1
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Xue X, Cai H, Chai Z, Shang F, Guan W, Zhang L, Chen X, Zhou B, Zhang L. Efficacy of statin therapy in chronic obstructive pulmonary disease: a systematic review and meta-analysis from 2008-2019. Panminerva Med 2023; 65:376-384. [PMID: 32343509 DOI: 10.23736/s0031-0808.20.03932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Statins produce significant hypolipidemic effects and reduce C-reactive protein (CRP) in patients with chronic obstructive pulmonary disease (COPD). It has been reported that statins did not prevent the acute exacerbation of COPD or improve clinical outcomes. Therefore, we analyzed the actual therapeutic effects of statins on COPD therapy during long-term clinical trials. EVIDENCE ACQUISITION Relevant studies were retrieved from various databases from 2008 to 2019. For each study, Odds Ratios (ORs), mean difference (MD) and 95% confidence interval (95% CI) were assessed. EVIDENCE SYNTHESIS Thirty-two studies were retrieved with 3137 patients receiving statin therapy and 3140 controls. Satins significantly increased exercise capacity (47.21, 95% CI: 20.79-73.63), lung FEV1 (4.02, 95% CI: 2.28-5.75), forced expiratory volume in 1 s/forced vital capacity (FEV1/FVC) (3.56, 95% CI: 2.01-5.10) and high-density lipoproteins (HDL) (5.573, 95% CI: 1.74-9.41). In addition, statins downregulated CRP function (W=-1.60, 95% CI: -2.45-0.76), IL-6 (-3.35, 95% CI: -4.94 to -1.76), St George's breath questionnaire (SGRQ) scores (-9.96, 95% CI: -12.83 to -7.10), COPD assessment test (CAT) (-3.49, 95% CI: -4.70 to 2.29) and systolic blood pressure (-4.992, 95% CI: -5.17 to -4.818). Total cholesterol (TC) (-37.84, 95% CI: -46.10 to 29.58) low-density lipoproteins (LDL) (-26.601, 95% CI: -26.688 to 26.514) and triglycerides (TG) (-42.914, 95% CI: -61.809 to 24.02) were also decreased. CONCLUSIONS Clinical trials conducted over a 10-year period revealed beneficial advantages of statin therapy in COPD patients, permitting increased exercise capacity, FEV1/FVC and HDL. In addition, CRP, IL-6, systolic blood pressure, SGRQ scores and CAT were significantly decreased as well as lipid levels.
Collapse
Affiliation(s)
- Xiaoming Xue
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Hongyu Cai
- Department of Nephropathy, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China -
| | - Zhi Chai
- Basic Medical College, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Fang Shang
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Wei Guan
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Li Zhang
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Xu Chen
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Bobo Zhou
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| | - Luodan Zhang
- Department of Respiration, Shanxi Provincial Traditional Chinese Medicine Hospital, Taiyuan, China
| |
Collapse
|
3
|
Arellano-Orden E, Calero Acuña C, Sánchez-López V, López Ramírez C, Otero-Candelera R, Marín-Hinojosa C, López Campos J. Cellular mechanisms involved in the pathogenesis of airway remodeling in chronic lung disease. Eur Clin Respir J 2022; 9:2097377. [PMID: 35832729 PMCID: PMC9272929 DOI: 10.1080/20018525.2022.2097377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- E. Arellano-Orden
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Calero Acuña
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - V. Sánchez-López
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. López Ramírez
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - R. Otero-Candelera
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - C. Marín-Hinojosa
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jl López Campos
- Unidad Médico Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Universidad de SevillaUnidad Médico Quirúrgica de Enfermedades Respiratorias,Quirúrgica, Seville, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol 2022; 42:3611-3623. [PMID: 35639299 PMCID: PMC9151998 DOI: 10.1007/s10792-022-02354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Purpose Our review explains the role of surfactant protein D (SP-D) in different kinds of bacterial infection based on its presence in different ocular surface tissues. We discuss the potential role of SP-D against invasion by pathogens, with the aim of identifying new prospects for the possible mechanism of SP-D-mediated immune processes, and the diagnosis, prognosis, or treatment of ocular bacterial infection. Methods We reviewed articles about the role of SP-D in various ocular bacterial infections or infection-related ocular diseases through PubMed, Google Scholar, and the Web of Science databases. Results SP-D acts as an important immune factor that can resemble molecules in different polymerization states and that defends against pathogen invasion. The increased SP-D production and secretion in tear fluid and the cornea after ocular bacterial infections such as Staphylococcus aureus, Pseudomonas aeruginosa keratitis, and infection-related ocular diseases, was shown to have potential anti-inflammatory effects. The mechanisms of SP-D’s action against ocular bacterial infections include presenting, aggregating, opsonizing, and phagocytizing antigens, as well as regulating anti-bacterial immunity processes, including toll-like receptor-5 (TLR-5) pathway and IL-8 effect, TLR-4 and TLR-2 pathways and other possible ways remained to be elucidated in more detail. The findings demonstrate the potential of SP-D as an important clinical diagnostic biomarker prognosis predictor, and target for ocular immunotherapy. Conclusion SP-D participates in invasion by different ocular bacteria and infection-related ocular diseases through multiple immune mechanisms. This finding provides new prospects for the diagnosis, prognosis and treatment of ocular bacterial infection.
Collapse
Affiliation(s)
- Xinzhu Hou
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhiyong Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China. .,Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Liu YN, Guan Y, Shen J, Jia YL, Zhou JC, Sun Y, Jiang JX, Shen HJ, Shu Q, Xie QM, Xie Y. Shp2 positively regulates cigarette smoke-induced epithelial mesenchymal transition by mediating MMP-9 production. Respir Res 2020; 21:161. [PMID: 32586329 PMCID: PMC7318404 DOI: 10.1186/s12931-020-01426-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Cigarette smoke (CS) is a major risk factor for the development of lung cancer and chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) commonly coexists in lung cancer and COPD. CS triggers many factors including matrix metalloproteinases (MMPs) production, contributing to EMT progression in the lungs. Here, how Shp2 signaling regulates the CS-induced MMP-9 production and EMT progression were investigated in mouse lungs and in pulmonary epithelial cell cultures (NCI-H292) found CS induced MMP-9 production, EMT progression (increased vimentin and α-SMA; decreased E-cadherin) and collagen deposition in lung tissues; cigarette smoke extract (CSE) induced MMP-9 production and EMT-related phenotypes in NCI-H292 cells, which were partially prevented by Shp2 KO/KD or Shp2 inhibition. The CSE exposure induced EMT phenotypes were suppressed by MMP-9 inhibition. Recombinant MMP-9 induced EMT, which was prevented by MMP-9 inhibition or Shp2 KD/inhibition. Mechanistically, CS and CSE exposure resulted in ERK1/2, JNK and Smad2/3 phosphorylation, which were suppressed by Shp2 KO/KD/inhibition. Consequentially, the CSE exposure-induced MMP-9 production and EMT progression were suppressed by ERK1/2, JNK and Smad2/3 inhibitors. Thus, CS induced MMP-9 production and EMT resulted from activation of Shp2/ERK1/2/JNK/Smad2/3 signaling pathways. Our study contributes to the underlying mechanisms of pulmonary epithelial structural changes in response to CS, which may provide novel therapeutic solutions for treating associated diseases, such as COPD and lung cancer.
Collapse
Affiliation(s)
- Ya-Nan Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, Jiangsu, China
| | - Yan Guan
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, Hangzhou, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Breath Smooth Biotech Hangzhou Co, LTD., Zhejiang, 310012, Hangzhou, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
- Breath Smooth Biotech Hangzhou Co, LTD., Zhejiang, 310012, Hangzhou, China
| | - Jian-Cang Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310000, Hangzhou, China
| | - Yun Sun
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, 225001, Jiangsu, China
| | - Jun-Xia Jiang
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Hui-Juan Shen
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China
| | - Qiang-Min Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China.
- Zhejiang Respiratory Drugs Research Laboratory of Food and Drug Administration of China, Zhejiang University School of Medicine, Zhejiang, 310058, Hangzhou, China.
| | - Yicheng Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, 310052, Hangzhou, China.
| |
Collapse
|
6
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|