1
|
Demaret T, Bédard K, Soucy JF, Watkins D, Allard P, Levtova A, O'Brien A, Brunel-Guitton C, Rosenblatt DS, Mitchell GA. The MMACHC variant c.158T>C: Mild clinical and biochemical phenotypes and marked hydroxocobalamin response in cblC patients. Mol Genet Metab 2024; 142:108345. [PMID: 38387306 DOI: 10.1016/j.ymgme.2024.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 μM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 μM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.
Collapse
Affiliation(s)
- Tanguy Demaret
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Karine Bédard
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-François Soucy
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Allard
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry, CHU Sainte-Justine, Montréal, Québec, Canada
| | - Alina Levtova
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alan O'Brien
- Service de Médecine Génique, Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Catherine Brunel-Guitton
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada; Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Grant A Mitchell
- Medical Genetics Division, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Scalais E, Geron C, Pierron C, Cardillo S, Schlesser V, Mataigne F, Borde P, Regal L. Would, early, versus late hydroxocobalamin dose intensification treatment, prevent cognitive decline, macular degeneration and ocular disease, in 5 patients with early-onset cblC deficiency? Mol Genet Metab 2023; 140:107681. [PMID: 37604084 DOI: 10.1016/j.ymgme.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg.
| | - Christine Geron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Charlotte Pierron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Sandra Cardillo
- Service d'Ophtalmologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Vincent Schlesser
- Laboratoire de Chimie et Hématologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Frédéric Mataigne
- Service de Neuroradiologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Patricia Borde
- Service de Biochimie, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ, VUB, Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
3
|
Wiedemann A, Oussalah A, Lamireau N, Théron M, Julien M, Mergnac JP, Augay B, Deniaud P, Alix T, Frayssinoux M, Feillet F, Guéant JL. Clinical, phenotypic and genetic landscape of case reports with genetically proven inherited disorders of vitamin B 12 metabolism: A meta-analysis. Cell Rep Med 2022; 3:100670. [PMID: 35764087 PMCID: PMC9381384 DOI: 10.1016/j.xcrm.2022.100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
Inherited disorders of B12 metabolism produce a broad spectrum of manifestations, with limited knowledge of the influence of age and the function of related genes. We report a meta-analysis on 824 patients with a genetically proven diagnosis of an inherited disorder of vitamin B12 metabolism. Gene clusters and age categories are associated with patients' manifestations. The "cytoplasmic transport" cluster is associated with neurological and ophthalmological manifestations, the "mitochondrion" cluster with hypotonia, acute metabolic decompensation, and death, and the "B12 availability" and "remethylation" clusters with anemia and cytopenia. Hypotonia, EEG abnormalities, nystagmus, and strabismus are predominant in the younger patients, while neurological manifestations, such as walking difficulties, peripheral neuropathy, pyramidal syndrome, cerebral atrophy, psychiatric disorders, and thromboembolic manifestations, are predominant in the older patients. These results should prompt systematic checking of markers of vitamin B12 status, including homocysteine and methylmalonic acid, when usual causes of these manifestations are discarded in adult patients.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Abderrahim Oussalah
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Nathalie Lamireau
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Maurane Théron
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Melissa Julien
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | | | - Baptiste Augay
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Pauline Deniaud
- Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France
| | - Tom Alix
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - Marine Frayssinoux
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France
| | - François Feillet
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Department of Pediatrics, University Hospital of Nancy, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France
| | - Jean-Louis Guéant
- Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, INSERM UMR_S 1256, 54000 Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, 54000 Nancy, France; Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, 54000 Nancy, France.
| |
Collapse
|
4
|
Kiessling E, Peters F, Ebner LJ, Merolla L, Samardzija M, Baumgartner MR, Grimm C, Froese DS. HIF1 and DROSHA are involved in MMACHC repression in hypoxia. Biochim Biophys Acta Gen Subj 2022; 1866:130175. [DOI: 10.1016/j.bbagen.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
5
|
Hope S, Naerland T, Høiland AL, Torske T, Malt E, Abrahamsen T, Nerhus M, Wedervang-Resell K, Lonning V, Johannessen J, Steen NE, Agartz I, Stenberg N, Hundhausen T, Mørkrid L, Andreassen OA. Higher vitamin B12 levels in neurodevelopmental disorders than in healthy controls and schizophrenia: A comparison among participants between 2 and 53 years. FASEB J 2020; 34:8114-8124. [PMID: 32323402 DOI: 10.1096/fj.201900855rrr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Recent studies suggest that both high and low levels of vitamin B12 (vitB12) may have negative health impacts. We measured VitB12 in patients with the Neurodevelopmental disorders (ND) (n = 222), comprised of Autism Spectrum Disorders, specific Developmental disorders, and Intellectual Disability (aged 2-53 years), schizophrenia (n = 401), and healthy controls (HC) (n = 483). Age-and gender-adjusted vitB12 z-scores were calculated by comparisons with a reference population (n = 76 148). We found higher vitB12 in ND (median 420 pmol/L, mean z-score: 0.30) than in HC (316 pmol/L, z-score: 0.06, P < .01) and schizophrenia (306 pmol/L, z-score: -0.02, P < .001), which was significant after adjusting for age, gender, vitB12 supplement, folate, hemoglobin, leukocytes, liver, and kidney function (P < .02). In ND, 20% (n = 44) had vitB12 above 650 pmol/L, and 1% (n = 3) had below 150 pmol/L (common reference limits). In 6.3% (n = 14) of ND, vitB12 was above 2SD of mean in the age-and gender-adjusted reference population, which was more frequent than in HC (n = 8, 1.6%), OR: 4.0, P = .001. Low vitB12 was equally frequent as in HC, and vitB12 z-scores were equal across the age groups. To conclude, vitB12 was higher in ND than in HC and schizophrenia, suggesting a specific feature of ND, which warrants further studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Sigrun Hope
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,NORMENT, Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terje Naerland
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,National Competence Center for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Anne Lise Høiland
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Mental Health, Faculty of Medicine and Health Sciences, Regional Center for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Torske
- Division of Mental Health and Addiction, Vestre Viken Hospital Trust, Drammen, Norway
| | - Eva Malt
- Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tore Abrahamsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Mari Nerhus
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway
| | - Kirsten Wedervang-Resell
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Vera Lonning
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health, Akerhus University Hospital, Lørenskog, Norway
| | | | - Nils Eiel Steen
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingrid Agartz
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nina Stenberg
- Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| | - Thomas Hundhausen
- Department of Natural Sciences, University of Agder, Kristiansand, Norway.,Department of Laboratory Medicine, Sørlandet Hospital Trust, Kristiansand, Norway
| | - Lars Mørkrid
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Department of Neuro Habilitation, Oslo University Hospital Ullevål, Oslo, Norway.,Division of Mental Health and Addiction, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
6
|
Scalais E, Osterheld E, Geron C, Pierron C, Chafai R, Schlesser V, Borde P, Regal L, Laeremans H, van Gassen KLI, van den Heuvel LB, De Meirleir L. Parenteral hydroxocobalamin dose intensification in five patients with different types of early onset intracellular cobalamin defects: Clinical and biochemical responses. JIMD Rep 2019; 49:70-79. [PMID: 31497484 PMCID: PMC6718108 DOI: 10.1002/jmd2.12055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Intracellular cobalamin metabolism (ICM) defects can be present as autosomal recessive or X-linked disorders. Parenteral hydroxocobalamin (P-OHCbl) is the mainstay of therapy, but the optimal dose has not been determined. Despite early treatment, long-term complications may develop. We have analyzed the biochemical and clinical responses in five patients with early onset of different types of ICM defects (cblC: patients 1-3; cblA: patient 4; cblX: patient 5) following daily P-OHCbl dose intensification (DI). In patient 4, P-OHCbl was started at age 10 years and in patient 5 at age 5 years. OHCbl was formulated at either, 5, 25, or 50 mg/mL. P-OHCbl was intravenously or subcutaneously (SQ) delivered, subsequently by placement of a SQ injection port except in patient 4. In all patients, homocysteine and methylmalonic acid levels, demonstrated an excellent response to various P-OHCbl doses. After age 36 months, patients 1-3 had a close to normal neurological examination with lower range developmental quotient. In patient 3, moderate visual impairment was present. Patient 4, at age 10 years, had normal renal, visual and cognitive function. In cblX patient 5, epilepsy was better controlled. In conclusion, P-OHCbl-DI caused an excellent control of metabolites in all patients. In the three cblC patients, comparison with patients, usually harboring identical genotype and similar metabolic profile, was suggestive of a positive effect, in favor of clinical efficacy. With P-OHCbl-DI, CblA patient has been placed into a lower risk to develop renal and optic impairment. In cblX patient, lower P-OHCbl doses were administrated to improve tolerability.
Collapse
Affiliation(s)
| | - Elise Osterheld
- Pediatric NeurologyCentre Hospitalier de LuxembourgLuxembourg
- Department of PediatricsCentre Hospitalier de LuxembourgLuxembourg
| | - Christine Geron
- Department of PediatricsCentre Hospitalier de LuxembourgLuxembourg
| | | | - Ronit Chafai
- Department of PediatricsCentre Hospitalier de LuxembourgLuxembourg
| | - Vincent Schlesser
- Laboratoire de Chimie et HématologieCentre Hospitalier de LuxembourgLuxembourg
| | - Patricia Borde
- Service de Biochimie, Laboratoire National de SantéDudelangeLuxembourg
| | - Luc Regal
- Pediatric Neurology and MetabolismUZ‐VUB, Vrije Universiteit BrusselsBrusselsBelgium
| | | | | | | | - Linda De Meirleir
- Pediatric Neurology and MetabolismUZ‐VUB, Vrije Universiteit BrusselsBrusselsBelgium
| |
Collapse
|
7
|
Huemer M, Diodato D, Martinelli D, Olivieri G, Blom H, Gleich F, Kölker S, Kožich V, Morris AA, Seifert B, Froese DS, Baumgartner MR, Dionisi-Vici C, Martin CA, Baethmann M, Ballhausen D, Blasco-Alonso J, Boy N, Bueno M, Burgos Peláez R, Cerone R, Chabrol B, Chapman KA, Couce ML, Crushell E, Dalmau Serra J, Diogo L, Ficicioglu C, García Jimenez MC, García Silva MT, Gaspar AM, Gautschi M, González-Lamuño D, Gouveia S, Grünewald S, Hendriksz C, Janssen MCH, Jesina P, Koch J, Konstantopoulou V, Lavigne C, Lund AM, Martins EG, Meavilla Olivas S, Mention K, Mochel F, Mundy H, Murphy E, Paquay S, Pedrón-Giner C, Ruiz Gómez MA, Santra S, Schiff M, Schwartz IV, Scholl-Bürgi S, Servais A, Skouma A, Tran C, Vives Piñera I, Walter J, Weisfeld-Adams J. Phenotype, treatment practice and outcome in the cobalamin-dependent remethylation disorders and MTHFR deficiency: Data from the E-HOD registry. J Inherit Metab Dis 2019; 42:333-352. [PMID: 30773687 DOI: 10.1002/jimd.12041] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIM To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Daria Diodato
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Henk Blom
- Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Andrew A Morris
- Willink Metabolic Unit, Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Burkhardt Seifert
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University Zürich, Zürich, Switzerland
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zürich, Switzerland
- radiz-Rare Disease Initiative Zürich, University Zürich, Zürich, Switzerland
| | | | | | - Martina Baethmann
- Department of Pediatrics, Sozialpädiatrisches Zentrum, Klinikum Dritter Orden München-Nymphenburg, Munich, Germany
| | - Diana Ballhausen
- Center for Molecular Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | - Javier Blasco-Alonso
- Sección de Gastroenterología y Nutrición Pediátrica, Hospital Regional de Málaga, Málaga, Spain
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Maria Bueno
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Rosa Burgos Peláez
- Nutritional Support Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Roberto Cerone
- University Department of Pediatrics, Giannina Gaslini Institute, Genoa, Italy
| | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU La Timone Enfants, Marseille, France
| | - Kimberly A Chapman
- Children's National Rare Disease Institute, Genetics and Metabolism, Washington, DC, USA
| | - Maria Luz Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of PediatricsHospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Temple Street Children's University Hospital, Dublin, Ireland
| | - Jaime Dalmau Serra
- Unidad de Nutrición y Metabolopatías, Hospital Universitario La Fe, Valencia, Spain
| | - Luisa Diogo
- Centro de Referência de Doencas Hereditárias do Metabolismo. Centro de Desenvolvimento da Criança - Hospital Pediátrico - Centro Hospitalar e Universitário De Coimbra, Coimbra, Portugal
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Matthias Gautschi
- Interdisciplinary Metabolic Team, Paediatric Endocrinology, Diabetology and Metabolism, University Children's Hospital and University Institute of Clinical Chemistry Inselspital, Berne, Switzerland
| | - Domingo González-Lamuño
- Department of Pediatrics, University Hospital Marqués de Valdecilla, Universidad de Cantabria, Santander, Spain
| | - Sofia Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Service of Neonatology, Department of PediatricsHospital Clínico Universitario de Santiago, CIBERER, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Stephanie Grünewald
- Institute for Child HealthGreat Ormond Street Hospital, University College London, London, UK
| | | | - Mirian C H Janssen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pavel Jesina
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Johannes Koch
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | | | - Christian Lavigne
- Médecine Interne et Maladies Vasculaires, Centre Hospitalier Universitaire Angers, Angers, France
| | - Allan M Lund
- Centre Inherited Metabolic Diseases, Departments of Clinical Genetics and Paediatrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Esmeralda G Martins
- Reference Center for Inherited Metabolic Diseases, Centro Hospitalar do Porto, Porto, Portugal
| | - Silvia Meavilla Olivas
- Division of Gastroenterology, Hepatology and Nutrition, Sant Joan de Déu Hospital, Barcelona, Spain
| | | | - Fanny Mochel
- Reference Center for Adult Neurometabolic Diseases, University Pierre and Marie Curie, La Pitié-Salpêtrière University Hospital, Paris, France
| | - Helen Mundy
- Evelina London Children's Hospital, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephanie Paquay
- Pediatric Neurology and Metabolic diseases department, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Consuelo Pedrón-Giner
- Division of Gastroenterology and Nutrition, University Children's Hospital Niño Jesús, Madrid, Spain
| | | | - Saikat Santra
- Clinical Inherited Metabolic Disorders, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, AP-HP, Robert Debré Hospital, University Paris Diderot-Sorbonne Paris Cité and INSERM U1141, Paris, France
| | - Ida Vanessa Schwartz
- Hospital de Clínicas de Porto Alegre and Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders Medical University of Innsbruck, Innsbruck, Austria
| | - Aude Servais
- Nephrology Department, Reference Center of Inherited Metabolic Diseases, Necker hospital, AP-HP, University Paris Descartes, Paris, France
| | - Anastasia Skouma
- Agia Sofia Children's Hospital 1st Department of Pediatrics, University of Athens Thivon & Levadias, Athens, Greece
| | - Christel Tran
- Center for Molecular Diseases, University Hospital Lausanne, Lausanne, Switzerland
| | | | - John Walter
- Willink Metabolic Unit, Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Department of Paediatrics, Bradford Royal Infirmary, Bradford, UK
| | - James Weisfeld-Adams
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|