1
|
van der Waals MJ, Thornton SF, Rolfe SA, Rock L, Smith JWN, Bosma TNP, Gerritse J. Potential of stable isotope analysis to deduce anaerobic biodegradation of ethyl tert-butyl ether (ETBE) and tert-butyl alcohol (TBA) in groundwater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16150-16163. [PMID: 38319419 PMCID: PMC10894111 DOI: 10.1007/s11356-024-32109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
- Present address: KWR Water Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands
| | - Steven F Thornton
- Department of Civil and Structural Engineering, University of Sheffield, Mappin St, Sheffield, S1 3JD, UK
| | - Stephen A Rolfe
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Luc Rock
- Shell Global Solutions International BV, Carel van Bylandtlaan 30, The Hague, 2596 HR, The Netherlands
- Present address: Shell Global Solutions (Canada) Inc, 4000 - 500 Centre Street SE, Calgary, AB, T2G 1A6, Canada
| | - Jonathan W N Smith
- Shell Global Solutions (UK) Ltd, Shell Centre, York Road, London, SE1 7NA, UK
| | - Tom N P Bosma
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands
| | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Daltonlaan 600, Utrecht, 3484 BK, The Netherlands.
| |
Collapse
|
2
|
Nicholls HCG, Rolfe SA, Mallinson HEH, Hjort M, Spence MJ, Bonte M, Thornton SF. Distribution of ETBE-degrading microorganisms and functional capability in groundwater, and implications for characterising aquifer ETBE biodegradation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1223-1238. [PMID: 34350568 PMCID: PMC8724112 DOI: 10.1007/s11356-021-15606-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Microbes in aquifers are present suspended in groundwater or attached to the aquifer sediment. Groundwater is often sampled at gasoline ether oxygenate (GEO)-impacted sites to assess the potential biodegradation of organic constituents. However, the distribution of GEO-degrading microorganisms between the groundwater and aquifer sediment must be understood to interpret this potential. In this study, the distribution of ethyl tert-butyl ether (ETBE)-degrading organisms and ETBE biodegradation potential was investigated in laboratory microcosm studies and mixed groundwater-aquifer sediment samples obtained from pumped monitoring wells at ETBE-impacted sites. ETBE biodegradation potential (as determined by quantification of the ethB gene) was detected predominantly in the attached microbial communities and was below detection limit in the groundwater communities. The copy number of ethB genes varied with borehole purge volume at the field sites. Members of the Comamonadaceae and Gammaproteobacteria families were identified as responders for ETBE biodegradation. However, the detection of the ethB gene is a more appropriate function-based indicator of ETBE biodegradation potential than taxonomic analysis of the microbial community. The study shows that a mixed groundwater-aquifer sediment (slurry) sample collected from monitoring wells after minimal purging can be used to assess the aquifer ETBE biodegradation potential at ETBE-release sites using this function-based concept.
Collapse
Affiliation(s)
- Henry C G Nicholls
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK
| | - Stephen A Rolfe
- Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, S10 2TN, Sheffield, UK
| | - Helen E H Mallinson
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK
| | - Markus Hjort
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
| | - Michael J Spence
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
- British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
| | - Matthijs Bonte
- Concawe, Boulevard du Souverain 165, 1160, Brussels, Belgium
- Shell Global Solutions International B.V., Rijswijk, 2288GK, The Netherlands
- Ministry of Infrastructure and Water Management, The Hague, The Netherlands
| | - Steven F Thornton
- Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, S1 3JD, Sheffield, UK.
| |
Collapse
|
3
|
Davoodi SM, Miri S, Taheran M, Brar SK, Galvez-Cloutier R, Martel R. Bioremediation of Unconventional Oil Contaminated Ecosystems under Natural and Assisted Conditions: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2054-2067. [PMID: 31904944 DOI: 10.1021/acs.est.9b00906] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is a general understanding that unconventional oil is petroleum-extracted and processed into petroleum products using unconventional means. The recent growth in the United States shale oil production and the lack of refineries in Canada built for heavy crude processes have resulted in a significant increase in U.S imports of unconventional oil since 2018. This has increased the risk of incidents and catastrophic emergencies during the transportation of unconventional oils using transmission pipelines and train rails. A great deal of effort has been made to address the remediation of contaminated soil/sediment following the traditional oil spills. However, spill response and cleanup techniques (e.g., oil recuperation, soil-sediment-water treatments) showed slow and inefficient performance when it came to unconventional oil, bringing larger associated environmental impacts in need of investigation. To the best of our knowledge, there is no coherent review available on the biodegradability of unconventional oil, including Dilbit and Bakken oil. Hence, in view of the insufficient information and contrasting results obtained on the remediation of petroleum, this review is an attempt to fill the gap by presenting the collective understanding and critical analysis of the literature on bioremediation of products from the oil sand and shale (e.g., Dilbit and Bakken oil). This can help evaluate the different aspects of hydrocarbon biodegradation and identify the knowledge gaps in the literature.
Collapse
Affiliation(s)
- Seyyed Mohammadreza Davoodi
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | - Saba Miri
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | - Mehrdad Taheran
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
| | - Satinder Kaur Brar
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
- Department of Civil Engineering, Lassonde School of Engineering , York University, North York , Toronto , Ontario Canada M3J 1P3
| | | | - Richard Martel
- INRS-ETE , Université du Québec , 490, Rue de la Couronne , Québec City , Québec , Canada G1K 9A9
| |
Collapse
|