1
|
Wang X, Liu F, An Q, Wang W, Cheng Z, Dai Y, Meng Q, Zhang Y. Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137478. [PMID: 35806481 PMCID: PMC9267821 DOI: 10.3390/ijms23137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin (Ltf), a naturally active glycoprotein, possesses anti-inflammatory, anti-microbial, anti-tumor, and immunomodulatory activities. Many published studies have indicated that Ltf modulates the proliferation of stem cells. However, the role of Ltf in the proliferation of satellite cells, an important cell type in muscle regeneration, has not yet been reported. Here, by using Ltf systemic knockout mice, we illustrate the role of Ltf in skeletal muscle. Results shows that Ltf deficiency impaired proliferation of satellite cells (SCs) and the regenerative capability of skeletal muscle. Mechanistic studies showed that ERK1/2 phosphorylation was significantly downregulated after Ltf deletion in SCs. Simultaneously, the cell cycle-related proteins cyclin D and CDK4 were significantly downregulated. Intervention with exogenous recombinant lactoferrin (R-Ltf) at a concentration of 1000 μg/mL promoted proliferation of SCs. In addition, intraperitoneal injection of Ltf effectively ameliorated the skeletal muscle of mice injured by 1.2% BaCl2 solution. Our results suggest a protective effect of Ltf in the repair of skeletal muscle damage. Ltf holds promise as a novel therapeutic agent for skeletal muscle injuries.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Fan Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
- Correspondence: ; Tel.: +86-010-6273-7465
| |
Collapse
|
2
|
Iijima K, Ichikawa S, Ishikawa S, Matsukuma D, Yataka Y, Otsuka H, Hashizume M. Preparation of Cell-Paved and -Incorporated Polysaccharide Hollow Fibers Using a Microfluidic Device. ACS Biomater Sci Eng 2019; 5:5688-5697. [PMID: 33405700 DOI: 10.1021/acsbiomaterials.8b01500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular constructs having hollow tubular structures are expected to be used as artificial blood vessels. We have recently demonstrated that water-insoluble polyion complexes (PICs) were formed from water-soluble polysaccharides with opposite charges at the interface of coaxial flows, which resulted in the formation of hollow fibers. In this study, both inside- and outside-cell-laden chondroitin sulfate C (CS)/chitosan (CHI) hollow fibers were prepared by utilizing a microfluidic device and modification with cell adhesive molecules. Loading of type I collagen (COL) and surface modification with fibronectin and gelatin using layer-by-layer assembly techniques improved the adhesion and spreading of fibroblast cells to/on the surface of CS/CHI hollow fibers. On the other hand, by suspending mesenchymal stem cells (MSCs) in the core flow solution, cells were successfully loaded in the walls of the hollow fibers. As the culture time extended, cells trapped in the PIC structures constituting the wall of the hollow fibers migrated to the interface between the hollow fibers and the medium: cells adhered to and stretched "on" the lumen surfaces in the COL-loaded fibers. In contrast, for the case of unmodified hollow fibers, it was difficult for cells to adhere to the lumen surfaces. Therefore, cell aggregates were formed "in" the lumen. Results of the live/dead assay and MTT assay clearly demonstrated that MSCs possessed certain levels of cell viability and proliferated for up to 10 days, especially for the cases of COL-loaded hollow fibers. On the basis of these results, the utility of the present hollow fibers in the formation of cellular constructs corresponding to blood vessels is also discussed.
Collapse
|
3
|
Grecu AF, Reclaru L, Ardelean LC, Nica O, Ciucă EM, Ciurea ME. Platelet-Rich Fibrin and its Emerging Therapeutic Benefits for Musculoskeletal Injury Treatment. ACTA ACUST UNITED AC 2019; 55:medicina55050141. [PMID: 31096718 PMCID: PMC6572609 DOI: 10.3390/medicina55050141] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
New therapies that accelerate musculoskeletal tissue recovery are highly desirable. Platelet-rich fibrin (PRF) is a leukocyte- and platelet-rich fibrin biomaterial that acts as a binding site for both platelets and growth factors. Through increasing the local concentration of growth factors at specific tissues, PRF promotes tissue regeneration. PRF has been frequently used in combination with bone graft materials to reduce healing times and promote bone regeneration during maxillofacial surgery. However, its benefits during muscle repair and recovery are less well-documented. Here, we perform a narrative review on PRF therapies and muscle injuries to ascertain its beneficial effects. We reviewed the factors that contribute to the biological activity of PRF and the published pre-clinical and clinical evidence to support its emerging use in musculoskeletal therapy. We include in vitro studies, in vivo animal studies and clinical articles highlighting both the success and failures of PRF treatment. PRF can promote the healing process when used in a range of orthopaedic and sports-related injuries. These include cartilage repair, rotator cuff surgery and anterior cruciate ligament surgery. However, conflicting data for these benefits have been reported, most likely due to inconsistencies in both PRF preparation protocols and dosing regimens. Despite this, the literature generally supports the use of PRF as a beneficial adjuvant for a range of chronic muscle, tendon, bone or other soft tissue injuries. Further clinical trials to confirm these benefits require consistency in PRF preparation and the classification of a successful clinical outcome to fully harness its potential.
Collapse
Affiliation(s)
- Alexandru Florian Grecu
- PhD Researcher - University of Medicine and Pharmacy Craiova, str. Petru Rares no.2, 200349, Craiova, Romania.
| | - Lucien Reclaru
- Varinor Matériaux SA, 7 St-Georges str, CH 2800, Delémont, Switzerland.
| | - Lavinia Cosmina Ardelean
- "Victor Babes" University of Medicine and Pharmacy from Timisoara, Dept. of Technology of Materials and 9 Devices in Dental Medicine,2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Oliviu Nica
- PhD Researcher - University of Medicine and Pharmacy Craiova, str. Petru Rares no.2, 200349, Craiova, Romania.
| | - Eduard Mihai Ciucă
- Department of Oro-Maxilo-Facial Surgery ⁻ University of Medicine and Pharmacy Craiova, str. Petru Rares, no.2, 200349 Craiova, Romania.
| | - Marius Eugen Ciurea
- Department of Plastic Surgery - University of Medicine and Pharmacy of Craiova, str. Petru Rares, no.2, 200349 Craiova, Romania.
| |
Collapse
|
4
|
Mnatsakanyan H, Serra RSI, Rico P, Salmerón-Sánchez M. Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Sci Rep 2018; 8:13642. [PMID: 30206294 PMCID: PMC6133932 DOI: 10.1038/s41598-018-32067-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Myogenic regeneration occurs through a chain of events beginning with the output of satellite cells from quiescent state, formation of competent myoblasts and later fusion and differentiation into myofibres. Traditionally, growth factors are used to stimulate muscle regeneration but this involves serious off-target effects, including alterations in cell homeostasis and cancer. In this work, we have studied the use of zinc to trigger myogenic differentiation. We show that zinc promotes myoblast proliferation, differentiation and maturation of myofibres. We demonstrate that this process occurs through the PI3K/Akt pathway, via zinc stimulation of transporter Zip7. Depletion of zinc transporter Zip7 by RNA interference shows reduction of both PI3K/Akt signalling and a significant reduction of multinucleated myofibres and myotubes development. Moreover, we show that mature myofibres, obtained through stimulation with high concentrations of zinc, accumulate zinc and so we hypothesise their function as zinc reservoirs into the cell.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022, Valencia, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, 46022, Spain
| | - Patricia Rico
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022, Valencia, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, 46022, Spain.
| | - Manuel Salmerón-Sánchez
- Centre for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València, 46022, Valencia, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, 46022, Spain.
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom.
| |
Collapse
|
5
|
Regeneration and Regrowth Potentials of Digit Tips in Amphibians and Mammals. Int J Cell Biol 2017; 2017:5312951. [PMID: 28487741 PMCID: PMC5402240 DOI: 10.1155/2017/5312951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Tissue regeneration and repair have received much attention in the medical field over the years. The study of amphibians, such as newts and salamanders, has uncovered many of the processes that occur in these animals during full-limb/digit regeneration, a process that is highly limited in mammals. Understanding these processes in amphibians could shed light on how to develop and improve this process in mammals. Amputation injuries in mammals usually result in the formation of scar tissue with limited regrowth of the limb/digit; however, it has been observed that the very tips of digits (fingers and toes) can partially regrow in humans and mice under certain conditions. This review will summarize and compare the processes involved in salamander limb regeneration, mammalian wound healing, and digit regeneration in mice and humans.
Collapse
|
6
|
Costantini M, Testa S, Fornetti E, Barbetta A, Trombetta M, Cannata SM, Gargioli C, Rainer A. Engineering Muscle Networks in 3D Gelatin Methacryloyl Hydrogels: Influence of Mechanical Stiffness and Geometrical Confinement. Front Bioeng Biotechnol 2017; 5:22. [PMID: 28439516 PMCID: PMC5383707 DOI: 10.3389/fbioe.2017.00022] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
In this work, the influence of mechanical stiffness and geometrical confinement on the 3D culture of myoblast-laden gelatin methacryloyl (GelMA) photo-crosslinkable hydrogels was evaluated in terms of in vitro myogenesis. We formulated a set of cell-laden GelMA hydrogels with a compressive modulus in the range 1 ÷ 17 kPa, obtained by varying GelMA concentration and degree of cross-linking. C2C12 myoblasts were chosen as the cell model to investigate the supportiveness of different GelMA hydrogels toward myotube formation up to 2 weeks. Results showed that the hydrogels with a stiffness in the range 1 ÷ 3 kPa provided enhanced support to C2C12 differentiation in terms of myotube number, rate of formation, and space distribution. Finally, we studied the influence of geometrical confinement on myotube orientation by confining cells within thin hydrogel slabs having different cross sections: (i) 2,000 μm × 2,000 μm, (ii) 1,000 μm × 1,000 μm, and (iii) 500 μm × 500 μm. The obtained results showed that by reducing the cross section, i.e., by increasing the level of confinement—myotubes were more closely packed and formed aligned myostructures that better mimicked the native morphology of skeletal muscle.
Collapse
Affiliation(s)
- Marco Costantini
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Stefano Testa
- Department of Biology, Tor Vergata Rome University, Rome, Italy
| | | | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Cesare Gargioli
- Department of Biology, Tor Vergata Rome University, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
7
|
Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B, Tarnok A. Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front Physiol 2014; 5:218. [PMID: 24982637 PMCID: PMC4058757 DOI: 10.3389/fphys.2014.00218] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/22/2014] [Indexed: 11/17/2022] Open
Abstract
Effective clinical treatments for volumetric muscle loss resulting from traumatic injury or resection of a large amount of muscle mass are not available to date. Tissue engineering may represent an alternative treatment approach. Decellularization of tissues and whole organs is a recently introduced platform technology for creating scaffolding materials for tissue engineering and regenerative medicine. The muscle stem cell niche is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A consistent body of evidence indicates that ECM proteins regulate stem cell differentiation and renewal and are highly relevant to tissue engineering applications. The ECM also provides a supportive medium for blood or lymphatic vessels and for nerves. Thus, the ECM is the nature's ideal biological scaffold material. ECM-based bioscaffolds can be recellularized to create potentially functional constructs as a regenerative medicine strategy for organ replacement or tissue repopulation. This article reviews current strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and skeletal muscle, and proposes some innovative approaches for the application of such strategies in the clinical setting.
Collapse
Affiliation(s)
- Laura Teodori
- UTAPRAD-DIM, ENEA Frascati Rome, Italy ; Fondazione San Raffaele Ceglie Messapica, Italy
| | - Alessandra Costa
- Fondazione San Raffaele Ceglie Messapica, Italy ; Department of Surgery, McGowan Institute, University of Pittsburgh Medical Center Pittsburgh, PA, USA
| | - Rosa Marzio
- Fondazione San Raffaele Ceglie Messapica, Italy
| | - Barbara Perniconi
- UMR 8256 CNRS Biology of Adaptation and Aging, University Pierre et Marie Curie Paris 06 Paris, France
| | - Dario Coletti
- UMR 8256 CNRS Biology of Adaptation and Aging, University Pierre et Marie Curie Paris 06 Paris, France ; Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome Rome, Italy
| | - Sergio Adamo
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome Rome, Italy
| | - Bhuvanesh Gupta
- Department of Textile Technology, Indian Institute of Technology New Delhi, India
| | - Attila Tarnok
- Department of Pediatric Cardiology, Heart Centre Leipzig, and Translational Centre for Regenerative Medicine, University of Leipzig Leipzig, Germany
| |
Collapse
|
8
|
Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol 2014; 5:34. [PMID: 24550918 PMCID: PMC3913901 DOI: 10.3389/fimmu.2014.00034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/16/2022] Open
Abstract
Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, largely due to the presence of a stem cell population known as “satellite cells” in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions, which affect homeostasis of the skeletal muscle environment.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada
| | - Eric C Lacasse
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada
| | - Nadine J Adam
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Robert G Korneluk
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|