1
|
Salerno JA, Torquato T, Temerozo JR, Goto-Silva L, Karmirian K, Mendes MA, Sacramento CQ, Fintelman-Rodrigues N, Souza LRQ, Ornelas IM, Veríssimo CP, Aragão LGHS, Vitória G, Pedrosa CSG, da Silva Gomes Dias S, Cardoso Soares V, Puig-Pijuan T, Salazar V, Dariolli R, Biagi D, Furtado DR, Barreto Chiarini L, Borges HL, Bozza PT, Zaluar P. Guimarães M, Souza TM, Rehen SK. Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ 2021; 9:e12595. [PMID: 35036128 PMCID: PMC8697769 DOI: 10.7717/peerj.12595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.
Collapse
Affiliation(s)
- José Alexandre Salerno
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thayana Torquato
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jairo R. Temerozo
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Livia Goto-Silva
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Karina Karmirian
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Mayara A. Mendes
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Letícia R Q. Souza
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Isis M. Ornelas
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Carla P. Veríssimo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Gabriela Vitória
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Suelen da Silva Gomes Dias
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Teresa Puig-Pijuan
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vinícius Salazar
- Department of Systems and Computer Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- PluriCell Biotech, São Paulo, Brazil
| | | | - Daniel R. Furtado
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Luciana Barreto Chiarini
- Carlos Chagas Filho Institute of Biophysics (IBCCF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena L. Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marilia Zaluar P. Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Thiago M.L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Otulak K, Chouda M, Bujarski J, Garbaczewska G. The evidence of Tobacco rattle virus impact on host plant organelles ultrastructure. Micron 2015; 70:7-20. [PMID: 25541480 DOI: 10.1016/j.micron.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 11/13/2014] [Accepted: 11/29/2014] [Indexed: 11/27/2022]
Abstract
Tobraviruses, like other (+) stranded RNA viruses of plants, replicate their genome in cytoplasm and use such usual membranous structures like endoplasmic reticulum. Based on the ultrastructural examination of Tobacco rattle virus (TRV)-infected potato and tobacco leaf tissues, in this work we provide evidence of the participation of not only the membranous and vesicular ER structures but also other cell organelles during the viral infection cycle. Non-capsidated TRV PSG particles (potato isolate from the Netherlands) (long and short forms) were observed inside the nucleus while the presence of TRV capsid protein (CP) was detected in the nucleus caryolymph and within the nucleolus area. Both capsidated and non-capsidated viral particles were localized inside the strongly disorganized chloroplasts and mitochondria. The electron-dense TRV particles were connected with vesicular structures of mitochondria as well as with chloroplasts in both potato and tobacco tissues. At 15-30 days after infection, vesicles filled with TRV short particles were visible in mitochondria revealing the expanded cristae structures. Immunodetection analysis revealed the TRV PSG CP epitope inside chloroplast with disorganized thylakoids structure as well as in mitochondria of different tobacco and potato tissues. The ultrastructural analysis demonstrated high dynamics of the main cell organelles during the TRV PSG-Solanaceous plants interactions. Moreover, our results suggest a relationship between organelle changes and different stages of virus infection cycle and/or particle formation.
Collapse
Affiliation(s)
- Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, WULS-SGGW, Nowoursynowska Str. 159, 02-776 Warsaw, Poland.
| | - Marcin Chouda
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, WULS-SGGW, Nowoursynowska Str. 159, 02-776 Warsaw, Poland
| | - Józef Bujarski
- Plant Molecular Biology Center and the Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Garbaczewska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, WULS-SGGW, Nowoursynowska Str. 159, 02-776 Warsaw, Poland
| |
Collapse
|
3
|
Wei T, Wang A. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 2008; 82:12252-64. [PMID: 18842721 PMCID: PMC2593340 DOI: 10.1128/jvi.01329-08] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/29/2008] [Indexed: 12/31/2022] Open
Abstract
Single-stranded positive-sense RNA viruses induce the biogenesis of cytoplasmic membranous vesicles, where viral replication takes place. However, the mechanism underlying this characteristic vesicular proliferation remains poorly understood. Previously, a 6-kDa potyvirus membrane protein (6K) was shown to interact with the endoplasmic reticulum (ER) and to induce the formation of the membranous vesicles. In this study, the involvement of the early secretory pathway in the formation of the 6K-induced vesicles was investigated in planta. By means of live-cell imaging, it was found that the 6K protein was predominantly colocalized with Sar1, Sec23, and Sec24, which are known markers of ER exit sites (ERES). The localization of 6K at ERES was prevented by the coexpression of a dominant-negative mutant of Sar1 that disables the COPII activity or by the coexpression of a mutant of Arf1 that disrupts the COPI complex. The secretion of a soluble secretory marker targeting the apoplast was arrested at the level of the ER in cells overexpressing 6K or infected by a potyvirus. This blockage of protein trafficking out of the ER by 6K and the distribution of 6K toward the ERES may account for the aggregation of the 6K-bound vesicles. Finally, virus infection was reduced when the accumulation of 6K at ERES was inhibited by impairing either the COPI or COPII complex. Taken together, these results imply that the cellular COPI and COPII coating machineries are involved in the biogenesis of the potyvirus 6K vesicles at the ERES for viral-genome replication.
Collapse
Affiliation(s)
- Taiyun Wei
- Southern Crop Protection and Food Research Centre, AAFC, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|