.3389/fphar.2019.00953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps-ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein-protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.
Collapse
Affiliation(s)
- Mikhail Yu Myshkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roope Männikkö
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | | | - Dmitrii S Kulbatskii
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton O Chugunov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia.,International Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, National Research University Higher School of Economics, Moscow, Russia
| | - Antonina A Berkut
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Shulepko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, Russia
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Elena G Bagryanskaya
- N.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Alexander S Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina N Lyukmanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Alexander A Vassilevski
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Zakhar O Shenkarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| |
Collapse
|