1
|
Krauth N. Tug-of-War: Orexin and Dynorphin Effects on Reward Processing Circuits. J Neurosci 2025; 45:e1979242024. [PMID: 39843226 PMCID: PMC11756618 DOI: 10.1523/jneurosci.1979-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Affiliation(s)
- Nathalie Krauth
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
2
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Noritake A, Nakamura K. Rewarding-unrewarding prediction signals under a bivalent context in the primate lateral hypothalamus. Sci Rep 2023; 13:5926. [PMID: 37045876 PMCID: PMC10097697 DOI: 10.1038/s41598-023-33026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Animals can expect rewards under equivocal situations. The lateral hypothalamus (LH) is thought to process motivational information by producing valence signals of reward and punishment. Despite rich studies using rodents and non-human primates, these signals have been assessed separately in appetitive and aversive contexts; therefore, it remains unclear what information the LH encodes in equivocal situations. To address this issue, macaque monkeys were conditioned under a bivalent context in which reward and punishment were probabilistically delivered, in addition to appetitive and aversive contexts. The monkeys increased approaching behavior similarly in the bivalent and appetitive contexts as the reward probability increased. They increased avoiding behavior under the bivalent and aversive contexts as the punishment probability increased, but the mean frequency was lower under the bivalent context than under the aversive context. The population activity correlated with these mean behaviors. Moreover, the LH produced fine prediction signals of reward expectation, uncertainty, and predictability consistently in the bivalent and appetitive contexts by recruiting context-independent and context-dependent subpopulations of neurons, while it less produced punishment signals in the aversive and bivalent contexts. Further, neural ensembles encoded context information and "rewarding-unrewarding" and "reward-punishment" valence. These signals may motivate individuals robustly in equivocal environments.
Collapse
Affiliation(s)
- Atsushi Noritake
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, 240-0193, Japan.
| | - Kae Nakamura
- Department of Physiology, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
4
|
Muacevic A, Adler JR. Physiological Role of Orexin/Hypocretin in the Human Body in Motivated Behavior: A Comprehensive Review. Cureus 2023; 15:e34009. [PMID: 36814741 PMCID: PMC9939734 DOI: 10.7759/cureus.34009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Neurohormones are neurosecretory materials released by neurosecretory cells that serve both as neuromodulators in the brain and spinal cord and as circulating regulatory hormones. They serve a wide range of functions, including homeostasis, development, and modulation of neuronal and muscle activity. In the hypothalamus, neurohormones called hypocretins are created that were discovered in the late nineties. Orexin receptors (OXRs) have been shown to enhance synaptic signaling in the central nervous system at the cellular level. The orexins improve stimulated neural activity in the hippocampus, which, in turn, aids with spatial memory, learning, and mood. They present themselves as mediators for the hypothalamic functions. They have been shown to regulate sleep-wake cycles, arousal mechanisms, addiction, sympathetic nerve activity (SNA), blood pressure, and thermogenesis. Its role in storing brown adipose tissue has implications for thermal homeostasis. The significant role of orexins is seen in tumorigenesis when orexin A (OrxA) and orexin B (OrxB) induce apoptosis in fast-growing tumor cells. Orexin-null subjects show clinical narcolepsy, indicating that orexins were responsible for keeping them awake. Orexin microinjections in mice brains stimulated increased physical activity, thus possibly countering diet-induced obesity. Physical activity significantly increased plasma orexin-A levels, which facilitated the process of energy homeostasis. The amount of adrenocorticotropic hormone (ACTH) increases in stress conditions, which further facilitates the release of the stress hormone cortisol. No increase in the ACTH hormone is seen in stressed mice administered with orexin receptor 2 (OX2R) antagonists thus showing orexin's role in stress reaction. As a result of linking hypocretin/orexin to various physiological procedures, increased research into the medicinal potential of drugs targeting these receptors is emerging. We summed up in this review the recent advances in our understanding of how orexin and its receptor system play an essential role in clinical and pathological functions. This research summarizes a new area for research in human medicine, providing the possibility of controlling a vast array of physiological functions through intra-cerebroventricular injections of a single neuropeptide.
Collapse
|
5
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
6
|
Ortiz-Juza MM, Alghorazi RA, Rodriguez-Romaguera J. Cell-type diversity in the bed nucleus of the stria terminalis to regulate motivated behaviors. Behav Brain Res 2021; 411:113401. [PMID: 34090941 DOI: 10.1016/j.bbr.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 01/09/2023]
Abstract
Over the past few decades, the bed nucleus of the stria terminalis (BNST) gained popularity as a unique brain region involved in regulating motivated behaviors related to neuropsychiatric disorders. The BNST, a component of the extended amygdala, consists of a variety of subnuclei and neuronal ensembles. Multiple studies have highlighted the BNST as playing a fundamental role in integrating information by interfacing with other brain regions to regulate distinct aspects of motivated behaviors associated with stress, anxiety, depression, and decision-making. However, due to the high molecular heterogeneity found within BNST neurons, the precise mechanisms by which this region regulates distinct motivational states remains largely unclear. Single-cell RNA sequencing data have revealed that the BNST consists of multiple genetically identifiable cell-type clusters. Contemporary tools can therefore be leveraged to target and study such cell-types and elucidate their precise functional role. In this review, we discuss the different subsets of neurons found in the BNST, their anatomical distribution, and what is currently known about BNST cell-types in regulating motivated behaviors.
Collapse
Affiliation(s)
- Maria M Ortiz-Juza
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Rizk A Alghorazi
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States; Neuroscience Center, University of North Carolina, Chapel Hill, NC, United States; Carolina Institute for Developmental Disorders, University of North Carolina, Chapel Hill, NC, United States; Carolina Stress Initiative, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
7
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
8
|
Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020; 14:599710. [PMID: 33240054 PMCID: PMC7683390 DOI: 10.3389/fnint.2020.599710] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Neural systems involved in processing natural rewards and drugs of abuse overlap and exposure to drugs of abuse induce neuroadaptations that can cause compulsive-like behavior. For example, the recruitment of the orexin (Orx) system by drugs of abuse has been proposed to induce neuroadaptations that in turn alter its function, reflected by maladaptive, compulsive, and addictive behavior. Orexin neurons project to the paraventricular nucleus of the thalamus (PVT)—particularly the posterior part (pPVT), a structure that plays a key role in stress regulation. This study investigated whether Orx transmission in the pPVT plays a role in stress-induced reinstatement of reward-seeking behavior toward ethanol (EtOH) and a highly palatable food reward [sweetened condensed milk (SCM)] in rats and whether this role changes with EtOH dependence. After being trained to orally self-administer EtOH or SCM, the rats were made dependent (EtOHD and SCMD) by chronic intermittent EtOH vapor exposure. The control nondependent groups (EtOHND and SCMND) were exposed to air. Following extinction, the rats were tested for stress-induced reinstatement of EtOH- and SCM-seeking behavior. Stress reinstated EtOH- and SCM-seeking behavior in all groups (EtOHD/ND and SCMD/ND). Administration of the dual Orx receptor (OrxR) antagonist TCS1102 (15 μg) in the pPVT prevented stress-induced reinstatement only in dependent rats (EtOHD and SCMD). In parallel, the qPCR analysis showed that Orx mRNA expression in the hypothalamus and OrxR1/R2 mRNA expression in the pPVT were increased at the time of testing in the EtOHD and SCMD groups. These results are the first to implicate Orx transmission in the pPVT in the stress-induced reinstatement of reward-seeking behavior in EtOH dependent rats and indicate the maladaptive recruitment of Orx transmission in the pPVT by EtOH dependence.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
9
|
Haun HL, Griffin WC, Lopez MF, Becker HC. Kappa opioid receptors in the bed nucleus of the stria terminalis regulate binge-like alcohol consumption in male and female mice. Neuropharmacology 2020; 167:107984. [PMID: 32023486 PMCID: PMC7080606 DOI: 10.1016/j.neuropharm.2020.107984] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Binge drinking is the most common pattern of excessive alcohol consumption and is a significant contributor to the development of Alcohol Use Disorder and dependence. Previous studies demonstrated involvement of kappa opioid receptors (KOR) in binge-like drinking in mice using the Drinking-in-the-Dark model. The current studies examined the role of KOR specifically in the bed nucleus of the stria terminals (BNST) in binge-like alcohol consumption in male and female mice. Direct administration of the long lasting KOR antagonist, nor-BNI, into the BNST decreased binge-like alcohol consumption and blood alcohol concentrations in male and female C57BL/6J mice. Similarly, direct nor-BNI administration into the BNST modestly reduced sucrose consumption and the suppression of fluid intake was not related to reduced locomotor activity. To further determine the role of KOR within the BNST on binge-like alcohol consumption, the KOR agonist U50,488 was administered systemically which resulted in a robust increase in alcohol intake. Microinjection of nor-BNI into the BNST blocked the high level of alcohol intake after systemic U50,488 challenge reducing intake and resultant blood alcohol concentrations. Together, these data suggest that KOR activity in the BNST contributes to binge-like alcohol consumption in both male and female mice. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Harold L Haun
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Howard C Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
10
|
Han Y, Yuan K, Zheng Y, Lu L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci Bull 2020; 36:432-448. [PMID: 31782044 PMCID: PMC7142186 DOI: 10.1007/s12264-019-00447-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Orexins comprise two neuropeptides produced by orexin neurons in the lateral hypothalamus and are released by extensive projections of these neurons throughout the central nervous system. Orexins bind and activate their associated G protein-coupled orexin type 1 receptors (OX1Rs) and OX2Rs and act on numerous physiological processes, such as sleep-wake regulation, feeding, reward, emotion, and motivation. Research on the development of orexin receptor antagonists has dramatically increased with the approval of suvorexant for the treatment of primary insomnia. In the present review, we discuss recent findings on the involvement of the orexin system in the pathophysiology of psychiatric disorders, including sleep disorders, depression, anxiety, and drug addiction. We discuss the actions of orexin receptor antagonists, including selective OX1R antagonists (SORA1s), selective OX2R antagonists (SORA2s), and dual OX1/2R antagonists (DORAs), in the treatment of these disorders based on both preclinical and clinical evidence. SORA2s and DORAs have more pronounced efficacy in the treatment of sleep disorders, whereas SORA1s may be promising for the treatment of anxiety and drug addiction. We also discuss potential challenges and opportunities for the application of orexin receptor antagonists to clinical interventions.
Collapse
Affiliation(s)
- Ying Han
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- National Institute of Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020; 168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 02/14/2020] [Indexed: 12/18/2022]
Abstract
The neuropeptide hypocretin/orexin plays a broad and important role in physiological functions ranging from addiction, stress, and anxiety to sleep, energy metabolism, and homeostatic regulation. A number of recent reviews addressing the importance of orexin for different addictive behaviors, especially the contribution of orexin-1-receptors (Ox1Rs) in responding for intoxicants in higher-motivation individuals and situations, and orexin-2-receptor (Ox2Rs) in stress-related aspects of addictive responding. This may parallel the importance of more lateral orexin neurons in the hypothalamus for reward and more medial for stress and arousal. However, there is clearly also some crossover, which may reflect, in part, where positive and negative conditioning (reward- and relief-seeking) are both present concurrently in established addiction, and also where orexin signaling can differ in subregions of a particular brain region. Here, we attempt to examine and synthesize some of the most recent work addressing orexin functions in addiction, including a particular role for Ox1Rs for driving responding in higher-motivation individuals and under higher levels of effort. While there are some commonalities across addictive substances addressed here (alcohol, cocaine, opiates), there are also some differences, which may relate to several factors including the speed of intoxication with a given substance. Together, recent findings have shed important insight and clues into what a more unified role of Ox1Rs might entail, and critical areas for future work. In addition, these many studies support the development of Ox1R blockers for use in humans to counteract addiction and other disorders of motivation. This article is part of the special issue on Neuropeptides.
Collapse
|
12
|
Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice. Neuropsychopharmacology 2019; 44:1084-1092. [PMID: 30555162 PMCID: PMC6461883 DOI: 10.1038/s41386-018-0294-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Although previous research has demonstrated a role for kappa opioid receptor-mediated signaling in escalated alcohol consumption associated with dependence and stress exposure, involvement of the dynorphin/kappa opioid receptor (DYN/KOR) system in binge-like drinking has not been fully explored. Here we used pharmacological and chemogenetic approaches to examine the influence of DYN/KOR signaling on alcohol consumption in the drinking-in-the-dark (DID) model of binge-like drinking. Systemic administration of the KOR agonist U50,488 increased binge-like drinking (Experiment 1) while, conversely, systemic administration of the KOR antagonist nor-BNI reduced drinking in the DID model (Experiment 2). These effects of systemic KOR manipulation were selective for alcohol as neither drug influenced consumption of sucrose in the DID paradigm (Experiment 3). In Experiment 4, administration of the long-acting KOR antagonist nor-BNI into the central nucleus of the amygdala (CeA) decreased alcohol intake. Next, targeted "silencing" of DYN+ neurons in the CeA was accomplished using a chemogenetic strategy. Cre-dependent viral expression in DYN+ neurons was confirmed in CeA of Pdyn-IRES-Cre mice and functionality of an inhibitory (hM4Di) DREADD was validated (Experiment 5). Activating the inhibitory DREADD by CNO injection reduced binge-like alcohol drinking, but CNO injection did not alter alcohol intake in mice that were treated with control virus (Experiment 6). Collectively, these results demonstrate that DYN/KOR signaling in the CeA contributes to excessive alcohol consumption in a binge-drinking model.
Collapse
|
13
|
Hosseini A, Khazali H. Central Orexin A Affects Reproductive Axis by Modulation of Hypothalamic Kisspeptin/Neurokinin B/Dynorphin Secreting Neurons in the Male Wistar Rats. Neuromolecular Med 2018; 20:525-536. [PMID: 30218420 DOI: 10.1007/s12017-018-8506-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
It is an established fact that orexin plays an important role in regulating the reproductive axis and the secretions of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH). However, its precise cellular and molecular mechanisms are not fully recognized. Accordingly, the aim of the present study is to find out whether the central injection of orexin A (OXA) and its antagonists, SB-334867 (as orexin receptor antagonist 1; OX1RA) and JNJ-10397049 (as orexin receptor antagonist 2; OX2RA), either alone or in combination, can leave any impact on the reproductive axis (either hormonal or behavioral) in the male Wistar rats. Furthermore, in order to see whether OXA signals can be relayed through the pathway of kisspeptin/neurokinin B/dynorphin (known as KNDy neurons, a neural network which works upstream of GnRH neurons) or not, the relative gene expression of these neuropeptides were measured. Overall, the data from radioimmunoassay revealed that OXA significantly decreases the mean serum level of LH and testosterone and, in a similar vein, its antagonists neutralize this impact. Moreover, data from real-time quantitative PCR indicated that OXA has significantly reduced the hypothalamic expression of Gnrh. In this line, the gene expressions of Kisspeptin and Neurokinin b decreased. However, OXA antagonists neutralize this impact. Also, the expression of Dynorphin gene was upregulated by the following application of the OXA. The results of this study are related to the impact of orexin on the reproductive axis. It is recommended that KNDy neurons as the interneural pathway relay the information of orexin to the GnRH neurons.
Collapse
Affiliation(s)
- Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|