1
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
He XJ, Patel J, Weiss CE, Ma X, Bloodgood BL, Banghart MR. Convergent, functionally independent signaling by mu and delta opioid receptors in hippocampal parvalbumin interneurons. eLife 2021; 10:69746. [PMID: 34787079 PMCID: PMC8716102 DOI: 10.7554/elife.69746] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Functional interactions between G protein-coupled receptors are poised to enhance neuronal sensitivity to neuromodulators and therapeutic drugs. Mu and Delta opioid receptors (MORs and DORs) can interact when overexpressed in the same cells, but whether co-expression of endogenous MORs and DORs in neurons leads to functional interactions is unclear. Here, in mice, we show that both MORs and DORs inhibit parvalbumin-expressing basket cells (PV-BCs) in hippocampal CA1 through partially occlusive signaling pathways that terminate on somato-dendritic potassium channels and presynaptic calcium channels. Using photoactivatable opioid neuropeptides, we find that DORs dominate the response to enkephalin in terms of both ligand-sensitivity and kinetics, which may be due to relatively low expression levels of MOR. Opioid-activated potassium channels do not show heterologous desensitization, indicating that MORs and DORs signal independently. In a direct test for heteromeric functional interactions, the DOR antagonist TIPP-Psi does not alter the kinetics or potency of either the potassium channel or synaptic responses to photorelease of the MOR agonist DAMGO. Thus, aside from largely redundant and convergent signaling, MORs and DORs do not functionally interact in PV-BCs in a way that impacts somato-dendritic potassium currents or synaptic transmission. These findings imply that crosstalk between MORs and DORs, either in the form of physical interactions or synergistic intracellular signaling, is not a preordained outcome of co-expression in neurons.
Collapse
Affiliation(s)
- Xinyi Jenny He
- Biological Sciences, University of California San Diego, La Jolla, United States
| | - Janki Patel
- University of California San Diego, San Diego, United States
| | - Connor E Weiss
- University of California San Diego, San Diego, United States
| | - Xiang Ma
- University of California San Diego, San Diego, United States
| | - Brenda L Bloodgood
- Biological Sciences, University of California San Diego, La Jolla, United States
| | | |
Collapse
|
3
|
Arttamangkul S, Platt EJ, Carroll J, Farrens D. Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons. eLife 2021; 10:69740. [PMID: 34477106 PMCID: PMC8718112 DOI: 10.7554/elife.69740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) normally function as monomers, although evidence from heterologous expression systems suggests that they may sometimes form homodimers and/or heterodimers. This study aims to evaluate possible functional interplay of endogenous µ- and δ-opioid receptors (MORs and DORs) in mouse neurons. Detecting GPCR dimers in native tissues, however, has been challenging. Previously, MORs and DORs co-expressed in transfected cells have been reported to form heterodimers, and their possible co-localization in neurons has been studied in knock-in mice expressing genetically engineered receptors fused to fluorescent proteins. Here, we find that single cholinergic neurons in the mouse striatum endogenously express both MORs and DORs. The receptors on neurons from live brain slices were fluorescently labeled with a ligand-directed labeling reagent, NAI-A594. The selective activation of MORs and DORs, with DAMGO (µ-agonist) and deltorphin (δ-agonist) inhibited spontaneous firing in all cells examined. In the continued presence of agonist, the firing rate returned to baseline as the result of receptor desensitization with the application of deltorphin but was less observed with the application of DAMGO. In addition, agonist-induced internalization of DORs but not MORs was detected. When MORs and DORs were activated simultaneously with [Met5]-enkephalin, desensitization of MORs was facilitated but internalization was not increased. Together, these results indicate that while MORs and DORs are expressed in single striatal cholinergic interneurons, the two receptors function independently.
Collapse
Affiliation(s)
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - James Carroll
- Surgery, Oregon Health and Science University, Portland, United States
| | - David Farrens
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, United States
| |
Collapse
|
4
|
Inyang KE, George SR, Laumet G. The µ-δ opioid heteromer masks latent pain sensitization in neuropathic and inflammatory pain in male and female mice. Brain Res 2021; 1756:147298. [PMID: 33516809 DOI: 10.1016/j.brainres.2021.147298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023]
Abstract
The episodic nature of chronic pain can be studied in the rodent model of latent pain sensitization. After remission, central sensitization is opposed by activation of opioid receptors. At the behavioral level, latent pain sensitization is unmasked when pain hypersensitivity is reinstated by opioid receptor (OR) antagonism. Previous studies have focused on inflammatory pain and male rodents. Whether latent pain sensitization occurs in models of chemotherapy-induced neuropathic pain in female and male mice is unknown. The first aim of this study was to investigate whether μ- and δ-OR suppress latent pain sensitization in our model of chemotherapy-induced neuropathic pain in both sexes. Mounting evidence suggests that μ-and δ-ORs form a heteromer and that the heteromer modulates pain sensitivity. Potential implications of the μ-δ OR heteromer in latent pain sensitization have not been fully explored due to a lack of tools to effectively modulate the heteromer. To specifically target the μ-δ OR heteromer, we used a specific interfering peptide blocking the heteromerization. The second aim of this study was to investigate whether disruption of the μ-δOR heteromer, after remission, reinstates pain hypersensitivity. After remission from cisplatin-induced neuropathic pain, antagonism of µ-OR and δOR reinstates pain hypersensitivity in both sexes. After remission from cisplatin-induced neuropathic pain and postoperative pain, disruption of the μ-δOR heteromer reinstates pain hypersensitivity in both sexes. Taken together our findings suggest that the μ-δOR heteromer plays a crucial role in remission in various pain models and may represent a novel therapeutic target to prevent the relapse to pain and the transition to chronic pain.
Collapse
Affiliation(s)
| | - Susan R George
- Department of Medicine and Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Robayo Avendaño O, Alvira Botero X, Garzón M. Ultrastructural evidence for mu and delta opioid receptors at noradrenergic dendrites and glial profiles in the cat locus coeruleus. Brain Res 2021; 1762:147443. [PMID: 33745926 DOI: 10.1016/j.brainres.2021.147443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG). Even though much of the research on sleep has been done in the cat, the subcellular location of opioid receptors in the LC and their relationship with LC noradrenergic neurons is not known yet in this species. Therefore, we conducted a study to describe the ultrastructural localization of mu-opioid receptors (MOR), delta-opioid receptors (DOR) and tyrosine hydroxylase (TH) in the cat LC using high resolution electron microscopy double-immunocytochemical detection. MOR and DOR were localized mainly in dendrites (45% and 46% of the total number of profiles respectively), many of which were noradrenergic (35% and 53% for MOR and DOR, respectively). TH immunoreactivity was more frequent in dendrites (65% of the total number of profiles), which mostly also expressed opioid receptors (58% and 73% for MOR and DOR, respectively). Because the distribution of MORs and DORs are similar, it is possible that a substantial sub-population of neurons co-express both receptors, which may facilitate the formation of MOR-DOR heterodimers. Moreover, we found differences in the cat subcellular DOR distribution compared with the rat. This opens the possibility to the existence of diverse mechanisms for opioid modulation of LC activity.
Collapse
Affiliation(s)
- Omar Robayo Avendaño
- Universidad Pedagógica y Tecnológica de Colombia. Antiguo Hospital San Rafael, 150001 Tunja, Colombia.
| | - Ximena Alvira Botero
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Miguel Garzón
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
6
|
Bartuzi D, Wróbel TM, Kaczor AA, Matosiuk D. Tuning Down the Pain - An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses. Curr Top Med Chem 2020; 20:2852-2865. [PMID: 32479245 DOI: 10.2174/1568026620666200601155451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Wei F, Zhao L, Jing Y. Hemoglobin-derived peptides and mood regulation. Peptides 2020; 127:170268. [PMID: 32070683 DOI: 10.1016/j.peptides.2020.170268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Evidence accumulated over the past decades has revealed that red blood cells and hemoglobin (Hb) in the blood play important roles in modulating moods and emotions. The number of red blood cells affects the mood. Hb is the principal content in the red blood cells besides water. Denatured Hb is hydrolyzed to produce bioactive peptides. RVD-hemopressin α (RVD-Hpα), which is a fragment of α-chain (95-103) in Hb, functions as a negative allosteric modulator of cannabinoid receptor 1 and a positive allosteric modulator of cannabinoid receptor 2. Hemorphins, which are fragments of β-chain in Hb, exert their effects on opioid receptors. Two hemorphins, namely, LVV-hemorphin-6 and LVV-hemorphin-7, could induce anxiolytic-like effects. The use of Hb-derived bioactive peptides for the treatment of mood disorders is desirable due to cannabinoid-opioid cross modulation and the critical roles of the two systems in physiological processes, such as memory, mood and emotion.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu, 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
8
|
(2S)-N-2-methoxy-2-phenylethyl-6,7-benzomorphan compound (2S-LP2): Discovery of a biased mu/delta opioid receptor agonist. Eur J Med Chem 2019; 168:189-198. [PMID: 30822708 DOI: 10.1016/j.ejmech.2019.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
The pivotal role of the stereocenter at the N-substituent of the 6,7-benzomorphan scaffold was investigated combining synthetic and pharmacological approaches. 2R- and 2S-diastereoisomers of the multitarget MOR/DOR antinociceptive ligand LP2 (1) were synthesized and their pharmacological profile was evaluated in in vitro and vivo assays. From our results, 2S-LP2 (5) showed an improved pharmacological profile in comparison to LP2 (1) and 2R-LP2 (4). 2S-LP2 (5) elicited an antinociceptive effect with a 1.5- and 3-times higher potency than LP2 (1) and R-antipode (4), respectively. In vivo effect of 2S-LP2 (5) was consistent with the improved MOR/DOR efficacy profile assessed by radioligand binding assay, to evaluate the opioid receptor affinity, and BRET assay, to evaluate the capability to promote receptor/G-protein and receptor/β-arrestin 2 interaction. 2S-LP2 (5) was able to activate, with different efficacy, G-protein pathway over β-arrestin 2, behaving as biased agonist at MOR and mainly at DOR. Considering the therapeutic potential of both multitarget MOR/DOR agonism and functional selectivity over G-protein, the 2S-LP2 (5) biased multitarget MOR/DOR agonist could provide a safer treatment opportunity.
Collapse
|