1
|
Osteocalcin improves outcome after acute ischemic stroke. Aging (Albany NY) 2020; 12:387-396. [PMID: 31902795 PMCID: PMC6977690 DOI: 10.18632/aging.102629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
Background: Osteocalcin is related to energy metabolism, memory and the acute stress response, suggesting a relationship between bone and the brain. The need to explore the effect of osteocalcin on acute ischemic stroke is therefore urgent. Results: Patients with better outcomes had higher serum osteocalcin levels than those whose NIHSS scores did not improve. Multivariable logistic regression analysis showed acceptable performance (area under the curve = 0.766). The effect of osteocalcin on the promotion of neuron survival was confirmed by Cell Counting Kit-8 experiments. In addition, osteocalcin could decrease proline hydroxylase 1 and inhibit the degradation of gasdermin D. Conclusions: We propose that osteocalcin can improve outcome after acute ischemic stroke in the acute period. By downregulating proline hydroxylase 1, osteocalcin leads glucose metabolism to the pentose phosphate pathway and therefore promotes neuronal survival through inhibiting pyroptosis. Methods: Demographic data and laboratory results were obtained from patients with ischemic stroke in the acute period for analysis. A receiver operating characteristic curve was used to assess the discrimination of the prediction model. The potential effect of osteocalcin on cerebral ischemia and osteocalcin mechanism were explored in cultured primary rat cerebral cortical neurons treated with oxygen-glucose deprivation and reoxygenation.
Collapse
|
2
|
Ding Y, Wang R, Zhang J, Zhao A, Lu H, Li W, Wang C, Yuan X. Potential Regulation Mechanisms of P-gp in the Blood-Brain Barrier in Hypoxia. Curr Pharm Des 2019; 25:1041-1051. [PMID: 31187705 DOI: 10.2174/1381612825666190610140153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The blood-brain barrier (BBB) is a barrier of the central nervous system (CNS), which can restrict the free exchange of substances, such as toxins and drugs, between cerebral interstitial fluid and blood, keeping the relative physiological stabilization. The brain capillary endothelial cells, one of the structures of the BBB, have a variety of ATP-binding cassette transporters (ABC transporters), among which the most widely investigated is Pglycoprotein (P-gp) that can efflux numerous substances out of the brain. The expression and activity of P-gp are regulated by various signal pathways, including tumor necrosis factor-α (TNF-α)/protein kinase C-β (PKC- β)/sphingosine-1-phosphate receptor 1 (S1P), vascular endothelial growth factor (VEGF)/Src kinase, etc. However, it remains unclear how hypoxic signaling pathways regulate the expression and activity of P-gp in brain microvascular endothelial cells. According to previous research, hypoxia affects the expression and activity of the transporter. If the transporter is up-regulated, some drugs enter the brain's endothelial cells and are pumped back into the blood by transporters such as P-gp before they enter the brain tissue, consequently influencing the drug delivery in CNS; if the transporter is down-regulated, the centrally toxic drug would enter the brain tissue and cause serious adverse reactions. Therefore, studying the mechanism of hypoxia-regulating P-gp can provide an important reference for the treatment of CNS diseases with a hypoxia/reoxygenation (H/R) component. This article summarized the mechanism of regulation of P-gp in BBB in normoxia and explored that of hypoxia.
Collapse
Affiliation(s)
- Yidan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Jianchun Zhang
- Pharmacy Department, First Hospital of the Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Chang Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xuechun Yuan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Single-cell time-lapse imaging of intracellular O 2 in response to metabolic inhibition and mitochondrial cytochrome-c release. Cell Death Dis 2017; 8:e2853. [PMID: 28569778 PMCID: PMC5520905 DOI: 10.1038/cddis.2017.247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
Abstract
The detection of intracellular molecular oxygen (O2) levels is important for understanding cell physiology, cell death, and drug effects, and has recently been improved with the development of oxygen-sensitive probes that are compatible with live cell time-lapse microscopy. We here provide a protocol for the use of the nanoparticle probe MitoImage-MM2 to monitor intracellular oxygen levels by confocal microscopy under baseline conditions, in response to mitochondrial toxins, and following mitochondrial cytochrome-c release. We demonstrate that the MitoImage-MM2 probe, which embeds Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin as oxygen sensor and poly(9,9-dioctylfluorene) as an O2-independent component, enables quantitative, ratiometric time-lapse imaging of intracellular O2. Multiplexing with tetra-methyl-rhodamine-methyl ester in HeLa cervical cancer cells showed significant increases in intracellular O2 accompanied by strong mitochondrial depolarization when respiratory chain complexes III or IV were inhibited by Antimycin A or sodium azide, respectively, and when cells were maintained at 'physiological' tissue O2 levels (5% O2). Multiplexing also allowed us to monitor intracellular O2 during the apoptotic signaling process of mitochondrial outer membrane permeabilization in HeLa expressing cytochrome-c-eGFP, and demonstrated that mitochondria post cytochrome-c release are able to retain their capacity to respire at physiological O2 despite a decrease in mitochondrial membrane potential.
Collapse
|
4
|
Piscopo P, Grasso M, Fontana F, Crestini A, Puopolo M, Del Vescovo V, Venerosi A, Calamandrei G, Vencken SF, Greene CM, Confaloni A, Denti MA. Reduced miR-659-3p Levels Correlate with Progranulin Increase in Hypoxic Conditions: Implications for Frontotemporal Dementia. Front Mol Neurosci 2016; 9:31. [PMID: 27199656 PMCID: PMC4853935 DOI: 10.3389/fnmol.2016.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022] Open
Abstract
Progranulin (PGRN) is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and is activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial frontotemporal lobar degeneration (FTLD). PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs (miRNAs) involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848), the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3′UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24 h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd) 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Margherita Grasso
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Alessio Crestini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Maria Puopolo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Valerio Del Vescovo
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Aldina Venerosi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Gemma Calamandrei
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Sebastian F Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital Dublin, Ireland
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital Dublin, Ireland
| | - Annamaria Confaloni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Michela A Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of Trento Trento, Italy
| |
Collapse
|
5
|
Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G, Ghosh D, Davidson SM, Schoors S, Broekaert D, Cruys B, Govaerts K, De Legher C, Bouché A, Schoonjans L, Ramer MS, Hung G, Bossaert G, Cleveland DW, Himmelreich U, Voets T, Lemmens R, Bennett CF, Robberecht W, De Bock K, Dewerchin M, Ghesquière B, Fendt SM, Carmeliet P. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metab 2016; 23:280-91. [PMID: 26774962 PMCID: PMC4880550 DOI: 10.1016/j.cmet.2015.12.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023]
Abstract
The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Inmaculada Segura
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Roberta Schmieder
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ilaria Decimo
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Francesco Bifari
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Debapriva Ghosh
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra Schoors
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carla De Legher
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Matt S Ramer
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, Canada
| | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Goele Bossaert
- Leuven Statistics Research Centre (LStat), University of Leuven, Leuven, Belgium
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Medicine and Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Uwe Himmelreich
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Robin Lemmens
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Wim Robberecht
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.
| |
Collapse
|
6
|
Stoyanov A, Pamphlett R. Is the risk of motor neuron disease increased or decreased after cancer? An Australian case-control study. PLoS One 2014; 9:e103572. [PMID: 25058637 PMCID: PMC4110050 DOI: 10.1371/journal.pone.0103572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
Cancer appears to be inversely associated with both Alzheimer's and Parkinson's disease. The relationship between cancer and sporadic motor neuron disease (SMND), however, remains uncertain. Most previous cancer-SMND studies have been undertaken in northern hemisphere populations. We therefore undertook a case-control study to see if a link between cancer and SMND exists in an Australian population. A questionnaire was used to compare past cancer diagnoses in 739 SMND patients and 622 controls, recruited across Australia. Odds ratios with 95% confidence intervals were calculated to look for associations between cancer and SMND. A history of cancer was not associated either positively or negatively with a risk of subsequent SMND. This result remained when age, gender, smoking status, and the four SMND diagnostic subgroups were taken into account. No association was observed between SMND and specific tumours, including melanoma, a common malignancy in Australia. In conclusion, this Australian case-control study does not support an association between a past history of cancer and the development of SMND. This suggests that some pathogenetic mechanisms, such as apoptosis, are less relevant in SMND than in other neurodegenerative diseases where negative associations with cancer have been found.
Collapse
Affiliation(s)
- Alex Stoyanov
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
7
|
Numata T, Ogawa N, Takahashi N, Mori Y. TRP channels as sensors of oxygen availability. Pflugers Arch 2013; 465:1075-85. [DOI: 10.1007/s00424-013-1237-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 11/28/2022]
|
8
|
Demaria M, Campisi J. Matters of life and breath: A role for hypoxia in determining cell state. Aging (Albany NY) 2013; 4:523-4. [PMID: 22915708 PMCID: PMC3461339 DOI: 10.18632/aging.100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Ma DK, Ringstad N. The neurobiology of sensing respiratory gases for the control of animal behavior. ACTA ACUST UNITED AC 2012; 7:246-253. [PMID: 22876258 DOI: 10.1007/s11515-012-1219-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O(2)) and production of carbon dioxide (CO(2)) signal metabolic states and physiological stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O(2)/CO(2) to trigger appropriate behaviors and maintain homeostasis of internal O(2)/CO(2). Although different animal species show different behavioral responses to O(2)/CO(2), some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.
Collapse
Affiliation(s)
- Dengke K Ma
- Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
10
|
Ma DK, Vozdek R, Bhatla N, Horvitz HR. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 2012; 73:925-40. [PMID: 22405203 PMCID: PMC3305813 DOI: 10.1016/j.neuron.2011.12.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 12/17/2022]
Abstract
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Luo J, Martinez J, Yin X, Sanchez A, Tripathy D, Grammas P. Hypoxia induces angiogenic factors in brain microvascular endothelial cells. Microvasc Res 2012; 83:138-45. [PMID: 22100491 PMCID: PMC3278542 DOI: 10.1016/j.mvr.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 01/01/2023]
Abstract
Hypoxia is increasingly recognized as an important contributing factor to the development of brain diseases such as Alzheimer's disease (AD). In the periphery, hypoxia is a powerful regulator of angiogenesis. However, vascular endothelial cells are remarkably heterogeneous and little is known about how brain endothelial cells respond to hypoxic challenge. The objective of this study is to characterize the effect of hypoxic challenge on the angiogenic response of cultured brain-derived microvascular endothelial cells. Brain endothelial cell cultures were initiated from isolated rat brain microvessels and subjected to hypoxia (1% O(2)) for various time periods. The results showed that hypoxia induced rapid (≤ 0.5h) expression of hypoxia-inducible factor 1α (HIF-1α) and that cell viability, assessed by MTT assay, was unaffected within the first 8h. Examination of brain endothelial cell cultures for pro- and anti-angiogenic proteins by western blot, RT-PCR and ELISA revealed that within 0.5 to 2h of hypoxia levels of vascular endothelial growth factor and endothelin-1 mRNA and protein were elevated. The expression of heme oxygenase-1 also increased but only after 8h of hypoxia. In contrast, similar hypoxia exposure evoked a decrease in endothelial nitric oxide synthase and thrombospondin-2 levels. Exposure of brain endothelial cell cultures to hypoxia resulted in a significant (p<0.001) decrease (94%) in tube length, an in vitro index of angiogenesis, compared to control cultures. The data indicate that, despite a shift toward a pro-angiogenic phenotype, hypoxia inhibited vessel formation in brain endothelial cells. These results suggest that in brain endothelial cells expression of angiogenic factors is not sufficient for the development of new vessels. Further work is needed to determine what factors/conditions prevent hypoxia-induced angiogenic changes from culminating in the formation of new brain blood vessels and what role this may play in the pathologic changes observed in AD and other diseases characterized by cerebral hypoxia.
Collapse
Affiliation(s)
- J. Luo
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - J. Martinez
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - X. Yin
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - A. Sanchez
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - D. Tripathy
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P. Grammas
- Garrison Institute on Aging, Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
12
|
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91:1071-121. [PMID: 21742796 DOI: 10.1152/physrev.00038.2010] [Citation(s) in RCA: 1190] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a "normalization" of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more "mature" or "normal" phenotype. This "vascular normalization" is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases.
Collapse
Affiliation(s)
- Shom Goel
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
All human cells, including cancer cells, need oxygen and nutrients to survive. A widely used strategy to combat cancer is therefore the starvation of tumor cells by cutting off the blood supply of tumors. Clinical experience indeed shows that tumor progression can be delayed by anti-angiogenic agents. However, emerging evidence indicates that in certain experimental conditions, hypoxia as a result of pruning of the tumor microvasculature can promote tumor invasion and metastasis, although these findings are contextual and debated. Genetic studies in mice unveiled that vascular-targeting strategies that avoid aggravation of tumor hypoxia or even promote tumor oxygenation might prevent such an invasive metastatic switch. In this article, we will discuss the emerging link between hypoxia signaling and the various steps of metastasis.
Collapse
|
14
|
Abstract
The hypoxia-inducible transcription factors (HIF) 1α and HIF-2α play a critical role in cellular response to hypoxia. Elevated HIF-α expression correlates with poor patient survival in a large number of cancers. Recent evidence suggests that HIF-2α appears to be preferentially expressed in neuronal tumor cells that exhibit cancer stem cell characteristics. These observations suggest that expression of HIF-1α and HIF-2α is differentially regulated in the hypoxic tumor microenvironment. However, the underlying mechanisms remain to be fully investigated. In this study, we investigated the transcriptional regulation of HIF-1α and HIF-2α under different physiologically relevant hypoxic conditions. We found that transcription of HIF-2α was consistently increased by hypoxia, whereas transcription of HIF-1α showed variable levels of repression. Mechanistically, differential regulation of HIF-α transcription involved hypoxia-induced changes in acetylation of core histones H3 and H4 associated with the proximal promoters of the HIF-1α or HIF-2α gene. We also found that, although highly stable under acute hypoxia, HIF-1α and HIF-2α proteins become destabilized under chronic hypoxia. Our results have thus provided new mechanistic insights into the differential regulation of HIF-1α and HIF-2α by the hypoxic tumor microenvironment. These findings also suggest an important role of HIF-2α in the regulation of tumor progression under chronic hypoxia.
Collapse
Affiliation(s)
- Qun Lin
- Department of Therapeutic Radiology, Yale School of Medicine, P. O. Box 208040, New Haven, CT 06520-8040, USA
| | | | | |
Collapse
|