1
|
Ahmad RN, Zhang LT, Morita R, Tani H, Wu Y, Chujo T, Ogawa A, Harada R, Shigeta Y, Tomizawa K, Wei FY. Pathological mutations promote proteolysis of mitochondrial tRNA-specific 2-thiouridylase 1 (MTU1) via mitochondrial caseinolytic peptidase (CLPP). Nucleic Acids Res 2024; 52:1341-1358. [PMID: 38113276 PMCID: PMC10853782 DOI: 10.1093/nar/gkad1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.
Collapse
Affiliation(s)
- Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Long-Teng Zhang
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruna Tani
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yong Wu
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Akiko Ogawa
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
2
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Murali CN, Soler-Alfonso C, Loomes KM, Shah AA, Monteil D, Padilla CD, Scaglia F, Ganetzky R. TRMU deficiency: A broad clinical spectrum responsive to cysteine supplementation. Mol Genet Metab 2021; 132:146-153. [PMID: 33485800 PMCID: PMC7903488 DOI: 10.1016/j.ymgme.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.
Collapse
Affiliation(s)
- Chaya N Murali
- Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Houston, TX, United States of America
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Houston, TX, United States of America
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amit A Shah
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Danielle Monteil
- Naval Medical Center Portsmouth, Portsmouth, VA, United States of America
| | | | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Houston, TX, United States of America; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong
| | - Rebecca Ganetzky
- Division of Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
4
|
Sala-Coromina J, Miguel LDD, de las Heras J, Lasa-Aranzasti A, Garcia-Arumi E, Carreño L, Arranz JA, Carnicer C, Unceta-Suárez M, Sanchez-Montañez A, Gort L, Tort F, del Toro M. Leigh syndrome associated with TRMU gene mutations. Mol Genet Metab Rep 2020; 26:100690. [PMID: 33365252 PMCID: PMC7749400 DOI: 10.1016/j.ymgmr.2020.100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) deficiency causes an early onset potentially reversible acute liver failure, so far reported in less than 30 patients. We describe two new unrelated patients with an acute liver failure and a neuroimaging compatible with Leigh syndrome (LS) due to TRMU deficiency, a combination not previously reported. Our report enlarges the phenotypical spectrum of TRMU disease.
Collapse
Affiliation(s)
- Júlia Sala-Coromina
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - Lucía Dougherty-de Miguel
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - Javier de las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, CIBER-ER; University of the Basque Country (UPV/EHU), Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - Elena Garcia-Arumi
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Lidia Carreño
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Jose Antonio Arranz
- Metabolic Laboratory, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - Clara Carnicer
- Metabolic Laboratory, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - María Unceta-Suárez
- Biochemistry Laboratory (Metabolism Area), Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, CIBER-ER, University of the Basque Country (UPV/EHU), Spain
| | - Angel Sanchez-Montañez
- Pediatric Neuroradiology Department, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
| | - Laura Gort
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Inborn Errors of Metabolism, Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Spain
| | - Frederic Tort
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Inborn Errors of Metabolism, Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Faculty of Medicine and Health Science-University of Barcelona, Internal Medicine Service-Hospital Clínic of Barcelona, Spain
| | - Mireia del Toro
- Pediatric Neurology Department, Vall d'Hebron University Hospital, Universitat Autónoma de Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Corresponding author at: Pediatric Neurology Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain.
| |
Collapse
|
5
|
Qin Z, Yang Q, Yi S, Huang L, Shen Y, Luo J. Whole-exome sequencing identified novel compound heterozygous variants in a Chinese neonate with liver failure and review of literature. Mol Genet Genomic Med 2020; 8:e1515. [PMID: 33205917 PMCID: PMC7767550 DOI: 10.1002/mgg3.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Liver failure caused by TRMU is a rare hereditary disorder and clinically manifests into metabolic acidosis, hyperlactatemia, and hypoglycemia. Limited spectrum of TRMU pathogenic variants has been reported. METHODS Whole-exome sequencing was employed for the diagnosis of a 5-day-old female who suffered from severe neonatal hyperlactatemia and hypoglycemia since birth. Sanger sequencing was performed to confirm the origin of the variants subsequently. Variants classification was followed to ACMG guideline. RESULTS A compound heterozygosity of a frameshiftc.34_35dupTC (p.Gly13fs) and a missense c.244T>G (p.Phe82Val) in TRMU was detected, both variants are novel and pathogenic. Analysis of clinical and genetic information including patients reported previously indicated that there is no significant correlation between the genotype and the phenotype of TRMU-caused liver failure. CONCLUSION To the best of our knowledge, this is the first case report of TRMU-caused liver failure in China. Whole-exome sequencing is effective for conclusive diagnosis of this disorder and beneficial for its clinical management.
Collapse
Affiliation(s)
- Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
6
|
Zhu X, Miao X, Qin X, Zhu X. Design of immunogens: The effect of bifunctional chelator on immunological response to chelated copper. J Pharm Biomed Anal 2019; 174:263-269. [PMID: 31181489 DOI: 10.1016/j.jpba.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/03/2023]
Abstract
To produce specific antibodies for the detection and quantification of copper ions, bifunctional chelators (BFCs) are commonly applied in the preparation of copper conjugates. However, some copper-chelator complexes exhibit limited stability under in vivo conditions. In this study, Cu2+ was coupled with carrier proteins via three different macrocyclic BFCs: p-SCN-Bn-DOTA, p-SCN-Bn-NOTA, and p-SCN-Bn-TETA. The stability in plasma and the immunogenicity of three copper immunoconjugates were compared. The chelators other than p-SCN-Bn-DOTA were very stable in plasma, with <9% dissociation of Cu2+ over 96 h. The immune response varied depending on the choice of chelator; notably, antisera from the Cu2+-NOTA-KLH conjugate demonstrated the best reactivity toward chelated Cu2+. p-SCN-Bn-NOTA, which showed significant advantages over the other chelators, was used for antibody production. The efficiency of immune-positive hybridoma production was satisfactory, and the resultant monoclonal antibodies (McAbs) 4B7 showed sensitivity (half-maximal inhibitory concentration (IC50) of 8.9 ng/mL) to chelated Cu2+, with a working range from 1.21 to 48.9 ng/mL. The recovery of Cu2+ from water samples was 85.7-108%, and the intra- and inter-assay coefficients of variation were 4.0-10.1% and 7.1-11.4%, respectively. Compared with previously reported McAb specific to Cu2+, DF4, the sensitivity of the newly developed assay was improved 100-fold. The results of this study indicate the utility of NOTA for the efficient generation of highly sensitive McAbs against Cu2+.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China.
| | - Xiaye Miao
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China
| | - Xinyue Qin
- School of Public Health, Nantong University, No.9 Seyuan Road Nantong, Jiangsu, 226019, China
| | - Xiaohong Zhu
- Department of Infectious Disease, Division 2nd, the Third People's Hospital of Nantong, Jiangsu, 226006, China.
| |
Collapse
|
7
|
Soler-Alfonso C, Pillai N, Cooney E, Mysore KR, Boyer S, Scaglia F. L-Cysteine supplementation prevents liver transplantation in a patient with TRMU deficiency. Mol Genet Metab Rep 2019; 19:100453. [PMID: 30740308 PMCID: PMC6355510 DOI: 10.1016/j.ymgmr.2019.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Early recognition of rare mitochondrial respiratory chain defects has become readily available with the routine use of whole exome sequencing. Patients with oxidative phosphorylation defects present with a heterogenous phenotype, often rapidly progressive, and lethal. Clinicians aim for prompt identification of the specific molecular defect to provide timely management, decrease morbidity, and potentially improve survival rates. More recently, bi-allelic pathogenic variants in the TRMU gene responsible for encoding the mitochondrial tRNA-specific 2-thiouridylase were found in a syndrome characterized by infantile hepatopathy due to a mitochondrial translation defect (OMIM# 613070). This nuclear encoded enzyme catalyzes the addition of a sulfur-containing thiol group to the wobble position of mitochondrial specific tRNAs. TRMU deficiency is characterized by a combined respiratory chain deficiency without associated mitochondrial DNA depletion. This mitochondrial tRNA-modifying enzyme requires sulfur for its activity. Previous cellular models have suggested supplementation with cysteine, one of the sulfur containing amino acids, may play a role in increasing thiouridylation levels of mt-tRNAs by increasing sulfur availability for TRMU activity. Cysteine is considered a conditional essential amino acid due to limited availability in infants caused by immature cystathionine gamma-lyase (cystathionase) enzyme activity. The potential benefit of L-cysteine supplementation in TRMU deficiency has been previously proposed to ameliorate the severity and insidious course of the disease. Here we report the clinical, biochemical, and genetic findings of two siblings presenting with hepatopathy associated with hyperlactatemia due to bi-allelic pathogenic variants in TRMU. One patient died due to related complications. The other case was diagnosed prenatally allowing early implementation of L-cysteine supplementation, recovery of liver function, and avoidance of liver transplantation.
Collapse
Affiliation(s)
- Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Nishita Pillai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Erin Cooney
- University of Texas Medical Branch, Galveston, TX, United States
| | - Krupa R Mysore
- Department of Pediatric Gastroenterology, Baylor College of Medicine, Houston, TX, United States
| | - Suzanne Boyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Hospital, Houston, TX, United States.,Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong SAR
| |
Collapse
|
8
|
He Z, Sun S, Waqas M, Zhang X, Qian F, Cheng C, Zhang M, Zhang S, Wang Y, Tang M, Li H, Chai R. Reduced TRMU expression increases the sensitivity of hair-cell-like HEI-OC-1 cells to neomycin damage in vitro. Sci Rep 2016; 6:29621. [PMID: 27405449 PMCID: PMC4942793 DOI: 10.1038/srep29621] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Aminoglycosides are ototoxic to the cochlear hair cells, and mitochondrial dysfunction is one of the major mechanisms behind ototoxic drug-induced hair cell death. TRMU (tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase) is a mitochondrial protein that participates in mitochondrial tRNA modifications, but the role of TRMU in aminoglycoside-induced ototoxicity remains to be elucidated. In this study, we took advantage of the HEI-OC-1 cell line to investigate the role of TRMU in aminoglycoside-induced cell death. We found that TRMU is expressed in both hair cells and HEI-OC-1 cells, and its expression is significantly decreased after 24 h neomycin treatment. We then downregulated TRMU expression with siRNA and found that cell death and apoptosis were significantly increased after neomycin injury. Furthermore, when we down-regulated TRMU expression, we observed significantly increased mitochondrial dysfunction and increased levels of reactive oxygen species (ROS) after neomycin injury, suggesting that TRMU regulates mitochondrial function and ROS levels. Lastly, the antioxidant N-acetylcysteine rescued the mitochondrial dysfunction and cell apoptosis that was induced by TRMU downregulation, suggesting that ROS accumulation contributed to the increased aminoglycosides sensitivity of HEI-OC-1 cells after TRMU downregulation. This study provides evidence that TRMU might be a new therapeutic target for the prevention of aminoglycoside-induced hair cell death.
Collapse
Affiliation(s)
- Zuhong He
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shan Sun
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Muhammad Waqas
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoli Zhang
- Department of Otolaryngology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Fuping Qian
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Cheng Cheng
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingshu Zhang
- Medical School, Southeast University, Nanjing 210096, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yongming Wang
- Institutes of Life Sciences, Fudan University, Shanghai 200032, China
| | - Mingliang Tang
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Huawei Li
- Department of Otorhinolaryngology, Hearing Research Institute, Affiliated Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Institutes of Life Sciences, Fudan University, Shanghai 200032, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,MOE Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|