1
|
Avery SN, Huang AS, Sheffield JM, Rogers BP, Vandekar S, Anticevic A, Woodward ND. Development of Thalamocortical Structural Connectivity in Typically Developing and Psychosis Spectrum Youths. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:782-792. [PMID: 34655804 PMCID: PMC9008075 DOI: 10.1016/j.bpsc.2021.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition. METHODS This study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youths (N = 1144, ages 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort, which included 316 typically developing youths, 330 youths on the psychosis spectrum, and 498 youths with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions and assess microstructural properties (i.e., fractional anisotropy) of thalamocortical white matter tracts. RESULTS Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, fractional anisotropy of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in youths on the psychosis spectrum. Fractional anisotropy of tracts linking the thalamus to prefrontal and posterior parietal cortices was related to better cognitive function across subjects. CONCLUSIONS By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, Tennessee
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Caffeine-Induced Acute and Delayed Responses in Cerebral Metabolism of Control and Schizophrenia-Like Wisket Rats. Int J Mol Sci 2022; 23:ijms23158186. [PMID: 35897774 PMCID: PMC9331118 DOI: 10.3390/ijms23158186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, morphological impairments have been detected in the brain of a triple-hit rat schizophrenia model (Wisket), and delayed depressive effects of caffeine treatment in both control and Wisket animals have also been shown. The aims of this study were to determine the basal and caffeine-induced acute (30 min) and delayed (24 h) changes in the cerebral 18fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography (PET) in control and Wisket rats. No significant differences were identified in the basal whole-brain metabolism between the two groups, and the metabolism was not modified acutely by a single intraperitoneal caffeine (20 mg/kg) injection in either group. However, one day after caffeine administration, significantly enhanced 18F-FDG uptake was detected in the whole brain and the investigated areas (hippocampus, striatum, thalamus, and hypothalamus) in the control group. Although the Wisket animals showed only moderate enhancements in the 18F-FDG uptake, significantly lower brain metabolism was observed in this group than in the caffeine-treated control group. This study highlights that the basal brain metabolism of Wisket animals was similar to control rats, and that was not influenced acutely by single caffeine treatment at the whole-brain level. Nevertheless, the distinct delayed responsiveness to this psychostimulant in Wisket model rats suggests impaired control of the cerebral metabolism.
Collapse
|
3
|
Mapping thalamocortical functional connectivity with large-scale brain networks in patients with first-episode psychosis. Sci Rep 2021; 11:19815. [PMID: 34615924 PMCID: PMC8494789 DOI: 10.1038/s41598-021-99170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Abnormal thalamocortical networks involving specific thalamic nuclei have been implicated in schizophrenia pathophysiology. While comparable topography of anatomical and functional connectivity abnormalities has been reported in patients across illness stages, previous functional studies have been confined to anatomical pathways of thalamocortical networks. To address this issue, we incorporated large-scale brain network dynamics into examining thalamocortical functional connectivity. Forty patients with first-episode psychosis and forty healthy controls underwent T1-weighted and resting-state functional magnetic resonance imaging. Independent component analysis of voxelwise thalamic functional connectivity maps parcellated the cortex into thalamus-related networks, and thalamic subdivisions associated with these networks were delineated. Functional connectivity of (1) networks with the thalamus and (2) thalamic subdivision seeds were examined. In patients, functional connectivity of the salience network with the thalamus was decreased and localized to the ventrolateral (VL) and ventroposterior (VP) thalamus, while that of a network comprising the cerebellum, temporal and parietal regions was increased and localized to the mediodorsal (MD) thalamus. In patients, thalamic subdivision encompassing the VL and VP thalamus demonstrated hypoconnectivity and that encompassing the MD and pulvinar regions demonstrated hyperconnectivity. Our results extend the implications of disrupted thalamocortical networks involving specific thalamic nuclei to dysfunctional large-scale brain network dynamics in schizophrenia pathophysiology.
Collapse
|
4
|
Aryutova K, Stoyanov D. Pharmaco-Magnetic Resonance as a Tool for Monitoring the Medication-Related Effects in the Brain May Provide Potential Biomarkers for Psychotic Disorders. Int J Mol Sci 2021; 22:9309. [PMID: 34502214 PMCID: PMC8430741 DOI: 10.3390/ijms22179309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
The neurodegenerative and neurodevelopmental hypotheses represent the basic etiological framework for the origin of schizophrenia. Additionally, the dopamine hypothesis, adopted more than two decades ago, has repeatedly asserted the position of dopamine as a pathobiochemical substrate through the action of psychostimulants and neuroleptics on the mesolimbic and mesocortical systems, giving insight into the origin of positive and negative schizophrenic symptoms. Meanwhile, cognitive impairments in schizophrenia remain incompletely understood but are thought to be present during all stages of the disease, as well as in the prodromal, interictal and residual phases. On the other hand, observations on the effects of NMDA antagonists, such as ketamine and phencyclidine, reveal that hypoglutamatergic neurotransmission causes not only positive and negative but also cognitive schizophrenic symptoms. This review aims to summarize the different hypotheses about the origin of psychoses and to identify the optimal neuroimaging method that can serve to unite them in an integral etiological framework. We systematically searched Google scholar (with no concern to the date published) to identify studies investigating the etiology of schizophrenia, with a focus on impaired central neurotransmission. The complex interaction between the dopamine and glutamate neurotransmitter systems provides the long-needed etiological concept, which combines the neurodegenerative hypothesis with the hypothesis of impaired neurodevelopment in schizophrenia. Pharmaco-magnetic resonance imaging is a neuroimaging method that can provide a translation of scientific knowledge about the neural networks and the disruptions in and between different brain regions, into clinically applicable and effective therapeutic results in the management of severe psychotic disorders.
Collapse
Affiliation(s)
| | - Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
5
|
Mihaescu AS, Kim J, Masellis M, Graff-Guerrero A, Cho SS, Christopher L, Valli M, Díez-Cirarda M, Koshimori Y, Strafella AP. Graph theory analysis of the dopamine D2 receptor network in Parkinson's disease patients with cognitive decline. J Neurosci Res 2020; 99:947-965. [PMID: 33271630 DOI: 10.1002/jnr.24760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/30/2022]
Abstract
Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.
Collapse
Affiliation(s)
- Alexander S Mihaescu
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Jinhee Kim
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Institute of Medical Science, University of Toronto, ON, Canada.,LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - Sang Soo Cho
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Leigh Christopher
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Mikaeel Valli
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada
| | - María Díez-Cirarda
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Yuko Koshimori
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Antonio P Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, ON, Canada.,Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Program in Parkinson Disease, Neurology Division, Department of Medicine, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Sheffield JM, Huang AS, Rogers BP, Giraldo-Chica M, Landman BA, Blackford JU, Heckers S, Woodward ND. Thalamocortical Anatomical Connectivity in Schizophrenia and Psychotic Bipolar Disorder. Schizophr Bull 2020; 46:1062-1071. [PMID: 32219397 PMCID: PMC7505173 DOI: 10.1093/schbul/sbaa022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Anatomical connectivity between the thalamus and cortex, including the prefrontal cortex (PFC), is abnormal in schizophrenia. Overlapping phenotypes, including deficits in executive cognitive abilities dependent on PFC-thalamic circuitry, suggest dysrupted thalamocortical anatomical connectivity may extend to psychotic bipolar disorder. We tested this hypothesis and examined the impact of illness stage to inform when in the illness course thalamocortical dysconnectivity emerges. METHODS Diffusion-weighted imaging data were collected on 70 healthy individuals and 124 people with a psychotic disorder (schizophrenia spectrum = 75; psychotic bipolar disorder = 49), including 62 individuals in the early stage of psychosis. Anatomical connectivity between major divisions of the cortex and thalamus was quantified using probabilistic tractography and compared between groups. Associations between PFC-thalamic anatomical connectivity and executive cognitive abilities were examined using regression analysis. RESULTS Psychosis was associated with lower PFC-thalamic and elevated somatosensory-thalamic anatomical connectivity. Follow-up analyses established that lower PFC-thalamic and elevated somatosensory-thalamic anatomical connectivity were present in both schizophrenia and psychotic bipolar disorder. Lower PFC-thalamic anatomical connectivity was also present in early-stage and chronic psychosis. Contrary to expectations, lower PFC-thalamic anatomical connectivity was not associated with impaired executive cognitive abilities. CONCLUSIONS Altered thalamocortical anatomical connectivity, especially reduced PFC-thalamic connectivity, is a transdiagnostic feature of psychosis detectable in the early stage of illness. Further work is required to elucidate the functional consequences of the full spectrum of thalamocortical connectivity abnormalities in psychosis.
Collapse
Affiliation(s)
- Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN
| | | | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Nashville, TN
- Vanderbilt University School of Engineering, Nashville, TN
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
- Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
7
|
Zhu F, Liu Y, Liu F, Yang R, Li H, Chen J, Kennedy DN, Zhao J, Guo W. Functional asymmetry of thalamocortical networks in subjects at ultra-high risk for psychosis and first-episode schizophrenia. Eur Neuropsychopharmacol 2019; 29:519-528. [PMID: 30770234 DOI: 10.1016/j.euroneuro.2019.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 01/18/2023]
Abstract
Disrupted functional asymmetry has been implicated in schizophrenia. However, it remains unknown whether disrupted functional asymmetry originates from intra-hemispheric and/or inter-hemispheric functional connectivity (FC) in the patients, and whether it starts at very early stage of psychosis. Seventy-six patients with first-episode, drug-naive schizophrenia, 74 subjects at ultra-high risk for psychosis (UHR), and 71 healthy controls underwent resting-state functional magnetic resonance imaging. The 'Parameter of asymmetry' (PAS) metric was calculated and support vector machine (SVM) classification analysis was applied to analyze the data. Compared with healthy controls, patients exhibited decreased PAS in the left thalamus/pallidum, right hippocampus/parahippocampus, right inferior frontal gyrus/insula, right thalamus, and left inferior parietal lobule, and increased PAS in the left calcarine, right superior occipital gyrus/middle occipital gyrus, and right precentral gyrus/postcentral gyrus. By contrast, UHR subjects showed decreased PAS in the left thalamus relative to healthy controls. A negative correlation was observed between decreased PAS in the right hippocampus/parahippocampus and Brief Visuospatial Memory Test-Revised (BVMT-R) scores in the patients (r = -0.364, p = 0.002). Moreover, the PAS values in the left thalamus could discriminate the patients/UHR subjects from the controls with acceptable sensitivities (68.42%/81.08%). First-episode patients and UHR subjects shared decreased PAS in the left thalamus. This observed pattern of functional asymmetry highlights the involvement of the thalamus in the pathophysiology of psychosis and may also be applied as a very early marker for psychosis.
Collapse
Affiliation(s)
- Furong Zhu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yi Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - David N Kennedy
- Department of Psychiatry, Division of Neuroinformatics, University of Massachusetts Medical School, UMass Memorial Medical Center, Worcester, MA 01605, United States
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
8
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Hagenmuller F, Heekeren K, Roser P, Haker H, Theodoridou A, Walitza S, Rössler W, Kawohl W. Early Somatosensory Processing Over Time in Individuals at Risk to Develop Psychosis. Front Psychiatry 2019; 10:47. [PMID: 30890966 PMCID: PMC6413704 DOI: 10.3389/fpsyt.2019.00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: Somatosensory evoked potentials (SEPs) enable the investigation of thalamocortical and early cortical processing. Previous studies reported alterations of SEPs in patients with schizophrenia as well as in individuals in the prodromal stage. Moreover, cannabis use as an environmental risk factor for the development of schizophrenia has been demonstrated to influence SEP parameters in individuals at risk to develop psychosis. The aim of this study was to explore the course of SEP changes and the impact of concomitant cannabis use in individuals at risk to develop psychosis who sought medical help. Methods: Median nerve SEPs including high-frequency oscillations (HFOs) superimposed on the primary cortical response (N20) were investigated using multichannel EEG in individuals (n = 54 at baseline) remaining at risk to develop psychosis at follow-up after 1 year (high-risk: n = 19; ultra-high-risk: n = 27) vs. subjects with conversion to psychosis (n = 8) and a healthy control group (n = 35). Longitudinal and cross-sectional analyses of SEP components as estimated by dipole source analysis were performed. Results: The longitudinal development of the N20 strength depended on cannabis use. In cannabis non-users, a greater decrease of N20 strengths over time was associated with more negative symptoms at baseline. At baseline, converters did not differ from subjects remaining at risk. At follow-up, converters showed increased low- and high-frequency activity than at-risk subjects and did not differ from controls. Conclusion: The results of this study lead to the suggestion that the deficits in early somatosensory processing in individuals at risk to develop psychosis may not represent a marker for a genetic risk for psychosis but rather reflect state-dependent factors such as negative symptoms. On the other hand, the transition to psychosis seems to represent an interstage between reduced sensory registration from the at-risk state and gating deficits in the chronic state.
Collapse
Affiliation(s)
- Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Patrik Roser
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
- Department of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Academic Hospital of the University of Zurich, Brugg, Switzerland
| |
Collapse
|
10
|
Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biol Psychiatry 2018; 83:509-517. [PMID: 29113642 PMCID: PMC5809301 DOI: 10.1016/j.biopsych.2017.09.022] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. METHODS Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. RESULTS Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. CONCLUSIONS The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex.
Collapse
Affiliation(s)
- Monica Giraldo-Chica
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN
| | | | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Nashville, TN,Vanderbilt University School of Engineering, Nashville, TN
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
11
|
Giraldo-Chica M, Woodward ND. Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophr Res 2017; 180:58-63. [PMID: 27531067 PMCID: PMC5297399 DOI: 10.1016/j.schres.2016.08.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has proven invaluable for understanding the large-scale functional organization of the brain and investigating neural circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic specificity, and clinical correlates of thalamocortical network dysfunction.
Collapse
|
12
|
Minzenberg MJ, Lesh T, Niendam T, Yoon JH, Cheng Y, Rhoades RN, Carter CS. Frontal Motor Cortex Activity During Reactive Control Is Associated With Past Suicidal Behavior in Recent-Onset Schizophrenia. CRISIS 2016; 36:363-70. [PMID: 26502787 DOI: 10.1027/0227-5910/a000335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Suicide is prevalent in schizophrenia (SZ), yet the neural system functions that confer suicide risk remain obscure. Circuits operated by the prefrontal cortex (PFC) are altered in SZ, including those that support reactive control, and PFC changes are observed in postmortem studies of heterogeneous suicide victims. AIMS We tested whether history of suicide attempt is associated with altered frontal motor cortex activity during reactive control processes. METHOD We evaluated 17 patients with recent onset of DSM-IV-TR-defined SZ using the Columbia Suicide Severity Rating Scale and functional magnetic resonance imaging during Stroop task performance. Group-level regression models relating past suicidal behavior to frontal activation controlled for depression, psychosis, and impulsivity. RESULTS Past suicidal behavior was associated with relatively higher activation in the left-hemisphere supplementary motor area (SMA), pre-SMA, premotor cortex, and dorsolateral PFC, all ipsilateral to the active primary motor cortex. CONCLUSION This study provides unique evidence that suicidal behavior in patients with recent-onset SZ directly relates to frontal motor cortex activity during reactive control, in a pattern reciprocal to the relationship with proactive control found previously. Further work should address how frontal-based control functions change with risk over time, and their potential utility as a biomarker for interventions to mitigate suicide risk in SZ.
Collapse
Affiliation(s)
- Michael J Minzenberg
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Tyler Lesh
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Tara Niendam
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Jong H Yoon
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Yaoan Cheng
- 1 Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Remy N Rhoades
- 4 Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Cameron S Carter
- 2 Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA.,3 Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
13
|
The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions. Neuroscience 2015; 312:86-98. [PMID: 26582750 DOI: 10.1016/j.neuroscience.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/03/2023]
Abstract
Cognitive deficits and psychotic symptoms are highly prevalent in patients with temporal lobe epilepsy (TLE). Imaging studies in humans have suggested that these comorbidities are associated with atrophy in temporal lobe structures and other limbic regions. It remains to be clarified whether TLE comorbidities are due to the frequency of spontaneous seizures or to limbic structural damage per se. Here, we used the pilocarpine model of chronic spontaneous seizures to evaluate the possible association of seizure frequency with sensorimotor gating, spatial working memory, and neuropathology throughout limbic regions. For TLE modeling, we induced a 2-h status epilepticus by the systemic administration of lithium-pilocarpine. Once spontaneous seizures were established, we tested the locomotor activity (open field), spatial working memory (eight-arm radial maze), and sensorimotor gating (prepulse inhibition of acoustic startle). After behavioral testing, the brains were sectioned for hematoxylin-eosin staining (cell density) and parvalbumin immunohistochemistry (GABAergic neuropil) in the prefrontal cortex, nucleus accumbens, thalamus, amygdala, hippocampus, and entorhinal cortex. The animal groups analyzed included chronic epileptic rats, their controls, and rats that received lithium-pilocarpine but eventually failed to express status epilepticus or spontaneous seizures. Epileptic rats showed deficits in sensorimotor gating that negatively correlated with the radial maze performance, and impairments in both behavioral tests correlated with seizure frequency. In addition to neuronal loss at several sites, we found increased parvalbumin immunostaining in the prefrontal cortex (infralimbic area), thalamus (midline and reticular nuclei), amygdala, Ammon's horn, dentate gyrus, and entorhinal cortex. These tissue changes correlated with seizure frequency and impairments in sensorimotor gating. Our work indicates that chronic seizures might impact the inhibitory-excitatory balance in the temporal lobe and its interconnected limbic regions, which could increase the likelihood of cognitive deficits and interictal psychiatric disorders.
Collapse
|
14
|
Rajbhandari AK, Baldo BA, Bakshi VP. Predator Stress-Induced CRF Release Causes Enduring Sensitization of Basolateral Amygdala Norepinephrine Systems that Promote PTSD-Like Startle Abnormalities. J Neurosci 2015; 35:14270-85. [PMID: 26490866 PMCID: PMC4683687 DOI: 10.1523/jneurosci.5080-14.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/06/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
The neurobiology of post-traumatic stress disorder (PTSD) remains unclear. Intense stress promotes PTSD, which has been associated with exaggerated startle and deficient sensorimotor gating. Here, we examined the long-term sequelae of a rodent model of traumatic stress (repeated predator exposure) on amygdala systems that modulate startle and prepulse inhibition (PPI), an operational measure of sensorimotor gating. We show in rodents that repeated psychogenic stress (predator) induces long-lasting sensitization of basolateral amygdala (BLA) noradrenergic (NE) receptors (α1) via a corticotropin-releasing factor receptor 1 (CRF-R1)-dependent mechanism, and that these CRF1 and NE α1 receptors are highly colocalized on presumptive excitatory output projection neurons of the BLA. A profile identical to that seen with predator exposure was produced in nonstressed rats by intra-BLA infusions of CRF (200 ng/0.5 μl), but not by repeated NE infusions (20 μg/0.5 μl). Infusions into the adjacent central nucleus of amygdala had no effect. Importantly, the predator stress- or CRF-induced sensitization of BLA manifested as heightened startle and PPI deficits in response to subsequent subthreshold NE system challenges (with intra-BLA infusions of 0.3 μg/0.5 μl NE), up to 1 month after stress. This profile of effects closely resembles aspects of PTSD. Hence, we reveal a discrete neural pathway mediating the enhancement of NE system function seen in PTSD, and we offer a model for characterizing potential new treatments that may work by modulating this BLA circuitry. SIGNIFICANCE STATEMENT The present findings reveal a novel and discrete neural substrate that could underlie certain core deficits (startle and prepulse inhibition) that are observed in post-traumatic stress disorder (PTSD). It is shown here that repeated exposure to a rodent model of traumatic stress (predator exposure) produces a long-lasting sensitization of basolateral amygdala noradrenergic substrates [via a corticotropin-releasing factor (CRF)-dependent mechanism] that regulate startle, which is exaggerated in PTSD. Moreover, it is demonstrated that the sensitized noradrenergic receptors colocalize with CRF1 receptors on output projection neurons of the basolateral amygdala. Hence, this stress-induced sensitization of noradrenergic receptors on basolateral nucleus efferents has wide-ranging implications for the numerous deleterious sequelae of trauma exposure that are seen in multiple psychiatric illnesses, including PTSD.
Collapse
Affiliation(s)
- Abha K Rajbhandari
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Brian A Baldo
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Vaishali P Bakshi
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53719
| |
Collapse
|
15
|
Minzenberg MJ, Lesh T, Niendam T, Yoon JH, Cheng Y, Rhoades R, Carter CS. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia. J Psychiatr Res 2015; 65:95-101. [PMID: 25891474 DOI: 10.1016/j.jpsychires.2015.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 01/08/2015] [Accepted: 04/02/2015] [Indexed: 12/01/2022]
Abstract
Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA.
| | - Tyler Lesh
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Tara Niendam
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Jong H Yoon
- Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Yaoan Cheng
- Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Remy Rhoades
- Department of Psychiatry, Stanford School of Medicine, Palo Alto, CA, USA
| | - Cameron S Carter
- Department of Psychiatry, University of California, Davis School of Medicine, Sacramento, CA, USA; Center for Neuroscience, University of California, Davis, CA, USA
| |
Collapse
|
16
|
Baskak B, Baran Z, Ozguven HD, Karaboga I, Oner O, Ozel Kizil ET, Hosgoren Y. Prefrontal activity measured by functional near infrared spectroscopy during probabilistic inference in subjects with persecutory delusions. Schizophr Res 2015; 161:237-43. [PMID: 25439391 DOI: 10.1016/j.schres.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Jumping to conclusions (JTC) is a probabilistic reasoning bias and is thought to contribute to delusion formation. Neurobiological correlates of the JTC bias are not known. We aimed to examine the rostral prefrontal cortex (rPFC) activity with functional near ınfrared spectroscopy during a modified version of the Beads in a Jar Task (BIJT) in subjects with persecutory delusions (N=25). In BIJT participants are presented beads either drawn from one of the two jars with opposite probability ratios (PRs) of colored beads and are required to decide from which jar beads are being drawn. We administered the BIJT with 90/10 and 55/45 PRs. Compared to healthy controls (N=20), patients reached a decision earlier in both conditions. While the medial rPFC regions were more active in the 90/10 condition in controls compared to patients, lateral rPFC activation was higher in the 55/45 condition in patients than controls. Only in the control group, there was a marked decline in the lateral rPFC activation in the 55/45 condition compared to the 90/10 condition. The activity in the lateral rPFC was negatively correlated with the amount of beads drawn in healthy controls but not in subjects with persecutory delusions. Our results suggest that during the BIJT, rPFC does not function as a single unit and rather consists of functional subunits that are organized differently in patients and controls. The failure to deactivate the lateral rPFC may be associated with earlier decisions in subjects with persecutory delusions.
Collapse
Affiliation(s)
- Bora Baskak
- Ankara University School of Medicine Psychiatry Department, Ankara University Brain Research Center, TR06590, Dikimevi, Ankara, Turkey.
| | - Zeynel Baran
- Hacettepe Universitesi Psikoloji Bölümü, Deneysel Psikoloji Laboratuarı, Beytepe, Ankara, Turkey.
| | - Halise Devrimci Ozguven
- Ankara University School of Medicine Psychiatry Department, Ankara University Brain Research Center, TR06590, Dikimevi, Ankara, Turkey.
| | - Isil Karaboga
- Ankara University School of Medicine Psychiatry Department, Ankara University Brain Research Center, TR06590, Dikimevi, Ankara, Turkey.
| | - Ozgur Oner
- Ankara Universitesi, Tip Fakultesi, Cebeci Hastanesi, Çocuk Ruh Sağlığı ve Hastalıkları Anabilim Dali, TR06590, Dikimevi, Ankara, Turkey.
| | - Erguvan Tugba Ozel Kizil
- Ankara University School of Medicine Psychiatry Department, Ankara University Brain Research Center, TR06590, Dikimevi, Ankara, Turkey.
| | - Yasemin Hosgoren
- Ankara University School of Medicine Psychiatry Department, Ankara University Brain Research Center, TR06590, Dikimevi, Ankara, Turkey.
| |
Collapse
|
17
|
Guo W, Liu F, Liu J, Yu L, Zhang J, Zhang Z, Xiao C, Zhai J, Zhao J. Abnormal causal connectivity by structural deficits in first-episode, drug-naive schizophrenia at rest. Schizophr Bull 2015; 41:57-65. [PMID: 25170032 PMCID: PMC4266300 DOI: 10.1093/schbul/sbu126] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Anatomical deficits and resting-state functional connectivity (FC) alterations in prefrontal-thalamic-cerebellar circuit have been implicated in the neurobiology of schizophrenia. However, the effect of structural deficits in schizophrenia on causal connectivity of this circuit remains unclear. This study was conducted to examine the causal connectivity biased by structural deficits in first-episode, drug-naive schizophrenia patients. Structural and resting-state functional magnetic resonance imaging (fMRI) data were obtained from 49 first-episode, drug-naive schizophrenia patients and 50 healthy controls. Data were analyzed by voxel-based morphometry and Granger causality analysis. The causal connectivity of the integrated prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit was partly affected by structural deficits in first-episode, drug-naive schizophrenia as follows: (1) unilateral prefrontal-sensorimotor connectivity abnormalities (increased driving effect from the left medial prefrontal cortex [MPFC] to the sensorimotor regions); (2) bilateral limbic-sensorimotor connectivity abnormalities (increased driving effect from the right anterior cingulate cortex [ACC] to the sensorimotor regions and decreased feedback from the sensorimotor regions to the right ACC); and (3) bilateral increased and decreased causal connectivities among the sensorimotor regions. Some correlations between the gray matter volume of the seeds, along with their causal effects and clinical variables (duration of untreated psychosis and symptom severity), were also observed in the patients. The findings indicated the partial effects of structural deficits in first-episode, drug-naive schizophrenia on the prefrontal-thalamic (limbic)-cerebellar (sensorimotor) circuit. Schizophrenia may reinforce the driving connectivities from the left MPFC or right ACC to the sensorimotor regions and may disrupt bilateral causal connectivities among the sensorimotor regions.
Collapse
Affiliation(s)
- Wenbin Guo
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China;
| | - Feng Liu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jianrong Liu
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Liuyu Yu
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jian Zhang
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Changqing Xiao
- Mental Health Center, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jinguo Zhai
- School of Mental Health, Jining Medical University, Jining, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
18
|
Rashid B, Damaraju E, Pearlson GD, Calhoun VD. Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects. Front Hum Neurosci 2014; 8:897. [PMID: 25426048 PMCID: PMC4224100 DOI: 10.3389/fnhum.2014.00897] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/20/2014] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms, brain characteristics, and risk genes, and both are associated with dysconnectivity among large-scale brain networks. Resting state functional magnetic resonance imaging (rsfMRI) data facilitates studying macroscopic connectivity among distant brain regions. Standard approaches to identifying such connectivity include seed-based correlation and data-driven clustering methods such as independent component analysis (ICA) but typically focus on average connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic connectivity networks (ICNs) in cohorts of healthy controls (HCs) and age matched SZ and BP patients. Subsequently, we investigated difference in functional network connectivity, defined as pairwise correlations among the timecourses of ICNs, between HCs and patients. We quantified differences in both static (average) and dynamic (windowed) connectivity during the entire scan duration. Disease-specific differences were identified in connectivity within different dynamic states. Notably, results suggest that patients make fewer transitions to some states (states 1, 2, and 4) compared to HCs, with most such differences confined to a single state. SZ patients showed more differences from healthy subjects than did bipolars, including both hyper and hypo connectivity in one common connectivity state (dynamic state 3). Also group differences between SZ and bipolar patients were identified in patterns (states) of connectivity involving the frontal (dynamic state 1) and frontal-parietal regions (dynamic state 3). Our results provide new information about these illnesses and strongly suggest that state-based analyses are critical to avoid averaging together important factors that can help distinguish these clinical groups.
Collapse
Affiliation(s)
- Barnaly Rashid
- The Mind Research Network, Albuquerque NM, USA ; Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA
| | - Eswar Damaraju
- The Mind Research Network, Albuquerque NM, USA ; Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center - Institute of Living, Hartford CT, USA ; Departments of Psychiatry, Yale University School of Medicine New Haven, CT, USA ; Departments of Neurobiology, Yale University School of Medicine New Haven, CT, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque NM, USA ; Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM, USA ; Olin Neuropsychiatry Research Center - Institute of Living, Hartford CT, USA ; Departments of Psychiatry, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
19
|
Kandratavicius L, Hallak JE, Leite JP. What are the similarities and differences between schizophrenia and schizophrenia-like psychosis of epilepsy? A neuropathological approach to the understanding of schizophrenia spectrum and epilepsy. Epilepsy Behav 2014; 38:143-7. [PMID: 24508393 DOI: 10.1016/j.yebeh.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Abstract
Temporal lobe epilepsy (TLE) and psychosis coexist more frequently than chance would predict. In this short review, clinical and neuropathological findings of schizophrenia, TLE, and psychosis of epilepsy are described to enhance our understanding of the noncoincidental association between these conditions. In addition, psychosis of epilepsy was included for the first time in the Diagnostic and Statistical Manual of Mental Disorders (DSM), in the recently launched 5th edition, and improvement in diagnostic criteria was highlighted. Since the hippocampus has long been considered an anatomical area involved in the pathophysiology of TLE and schizophrenia, neuropathological studies of psychoses of epilepsy may contribute to our understanding of the pathophysiology of psychosis in general. The discovery of shared mechanisms and/or affected neurochemicals in TLE and schizophrenia might disclose important clues on the vulnerability of patients with TLE to psychotic symptoms and be an opportunity for new treatment development.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil
| | - Jaime Eduardo Hallak
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil; National Institute of Science and Technology in Translational Medicine (INCT-TM-CNPq), Brazil
| | - Joao Pereira Leite
- Ribeirao Preto School of Medicine, Department of Neurosciences and Behavior, University of Sao Paulo (USP), Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Brazil.
| |
Collapse
|
20
|
Samaha AN. Can antipsychotic treatment contribute to drug addiction in schizophrenia? Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:9-16. [PMID: 23793001 DOI: 10.1016/j.pnpbp.2013.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/02/2013] [Accepted: 06/11/2013] [Indexed: 12/27/2022]
Abstract
Individuals with schizophrenia are at very high risk for drug abuse and addiction. Patients with a coexisting drug problem fare worse than patients who do not use drugs, and are also more difficult to treat. Current hypotheses cannot adequately account for why patients with schizophrenia so often have a co-morbid drug problem. I present here a complementary hypothesis based on evidence showing that chronic exposure to antipsychotic medications can induce supersensitivity within the brain's dopamine systems, and that this in turn can enhance the rewarding and incentive motivational effects of drugs and reward cues. At the neurobiological level, these effects of antipsychotics are potentially linked to antipsychotic-induced increases in the striatal levels of dopamine D2 receptors and D2 receptors in a high-affinity state for dopamine, particularly at postsynaptic sites. Antipsychotic-induced dopamine supersensitivity and enhanced reward function are not inevitable consequences of prolonged antipsychotic treatment. At least two parameters appear to promote these effects; the use of antipsychotics of the typical class, and continuous rather than intermittent antipsychotic exposure, such that silencing of dopaminergic neurotransmission via D2/3 receptors is unremitting. Thus, by inducing forms of neural plasticity that facilitate the ability of drugs and reward cues to gain control over behaviour, some currently used treatment strategies with typical antipsychotics might contribute to compulsive drug seeking and drug taking behaviours in vulnerable schizophrenia patients.
Collapse
Affiliation(s)
- Anne-Noël Samaha
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada, H3C 3J7; CNS Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada, H3C 3J7.
| |
Collapse
|
21
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
22
|
Cioffi CL. Modulation of NMDA receptor function as a treatment for schizophrenia. Bioorg Med Chem Lett 2013; 23:5034-44. [PMID: 23916256 DOI: 10.1016/j.bmcl.2013.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 11/30/2022]
Abstract
Schizophrenia is a devastating mental illness that afflicts nearly 1% of the world's population. Currently available antipsychotics treat positive symptoms, but are largely ineffective at addressing negative symptoms and cognitive dysfunction. Thus, improved pharmacotherapies that treat all aspects of the disease remain a critical unmet need. There is mounting evidence that links NMDA receptor hypofunction and the expression of schizophrenia, and numerous drug discovery programs have developed agents that directly or indirectly potentiate NMDA receptor-mediated neurotransmission. Several compounds have emerged that show promise for treating all symptom sub-domains in both preclinical models and clinical studies, and we will review recent developments in many of these areas.
Collapse
|
23
|
MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat. Neuropharmacology 2013; 73:1-9. [PMID: 23688921 DOI: 10.1016/j.neuropharm.2013.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/30/2013] [Accepted: 05/06/2013] [Indexed: 01/29/2023]
Abstract
Patients with schizophrenia show marked deficits in processing sensory inputs including a reduction in the generation and synchronization of 40 Hz gamma oscillations in response to steady-state auditory stimulation. Such deficits are not readily demonstrable at other input frequencies. Acute administration of NMDA antagonists to healthy human subjects or laboratory animals is known to reproduce many sensory and cognitive deficits seen in schizophrenia patients. In the following study, we tested the hypothesis that the NMDA antagonist MK-801 would selectively disrupt steady-state gamma entrainment in the auditory cortex of urethane-anesthetized rat. Moreover, we further hypothesized that nicotinic receptor activation would alleviate this disruption. Auditory steady state responses were recorded in response to auditory stimuli delivered over a range of frequencies (10-80 Hz) and averaged over 50 trials. Evoked power was computed under baseline condition and after vehicle or MK-801 (0.03 mg/kg, iv). MK-801 produced a significant attenuation in response to 40 Hz auditory stimuli while entrainment to other frequencies was not affected. Time-frequency analysis revealed deficits in both power and phase-locking to 40 Hz. Nicotine (0.1 mg/kg, iv) administered after MK-801 reversed the attenuation of the 40 Hz response. Administered alone, nicotine augmented 40 Hz steady state power and phase-locking. Nicotine's effects were blocked by simultaneous administration of the α4β2 antagonist DHßE. Thus we report for the first time, a rodent model that mimics a core neurophysiological deficit seen in patients with schizophrenia and a pharmacological approach to alleviate it.
Collapse
|
24
|
Greenwood TA, Swerdlow NR, Gur RE, Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC, Lazzeroni LC, Nuechterlein KH, Olincy A, Radant AD, Ray A, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Light GA, Braff DL. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 2013; 170:521-32. [PMID: 23511790 PMCID: PMC3878873 DOI: 10.1176/appi.ajp.2012.12020186] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The Consortium on the Genetics of Schizophrenia has undertaken a large multisite study to characterize 12 neurophysiological and neurocognitive endophenotypic measures as a step toward understanding the complex genetic basis of schizophrenia. The authors previously demonstrated the heritability of these endophenotypes; in the present study, genetic linkage was evaluated. METHOD Each family consisted of a proband with schizophrenia, at least one unaffected sibling, and both parents. A total of 1,286 participants from 296 families were genotyped in two phases, and 1,004 individuals were also assessed for the endophenotypes. Linkage analyses of the 6,055 single-nucleotide polymorphisms that were successfully assayed, 5,760 of which were common to both phases, were conducted using both variance components and pedigree-wide regression methods. RESULTS Linkage analyses of the 12 endophenotypes collectively identified one region meeting genome-wide significance criteria, with a LOD (log of odds) score of 4.0 on chromosome 3p14 for the antisaccade task, and another region on 1p36 nearly meeting genome-wide significance, with a LOD score of 3.5 for emotion recognition. Chromosomal regions meeting genome-wide suggestive criteria with LOD scores >2.2 were identified for spatial processing (2p25 and 16q23), sensorimotor dexterity (2q24 and 2q32), prepulse inhibition (5p15), the California Verbal Learning Test (8q24), the degraded-stimulus Continuous Performance Test (10q26), face memory (10q26 and 12p12), and the Letter-Number Span (14q23). CONCLUSIONS Twelve regions meeting genome-wide significant and suggestive criteria for previously identified heritable, schizophrenia-related endophenotypes were observed, and several genes of potential neurobiological interest were identified. Replication and further genomic studies are needed to assess the biological significance of these results.
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California San Diego,La Jolla, Calif, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kandratavicius L, Lopes-Aguiar C, Bueno-Júnior LS, Romcy-Pereira RN, Hallak JEC, Leite JP. Psychiatric Comorbidities in Temporal Lobe Epilepsy: Possible Relationships between Psychotic Disorders and Involvement of Limbic Circuits. BRAZILIAN JOURNAL OF PSYCHIATRY 2012; 34:454-66. [DOI: 10.1016/j.rbp.2012.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/23/2012] [Indexed: 01/11/2023]
|
26
|
Abstract
OBJECTIVE The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections. Previous studies have revealed thalamic abnormalities in schizophrenia; however, it is not known whether thalamocortical networks are differentially affected in the disorder. To explore this possibility, the authors examined functional connectivity in intrinsic low-frequency blood-oxygen-level-dependent (BOLD) signal fluctuations between major divisions of the cortex and thalamus using resting-state functional MRI (fMRI). METHOD Seventy-seven healthy subjects and 62 patients with schizophrenia underwent resting-state fMRI. To identify functional subdivisions of the thalamus, the authors parceled the cortex into six regions of interest: the prefrontal cortex, motor cortex/supplementary motor area, somatosensory cortex, temporal lobe, posterior parietal cortex, and occipital lobe. Mean BOLD time series were extracted for each region of interest and entered into a seed-based functional connectivity analysis. RESULTS Consistent with previous reports, activity in distinct cortical areas correlated with specific, largely nonoverlapping regions of the thalamus in both healthy comparison subjects and schizophrenia patients. Direct comparison between groups revealed reduced prefrontal-thalamic connectivity and increased motor/somatosensory-thalamic connectivity in schizophrenia. The changes in connectivity were unrelated to local gray matter content within the thalamus and to antipsychotic medication dosage. No differences were observed in temporal, posterior parietal, or occipital cortex connectivity with the thalamus. CONCLUSIONS These findings establish differential abnormalities of thalamocortical networks in schizophrenia. The etiology of schizophrenia may disrupt the development of prefrontal-thalamic connectivity and refinement of somatomotor connectivity with the thalamus that occurs during brain maturation.
Collapse
|
27
|
Abstract
Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.
Collapse
Affiliation(s)
- Joseph T. Coyle
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA,*To whom correspondence should be addressed; tel: 617-855-2101, fax: 617-855-2705, e-mail:
| |
Collapse
|
28
|
Neddens J, Buonanno A. Expression of the neuregulin receptor ErbB4 in the brain of the rhesus monkey (Macaca mulatta). PLoS One 2011; 6:e27337. [PMID: 22087295 PMCID: PMC3210802 DOI: 10.1371/journal.pone.0027337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/14/2011] [Indexed: 02/03/2023] Open
Abstract
We demonstrated recently that frontal cortical expression of the Neuregulin (NRG) receptor ErbB4 is restricted to interneurons in rodents, macaques, and humans. However, little is known about protein expression patterns in other areas of the brain. In situ hybridization studies have shown high ErbB4 mRNA levels in various subcortical areas, suggesting that ErbB4 is also expressed in cell types other than cortical interneurons. Here, using highly-specific monoclonal antibodies, we provide the first extensive report of ErbB4 protein expression throughout the cerebrum of primates. We show that ErbB4 immunoreactivity is high in association cortices, intermediate in sensory cortices, and relatively low in motor cortices. The overall immunoreactivity in the hippocampal formation is intermediate, but is high in a subset of interneurons. We detected the highest overall immunoreactivity in distinct locations of the ventral hypothalamus, medial habenula, intercalated nuclei of the amygdala and structures of the ventral forebrain, such as the islands of Calleja, olfactory tubercle and ventral pallidum, and medium expression in the reticular thalamic nucleus. While this pattern is generally consistent with ErbB4 mRNA expression data, further investigations are needed to identify the exact cellular and subcellular sources of mRNA and protein expression in these areas. In contrast to in situ hybridization in rodents, we detected only low levels of ErbB4-immunoreactivity in mesencephalic dopaminergic nuclei but a diffuse pattern of immunofluorescence that was medium in the dorsal striatum and high in the ventral forebrain, suggesting that most ErbB4 protein in dopaminergic neurons could be transported to axons. We conclude that the NRG-ErbB4 signaling pathway can potentially influence many functional systems throughout the brain of primates, and suggest that major sites of action are areas of the “corticolimbic” network. This interpretation is functionally consistent with the genetic association of NRG1 and ERBB4 with schizophrenia.
Collapse
Affiliation(s)
- Jörg Neddens
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
29
|
Field JR, Walker AG, Conn PJ. Targeting glutamate synapses in schizophrenia. Trends Mol Med 2011; 17:689-98. [PMID: 21955406 DOI: 10.1016/j.molmed.2011.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022]
Abstract
Although early clinical observations implicated dopamine dysfunction in the neuropathology of schizophrenia, accumulating evidence suggests that multiple neurotransmitter pathways are dysregulated. The psychotomimetic actions of NMDA receptor antagonists point to an imbalance of glutamatergic signaling. Encouragingly, numerous preclinical and clinical studies have elucidated several potential targets for increasing NMDA receptor function and equilibrating glutamatergic tone, including the metabotropic glutamate receptors 2, 3 and 5, the muscarinic acetylcholine receptors M(1) and M(4), and the glycine transporter GlyT1. Highly specific allosteric and orthosteric ligands have been developed that modify the activity of these novel target proteins, and in this review we summarize both the glutamatergic mechanisms and the novel compounds that are increasing the promise for a multifaceted pharmacological approach to treat schizophrenia.
Collapse
Affiliation(s)
- Julie R Field
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | | | | |
Collapse
|
30
|
Abstract
New findings are rapidly revealing an increasingly detailed image of neural- and molecular-level dysfunction in schizophrenia, distributed throughout interconnected cortico-striato-pallido-thalamic circuitry. Some disturbances appear to reflect failures of early brain maturation, that become codified into dysfunctional circuit properties, resulting in a substantial loss of, or failure to develop, both cells and/or appropriate connectivity across widely dispersed brain regions. These circuit disturbances are variable across individuals with schizophrenia, perhaps reflecting the interaction of multiple different risk genes and epigenetic events. Given these complex and variable hard-wired circuit disturbances, it is worth considering how new and emerging findings can be integrated into actionable treatment models. This paper suggests that future efforts towards developing more effective therapeutic approaches for the schizophrenias should diverge from prevailing models in genetics and molecular neuroscience, and focus instead on a more practical three-part treatment strategy: 1) systematic rehabilitative psychotherapies designed to engage healthy neural systems to compensate for and replace dysfunctional higher circuit elements, used in concert with 2) medications that specifically target cognitive mechanisms engaged by these rehabilitative psychotherapies, and 3) antipsychotic medications that target nodal or convergent circuit points within the limbic-motor interface, to constrain the scope and severity of psychotic exacerbations and thereby facilitate engagement in cognitive rehabilitation. The use of targeted cognitive rehabilitative psychotherapy plus synergistic medication has both common sense and time-tested efficacy with numerous other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Neal R Swerdlow
- School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0804, United States.
| |
Collapse
|
31
|
Young JW, Meves JM, Tarantino IS, Caldwell S, Geyer MA. Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice. GENES BRAIN AND BEHAVIOR 2011; 10:720-33. [PMID: 21679297 DOI: 10.1111/j.1601-183x.2011.00711.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The α7-nicotinic acetylcholine receptor (nAChR) has long been a procognitive therapeutic target to treat schizophrenia. Evidence on the role of this receptor in cognition has been lacking, however, in part due to the limited availability of suitable ligands. The behavior of α7-nAChR knockout (KO) mice has been examined previously, but cognitive assessments using tests with cross-species translatability have been limited to date. Here, we assessed the cognitive performance of α7-nAChR KO and wild-type (WT) littermate mice in the attentional set-shifting task of executive functioning, the radial arm maze test of spatial working memory span capacity and the novel object recognition test of short-term memory. The reward motivation of these mutants was assessed using the progressive ratio breakpoint test. In addition, we assessed the exploratory behavior and sensorimotor gating using the behavioral pattern monitor and prepulse inhibition, respectively. α7-nAChR KO mice exhibited normal set-shifting, but impaired procedural learning (rule acquisition) in multiple paradigms. Spatial span capacity, short-term memory, motivation for food, exploration and sensorimotor gating were all comparable to WT littermates. The data presented here support the notion that this receptor is important for such procedural learning, when patterns in the environment become clear and a rule is learned. In combination with the impaired attention observed previously in these mice, this finding suggests that agonist treatments should be examined in clinical studies of attention and procedural learning, perhaps in combination with cognitive behavioral therapy.
Collapse
Affiliation(s)
- J W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|
32
|
Calhoun VD, Sui J, Kiehl K, Turner J, Allen E, Pearlson G. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Front Psychiatry 2011; 2:75. [PMID: 22291663 PMCID: PMC3254121 DOI: 10.3389/fpsyt.2011.00075] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/12/2011] [Indexed: 11/13/2022] Open
Abstract
Intrinsic functional brain networks (INs) are regions showing temporal coherence with one another. These INs are present in the context of a task (as opposed to an undirected task such as rest), albeit modulated to a degree both spatially and temporally. Prominent networks include the default mode, attentional fronto-parietal, executive control, bilateral temporal lobe, and motor networks. The characterization of INs has recently gained considerable momentum, however; most previous studies evaluate only a small subset of the INs (e.g., default mode). In this paper we use independent component analysis to study INs decomposed from functional magnetic resonance imaging data collected in a large group of schizophrenia patients, healthy controls, and individuals with bipolar disorder, while performing an auditory oddball task. Schizophrenia and bipolar disorder share significant overlap in clinical symptoms, brain characteristics, and risk genes which motivates our goal of identifying whether functional imaging data can differentiate the two disorders. We tested for group differences in properties of all identified INs including spatial maps, spectra, and functional network connectivity. A small set of default mode, temporal lobe, and frontal networks with default mode regions appearing to play a key role in all comparisons. Bipolar subjects showed more prominent changes in ventromedial and prefrontal default mode regions whereas schizophrenia patients showed changes in posterior default mode regions. Anti-correlations between left parietal areas and dorsolateral prefrontal cortical areas were different in bipolar and schizophrenia patients and amplitude was significantly different from healthy controls in both patient groups. Patients exhibited similar frequency behavior across multiple networks with decreased low frequency power. In summary, a comprehensive analysis of INs reveals a key role for the default mode in both schizophrenia and bipolar disorder.
Collapse
|