1
|
Tang KHD, Li R. The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess Biosyst Eng 2025; 48:1-15. [PMID: 38960926 DOI: 10.1007/s00449-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Athulya PA, Waychal Y, Rodriguez-Seijo A, Devalla S, Doss CGP, Chandrasekaran N. Microplastic interactions in the agroecosystems: methodological advances and limitations in quantifying microplastics from agricultural soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:85. [PMID: 38367078 DOI: 10.1007/s10653-023-01800-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 02/19/2024]
Abstract
The instantaneous growth of the world population is intensifying the pressure on the agricultural sector. On the other hand, the critical climate changes and increasing load of pollutants in the soil are imposing formidable challenges on agroecosystems, affecting productivity and quality of the crops. Microplastics are among the most prevalent pollutants that have already invaded all terrestrial and aquatic zones. The increasing microplastic concentration in soil critically impacts crop plants growth and yield. The current review elaborates on the behaviors of microplastics in soil and their impact on soil quality and plant growth. The study shows that microplastics alter the soil's biophysical properties, including water-holding capacity, bulk density, aeration, texture, and microbial composition. In addition, microplastics interact with multiple pollutants, such as polyaromatic hydrocarbons and heavy metals, making them more bioavailable to crop plants. The study also provides a detailed insight into the current techniques available for the isolation and identification of soil microplastics, providing solutions to some of the critical challenges faced and highlighting the research gaps. In our study, we have taken a holistic, comprehensive approach by analysing and comparing various interconnected aspects to provide a deeper understanding of all research perspectives on microplastics in agroecosystems.
Collapse
Affiliation(s)
| | - Yojana Waychal
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andres Rodriguez-Seijo
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias de Ourense, Universidade de Vigo, As Lagoas S/N, 32004, Ourense, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo-Campus Auga, 32004, Ourense, Spain
| | - Sandhya Devalla
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. CHEMOSPHERE 2023; 334:138928. [PMID: 37211165 DOI: 10.1016/j.chemosphere.2023.138928] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Increasing usage of plastic has led to the deposition of plastic in the environment which later become microplastic, a pollutant of global concern. These polymeric particles affect the ecosystem bestowing toxicity and impede the biogeochemical cycles. Besides, microplastic particles have been known for their role in aggravating the effect of various other environmental pollutants including organic pollutants and heavy metals. These microplastic surfaces are often colonized by the microbial communities also known as "plastisphere microbes" forming biofilms. These microbes include cyanobacteria like Nostoc, Scytonema, etc., and diatoms like Navicula, Cyclotella, etc. Which become the primary colonizer. In addition to the autotrophic microbes, Gammaproteobacteria and Alphaproteobacteria dominate the plastisphere microbial community. These biofilm-forming microbes can efficiently degrade the microplastic in the environment by secreting various catabolic enzymes such as lipase, esterase, hydroxylase, etc. Besides, these microbes have shown great potential for the bioconversion of microplastic to polyhydroxyalkanoates (PHA), an energy efficient and sustainable alternative to the petroleum based plastics. Thus, these microbes can be used for the creation of a circular economy using waste to wealth strategy. This review provides a deeper insight into the distribution, transportation, transformation, and biodegradation of microplastic in the ecosystem. The formation of plastisphere by the biofilm-forming microbes has been described in the article. In addition, the microbial metabolic pathways and genetic regulations involved in the biodegradation have been discussed in detail. The article suggests the microbial bioremediation and upcycling of microplastic along with various other strategies for effectively mitigate the microplastic pollution.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
5
|
Shen X, Huo H, Zhang Y, Zhu Y, Fettweis M, Bi Q, Lee BJ, Maa JPY, Chen Q. Effects of organic matter on the aggregation of anthropogenic microplastic particles in turbulent environments. WATER RESEARCH 2023; 232:119706. [PMID: 36773352 DOI: 10.1016/j.watres.2023.119706] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Biofilm-coated microplastics are omnipresent in aquatic environments, carrying different organic matter (OM) that in turn influences the flocculation and settling of microplastic aggregates. In this study, the effects of chitosan, guar gum, humic acid, and xanthan gum on the flocculation of anthropogenic microplastics are examined under controlled shear through the mixing chamber experiments. The results show that all of the selected OMs have positive effects on biofilm culturing and thus enhance the growth of microplastic flocs, with more evident promoting effects for cationic and neutral OMs (i.e., chitosan and guar gum) than anionic OMs (i.e., humic acid and xanthan). No critical shear rate is observed in the size vs. shear relationship based on our measurements. In addition, the quadrature-based two-class population balance model is employed to track the development of bimodal floc size distributions (FSDs) composed of small and large microplastic flocs. The model predictions show reasonable agreement with the observed FSDs. The largest error of settling flux from the two-class model is 7.8% in contrast with the reference value measured by the camera-based FSDs with 30 bins. This study highlights the role of different OMs on microplastic flocculation and indicates that a two-class model may be sufficient to describe microplastic transport processes in estuaries.
Collapse
Affiliation(s)
- Xiaoteng Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
| | - Hong Huo
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China
| | - Ying Zhang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Najing 210024, China; Jiangxi Water Resources Institute, Nanchang 330013, China
| | - Yuliang Zhu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China.
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
| | - Qilong Bi
- Hydraulics Laboratory, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, B-3001 Leuven, Belgium; Flanders Hydraulics Research, Antwerp, Belgium
| | - Byung Joon Lee
- School of Construction and Environmental Engineering, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 742-711, South Korea
| | - Jerome P-Y Maa
- Virginia Institute of Marine Science, College of William & Mary, Glocuester Point VA23062, United States
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Li M, Hou Z, Meng R, Hao S, Wang B. Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. ENVIRONMENT INTERNATIONAL 2022; 170:107644. [PMID: 36413926 PMCID: PMC9671534 DOI: 10.1016/j.envint.2022.107644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
With the global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), disposable face masks (DFMs) have caused negative environmental impacts. DFMs will release microplastics (MPs) and nanoplastics (NPs) during environmental degradation. However, few studies reveal the release process of MPs/NPs from masks in the natural environment. This review presents the current knowledge on the abiotic and biotic degradation of DFMs. Though MPs and NPs have raised serious concerns about their potentially detrimental effects on human health, little attention was paid to their impacts on human health from DFM-derived MPs and NPs. The potential toxicity of mask-derived MPs/NPs, such as gastrointestinal toxicity, pneumotoxicity, neurotoxicity, hepatotoxicity, reproductive and transgenerational toxicity, and the underlying mechanism will be discussed in the present study. MPs/NPs serve as carriers of toxic chemicals and pathogens, leading to their bioaccumulation and adverse effects of biomagnification by food chains. Given human experiments are facing ethical issues and animal studies cannot completely reveal human characteristics, advanced human organoids will provide promising models for MP/NP risk assessment. Moreover, in-depth investigations are required to identify the release of MPs/NPs from discarded face masks and characterize their transportation through the food chains. More importantly, innovative approaches and eco-friendly strategies are urgently demanded to reduce DFM-derived MP/NP pollution.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
7
|
Zhurina MV, Bogdanov KI, Gannesen AV, Mart’yanov SV, Plakunov VK. Microplastics as a New Ecological Niche For Multispecies Microbial Biofilms within the Plastisphere. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
8
|
Li H, Liu L, Xu Y, Zhang J. Microplastic effects on soil system parameters: a meta-analysis study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11027-11038. [PMID: 35013952 DOI: 10.1007/s11356-021-18034-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Microplastics are generally considered as an emerging contaminant in the environment due to their toxic additives and transport of other contaminants. However, the potential threats of microplastics in soil should be concerned due to inconsistent research results. In this study, a meta-analysis based on 32 recent relevant studies was conducted to compare the response of soil system parameters including microbial community, aggregate structure, soil nutrient contents, and crop growth to the presence of microplastics. The results showed that microplastics presented no significant effects on soil dissolved organic carbon contents and the amounts of available phosphate, nitrate, and ammonium. Although microplastics would not significantly influence the diversity of soil microorganisms, they could significantly increase soil microorganism amounts with a standard mean difference at 19.32. We also found that microplastics tended to significantly decrease soil water stable macro-aggregate (> 0.25 mm) contents with a significantly negative standard mean difference (- 0.90) in meta-analysis. Moreover, soil microplastics seemed not to affect crop growth by having non-significant effects on both crop under-ground and above-ground biomasses. These results indicate that up to date, the main negative impacts caused by microplastics on soil systems could be their negative functions on soil aggregation.
Collapse
Affiliation(s)
- Haixiao Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Hubei, 435003, Huangshi, China.
| | - Le Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Xu
- Department of Soils and Agri-Food Engineering, Laval University, Paul Comtois Bldg., Quebec City, QC, G1K 7P4, Canada
| | - Junyang Zhang
- Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| |
Collapse
|
9
|
Barros J, Seena S. Plastisphere in freshwaters: An emerging concern. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118123. [PMID: 34526270 DOI: 10.1016/j.envpol.2021.118123] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 05/21/2023]
Abstract
Plastisphere, an ecosystem of microbes thriving on floating plastic debris, has been extensively studied in marine waters since 2013. Currently, very little is known about the freshwater plastisphere. This review seeks to provide a broad insight into the freshwater science of plastisphere in the light of marine plastisphere, including research gaps, suggestions, and rising concerns, which would be of interest to the public, policymakers, and stakeholders. Given that freshwaters are endangered ecosystems, it is imperative to understand the role and impact of plastisphere on freshwaters. Plastic debris, especially microplastics (size <5 mm) in freshwater ecosystems, provide a stable, persistent, and buoyant substrate for microbes. Although current evidence suggests that freshwater environmental conditions and microplastics' physical and chemical properties significantly influence microbial colonisation, its role and integration in the aquatic ecosystems are unknown. Considering that the plastisphere biodiversity is unique, we seek to establish why and how many species co-exist in the plastisphere. Evaluating such fundamental questions should advance our basic understanding of the resilience of plastisphere to the changing environment. Plastisphere microbes, including the pathogenic bacteria, were found in both systems demonstrating their ability to survive on the plastic fragments from one ecosystem to another. A significant concern regarding plastisphere is the potential freshwater dispersal of anthropogenic pollutants and invasive or pathogenic species. Notably, microplastics aggregates may serve as a food source for grazers, which opens the question of the extent to which it can impact freshwater food webs. To gain a thorough understanding of the interplay between microplastics and the biogeochemical cycle, further insight into plastisphere microbes' functional role is needed. This would shed light on the unconsidered freshwater elemental cycling pathways. Given the complexity and universal nature of the plastisphere, strong interdisciplinary global research initiatives or networks are required to address the emerging concerns of plastisphere in freshwaters.
Collapse
Affiliation(s)
- Juliana Barros
- Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sahadevan Seena
- Marine and Environmental Sciences Centre (MARE), Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
10
|
Tu C, Liu Y, Li L, Li Y, Vogts A, Luo Y, Waniek JJ. Structural and Functional Characteristics of Microplastic Associated Biofilms in Response to Temporal Dynamics and Polymer Types. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:633-639. [PMID: 34331554 DOI: 10.1007/s00128-021-03333-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The colonization of bacterial communities and biofilm formation on microplastics (MPs) have aroused great concern recently. However, the influence of time and polymer types on the structural and functional characteristics of biofilms remains unclear. In this study, three types of MPs (polyethylene, polypropylene, and polystyrene) were exposed for different time periods (10, 20 and 30 days) in seawater using a microcosm experiment. Microscopic spectroscopy and high-throughput gene sequencing techniques were used to reveal the temporal changes of structural and functional characteristics of MPs associated biofilms. The results indicate that the biofilm formation is affected by both the incubation time and the polymer type. In addition, bacterial diversity and community structure in the biofilms show selectivity towards seawater, and tend to shift over time and among different polymer types. Moreover, biofilms are shown to harbor plastic degrading bacteria, leading to the changes of functional groups and surface hydrophobicity, and thereby enhancing the biodegradation of MPs.
Collapse
Affiliation(s)
- Chen Tu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
- Leibniz Institute for Baltic Sea Research, 18119, Rostock, Germany
| | - Ying Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Lianzhen Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research, 18119, Rostock, Germany
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China.
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research, 18119, Rostock, Germany
| |
Collapse
|