1
|
The Tobacco Smoke Component, Acrolein, as a Major Culprit in Lung Diseases and Respiratory Cancers: Molecular Mechanisms of Acrolein Cytotoxic Activity. Cells 2023; 12:cells12060879. [PMID: 36980220 PMCID: PMC10047238 DOI: 10.3390/cells12060879] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer’s disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke’s most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.
Collapse
|
2
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
3
|
Pavlou P, Antoniadou I, Peraki A, Vitsos A, Dallas P, Mostratos D, Deliconstantinos G, Papaioannou G, Grando SA, Rallis M. Protective Effects of Pinus halepensis Bark Extract and Nicotine on Cigarette Smoke-induced Oxidative Stress in Keratinocytes. In Vivo 2020; 34:1835-1843. [PMID: 32606153 DOI: 10.21873/invivo.11978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Cigarette smoke (CS) is a major environmental health threat. The oxidative stress induced by CS on keratinocytes and the possible protective effect of nicotine, its receptor inhibitors, and Pinus halepensis bark extract in relation to known antioxidants were investigated. MATERIALS AND METHODS Primary mouse keratinocytes were exposed to cigarette smoke in the presence and absence of Pinus halepensis bark extract (1 μg/ml), rutin (50 μM) and ascorbic acid (250 μM), nicotine (1 μM) with or without mecamylamine (5 μM) and α-bungarotoxin (0.1 μM). Keratinocyte viability and oxidative stress were evaluated by MTT and fluorescence assays. RESULTS Pinus halepensis bark extract decreased the oxidative stress and increased the viability of keratinocytes, and moreover, these effects were more pronounced compared to the mixture of rutin and L-ascorbic acid. Nicotine significantly enhanced the viability potentiation of the beneficial effect induced by Pinus halepensis bark extract. Mecamylamine and α-bungarotoxin showed no specific effect. CONCLUSION Pinus halepensis bark extract in combination with nicotine may successfully reverse skin damage induced by cigarette smoke.
Collapse
Affiliation(s)
- Panagoula Pavlou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Ioanna Antoniadou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Asimina Peraki
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Andreas Vitsos
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Paraskevas Dallas
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Dimitrios Mostratos
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Georgios Deliconstantinos
- National and Kapodistrian University of Athens, School of Medicine, Department of Experimental Physiology, Athens, Greece
| | - Georgios Papaioannou
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| | - Sergei A Grando
- University of California, Health Gottschalk Medical Plaza, Institute for Immunology, Irvine, CA, U.S.A
| | - Michail Rallis
- National and Kapodistrian University of Athens, School of Health Sciences, Department of Pharmacy, Athens, Greece
| |
Collapse
|
4
|
Chen L, Wu X, Zeb F, Huang Y, An J, Jiang P, Chen A, Xu C, Feng Q. Acrolein-induced apoptosis of smooth muscle cells through NEAT1-Bmal1/Clock pathway and a protection from asparagus extract. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113735. [PMID: 31864078 DOI: 10.1016/j.envpol.2019.113735] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/08/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) accelerates manifestation of plaque vulnerability in atherosclerosis. Long noncoding RNA NEAT1 participates in the proliferation and apoptosis of cells. In addition, circadian clock genes play a significant role in cell apoptosis. However, whether acrolein, an environmental pollutant, affects the apoptosis of VSMCs by regulating NEAT1 and clock genes is still elusive. We established VSMCs as an atherosclerotic cell model in vitro. Acrolein exposure reduced survival rate of VSMCs, and raised apoptosis percentage through upregulating the expression of Bax, Cytochrome c and Cleaved caspase-3 and downregulating Bcl-2. Asparagus extract (AE), as a dietary supplementation, was able to protect VSMCs against acrolein-induced apoptosis. Expression of NEAT1, Bmal1 and Clock was decreased by acrolein, while was ameliorated by AE. Knockdown of NEAT1, Bmal1 or Clock promoted VSMCs apoptosis by regulating Bax, Bcl-2, Cytochrome c and Caspase-3 levels. Correspondingly, overexpression of NEAT1 inhibited the apoptosis. We also observed that silence of NEAT1 repressed the expression of Bmal1/Clock and vice versa. In this study, we demonstrated that VSMCs apoptosis induced by acrolein was associated with downregulation of NEAT1 and Bmal1/Clock. AE alleviated the effects of proapoptotic response and circadian disorders caused by acrolein, which shed a new light on cardiovascular protection.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Falak Zeb
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxiang Huang
- Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, 066004, China
| | - Jing An
- Hebei Province Asparagus Industry Technology Research Institute, Qinhuangdao, 066004, China
| | - Pan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aochang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chuyue Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
5
|
Zeineh N, Nagler R, Gabay M, Weizman A, Gavish M. Effects of Cigarette Smoke on TSPO-related Mitochondrial Processes. Cells 2019; 8:E694. [PMID: 31295884 PMCID: PMC6678681 DOI: 10.3390/cells8070694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is an initiator of the mitochondrial apoptosis cascade. Cigarette smoke (CS) exposure provokes alterations in TSPO expression as well as upregulation of its related functions such as mitochondrial membrane potential (ΔψM) and reactive oxygen species generation, which are associated with cell death. In the current study, H1299 lung cancer cell line exposed to CS for various time periods (30 mins, 60 mins and 120 mins) and TSPO expression and cell death processes were studied. CS exposure for 30 mins resulted in a non-significant increase in TSPO expression by 24% (p > 0.05 vs. control). CS exposure for 60 mins and 120 mins resulted in a significant increase by 43% (p < 0.05 vs. control) and by 47% (p < 0.01 vs. control), respectively. Furthermore, TSPO-related mitochondrial functions were upregulated at the 120 mins time point following CS exposure. TSPO expression is upregulated by CS, suggesting that TSPO plays a role in cell death processes induced by CS exposure. Alterations in TSPO-related cell death processes suggest that TSPO may be involved in the tissue damage caused by CS.
Collapse
Affiliation(s)
- Nidal Zeineh
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Rafael Nagler
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Martin Gabay
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel
| | - Abraham Weizman
- Research Unit at Geha Mental Health Center and Laboratory of Biological Psychiatry at Felsenstein Medical Research Center, Petah Tikva 4910002, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
6
|
Arumugam S, Girish Subbiah K, Kemparaju K, Thirunavukkarasu C. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: Therapeutic potential of NOX2 and p38MAPK inhibitors. J Cell Physiol 2017; 233:3244-3261. [PMID: 28884828 DOI: 10.1002/jcp.26167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Neutrophil is a significant contributor to ischemia reperfusion (IR) induced liver tissue damage. However, the exact role of neutrophils in IR induced innate immune activation and liver damage is not quite clear. Our study sheds light on the role of chronic oxidative stress end products in worsening the IR inflammatory process by neutrophil recruitment and activation following liver surgery. We employed specific inhibitors for molecular targets-NOX2 (NADPH oxidase 2) and P38 MAPK (Mitogen activated protein kinase) signal to counteract neutrophil activation and neutrophil extracellular trap (NET) release induced liver damage in IR injury. We found that acrolein initiated neutrophil chemotaxis and induced NET release both in vitro and in vivo. Acrolein exposure caused NET induced nuclear and mitochondrial damage in HepG2 cells as well as aggravated the IR injury in rat liver. Pretreatment with F-apocynin and naringin, efficiently suppressed acrolein induced NET release in vitro. Notably, it suppressed the expression of inflammatory cytokines, P38MAPK-ERK activation, and apoptotic signals in rat liver exposed to acrolein and subjected to IR. Moreover, this combination effectively attenuated acrolein induced NET release and hepatic IR injury. In the current study we have shown that the acrolein accumulation in liver due to chronic stress, is responsible for neutrophil recruitment and its activation leading to NET induced liver damage during surgery. Our study shows that therapeutic targeting of NOX2 and P38MAPK signaling in patients with chronic hepatic disorders would improve post operative hepatic function and survival.
Collapse
Affiliation(s)
- Suyavaran Arumugam
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| | | | | | - Chinnasamy Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
7
|
Dalle-Donne I, Colombo G, Gornati R, Garavaglia ML, Portinaro N, Giustarini D, Bernardini G, Rossi R, Milzani A. Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies. Antioxid Redox Signal 2017; 26:406-426. [PMID: 27393565 DOI: 10.1089/ars.2016.6772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS. CRITICAL ISSUES We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models. FUTURE DIRECTIONS The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.
Collapse
Affiliation(s)
| | - Graziano Colombo
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Rosalba Gornati
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Maria L Garavaglia
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Nicola Portinaro
- 3 Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano and Pediatric Orthopaedic Unit, Humanitas Clinical and Research Center , Rozzano (Milan), Italy
| | | | - Giovanni Bernardini
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Ranieri Rossi
- 4 Department of Life Sciences, University of Siena , Siena, Italy
| | - Aldo Milzani
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
8
|
Yucel A, Sanhal CY, Daglar K, Kara O, Uygur D, Erel O. Thiol/disulphide homeostasis in pregnant women with Familial Mediterranean fever. Redox Rep 2016; 21:287-91. [PMID: 27077456 DOI: 10.1080/13510002.2016.1168590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the presence of oxidative stress (OS) in pregnant women with Familial Mediterranean fever (FMF) in the first trimester by evaluating thiol/disulphide homeostasis. STUDY DESIGN A total of 31 pregnant women with a diagnosis of FMF, between 11(0) and 13(6) weeks of gestation, were compared with 51 healthy pregnant controls at the same gestational weeks. A recently defined method was used to measure plasma native thiol, total thiol and disulphide levels. RESULTS There were no differences between groups in terms of maternal age, body mass index and numbers of gravida and parity. Antenatal complications (45.2% vs. 9.8%, P = 0.001) and primary caesarean section (22.6% vs. 5.9%, P = 0.037) were higher in the FMF group. Pregnant women with FMF had significantly lower first trimester serum levels of native thiol (297.5 μmol/l (153.2-441.8) vs. 366.1 μmol/l (288.7-432.4), P = 0.000), total thiol (327.2 μmol/l (171.0-471.0) vs. 389.9 μmol/l (317.1-449.8), P = 0.000) and higher levels of disulphide (14.2 ± 4.5 μmol/l vs. 12.4 ± 3.4 μmol/l, P = 0.045). No differences were found in these parameters among FMF patients with and without antenatal complications. CONCLUSIONS The main outcome demonstrates a relation between OS and pregnant women with FMF in the first trimester of gestation. OS in the first trimester may be a major aetiological factor of unfavourable pregancy outcomes in this group of patients.
Collapse
Affiliation(s)
- Aykan Yucel
- a Department of Perinatology , Zekai Tahir Burak Women's Health Care, Training and Research Hospital , Ankara , Turkey
| | - Cem Yasar Sanhal
- a Department of Perinatology , Zekai Tahir Burak Women's Health Care, Training and Research Hospital , Ankara , Turkey
| | - Korkut Daglar
- a Department of Perinatology , Zekai Tahir Burak Women's Health Care, Training and Research Hospital , Ankara , Turkey
| | - Ozgur Kara
- a Department of Perinatology , Zekai Tahir Burak Women's Health Care, Training and Research Hospital , Ankara , Turkey
| | - Dilek Uygur
- a Department of Perinatology , Zekai Tahir Burak Women's Health Care, Training and Research Hospital , Ankara , Turkey
| | - Ozcan Erel
- b Department of Clinical Biochemistry, Faculty of Medicine , Yildirim Beyazit University , Ankara , Turkey
| |
Collapse
|
9
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|