1
|
Paget TL, Larcombe AN, Pinniger GJ, Tsioutsias I, Schneider JP, Parkinson-Lawrence EJ, Orgeig S. Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure. Am J Physiol Lung Cell Mol Physiol 2024; 326:L713-L726. [PMID: 38469649 DOI: 10.1152/ajplung.00445.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.NEW & NOTEWORTHY Heparan sulfate storage in the lungs of mucopolysaccharidosis type IIIA (MPS IIIA) mice leads to changes in lung function consistent with those of an obstructive lung disease and includes an increase in lung compliance and airway resistance and a decrease in tissue elastance. In addition, diaphragm muscle contractile strength is reduced, potentially further contributing to lung function impairment. However, no changes in parenchymal lung structure were observed in mice at 20 wk of age.
Collapse
Affiliation(s)
- Tamara L Paget
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alexander N Larcombe
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Irene Tsioutsias
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jan Philipp Schneider
- Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Emma J Parkinson-Lawrence
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Diseases Research Concentration, Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Montanari C, Tagi VM, D’Auria E, Guaia V, Di Gallo A, Ghezzi M, Verduci E, Fiori L, Zuccotti G. Lung Diseases and Rare Disorders: Is It a Lysosomal Storage Disease? Differential Diagnosis, Pathogenetic Mechanisms and Management. CHILDREN (BASEL, SWITZERLAND) 2024; 11:668. [PMID: 38929247 PMCID: PMC11201433 DOI: 10.3390/children11060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Pulmonologists may be involved in managing pulmonary diseases in children with complex clinical pictures without a diagnosis. Moreover, they are routinely involved in the multidisciplinary care of children with rare diseases, at baseline and during follow-up, for lung function monitoring. Lysosomal storage diseases (LSDs) are a group of genetic diseases characterised by a specific lysosomal enzyme deficiency. Despite varying pathogen and organ involvement, they are linked by the pathological accumulation of exceeding substrates, leading to cellular toxicity and subsequent organ damage. Less severe forms of LSDs can manifest during childhood or later in life, sometimes being underdiagnosed. Respiratory impairment may stem from different pathogenetic mechanisms, depending on substrate storage in bones, with skeletal deformity and restrictive pattern, in bronchi, with obstructive pattern, in lung interstitium, with altered alveolar gas exchange, and in muscles, with hypotonia. This narrative review aims to outline different pulmonary clinical findings and a diagnostic approach based on key elements for differential diagnosis in some treatable LSDs like Gaucher disease, Acid Sphingomyelinase deficiency, Pompe disease and Mucopolysaccharidosis. Alongside their respiratory clinical aspects, which might overlap, we will describe radiological findings, lung functional patterns and associated symptoms to guide pediatric pulmonologists in differential diagnosis. The second part of the paper will address follow-up and management specifics. Recent evidence suggests that new therapeutic strategies play a substantial role in preventing lung involvement in early-treated patients and enhancing lung function and radiological signs in others. Timely diagnosis, driven by clinical suspicion and diagnostic workup, can help in treating LSDs effectively.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Vincenzo Guaia
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Anna Di Gallo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| | - Laura Fiori
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (C.M.); (V.M.T.); (E.D.); (V.G.); (A.D.G.); (M.G.); (L.F.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| |
Collapse
|
3
|
Asseri AA, Alzoani A, Almazkary AM, Abdulaziz N, Almazkary MH, Alahmari SA, Duraisamy AJ, Sureshkumar S. Mucopolysaccharidosis Type I Presenting with Persistent Neonatal Respiratory Distress: A Case Report. Diseases 2023; 11:diseases11020067. [PMID: 37218880 DOI: 10.3390/diseases11020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare inherited autosomal recessive lysosomal storage disorder. Despite several reports on MPS I-related neonatal interstitial lung disease, it is still considered to be an under-recognized disease manifestation. Thus, further study of MPS I is required to improve specific therapies and management strategies. The current report describes a late preterm baby (36 weeks gestational age) with neonatal onset of interstitial lung disease eventually diagnosed as MPS I. The neonate required prolonged respiratory support and oxygen supplementation that further escalated the likely diagnosis of inherited disorders of pulmonary surfactant dysfunction. Whole-exome sequencing confirmed the diagnosis of MPS I, following the observation of low levels of the enzyme α-L-iduronidase. The results highlight the necessity of considering MPS I-related pulmonary involvement in newborns with persistent respiratory insufficiency.
Collapse
Affiliation(s)
- Ali Alsuheel Asseri
- Department of Child Health, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmad Alzoani
- Department of Neonatology, Abha Maternity and Children Hospital, Ministry of Health, Abha 62521, Saudi Arabia
| | | | - Nisreen Abdulaziz
- Department of Neonatology, Abha Maternity and Children Hospital, Ministry of Health, Abha 62521, Saudi Arabia
| | - Mufareh H Almazkary
- Department of Neonatology, Abha Maternity and Children Hospital, Ministry of Health, Abha 62521, Saudi Arabia
| | - Samy Ailan Alahmari
- Department of Neonatology, Abha Maternity and Children Hospital, Ministry of Health, Abha 62521, Saudi Arabia
| | | | | |
Collapse
|
4
|
Laenger FP, Schwerk N, Dingemann J, Welte T, Auber B, Verleden S, Ackermann M, Mentzer SJ, Griese M, Jonigk D. Interstitial lung disease in infancy and early childhood: a clinicopathological primer. Eur Respir Rev 2022; 31:31/163/210251. [PMID: 35264412 PMCID: PMC9488843 DOI: 10.1183/16000617.0251-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Children's interstitial lung disease (chILD) encompasses a wide and heterogeneous spectrum of diseases substantially different from that of adults. Established classification systems divide chILD into conditions more prevalent in infancy and other conditions occurring at any age. This categorisation is based on a multidisciplinary approach including clinical, radiological, genetic and histological findings. The diagnostic evaluation may include lung biopsies if other diagnostic approaches failed to identify a precise chILD entity, or if severe or refractory respiratory distress of unknown cause is present. As the majority of children will be evaluated and diagnosed outside of specialist centres, this review summarises relevant clinical, genetic and histological findings of chILD to provide assistance in clinical assessment and rational diagnostics. ILD of childhood is comparable by name only to lung disease in adults. A dedicated interdisciplinary team is required to achieve the best possible outcome. This review summarises the current clinicopathological criteria and associated genetic alterations.https://bit.ly/3mpxI3b
Collapse
Affiliation(s)
- Florian Peter Laenger
- Institute of Pathology, Medical School Hannover, Hannover, Germany .,German Center for Lung Research (DZL), Hannover, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), Hannover, Germany.,Clinic for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Jens Dingemann
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Pediatric Surgery, Medical School Hannover, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Dept of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stijn Verleden
- Antwerp Surgical Training, Anatomy and Research Center, University of Antwerp, Antwerp, Belgium
| | - Maximilian Ackermann
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven J Mentzer
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthias Griese
- German Center for Lung Research (DZL), Hannover, Germany.,Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical School Hannover, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
5
|
Paget TL, Parkinson-Lawrence EJ, Trim PJ, Autilio C, Panchal MH, Koster G, Echaide M, Snel MF, Postle AD, Morrison JL, Pérez-Gil J, Orgeig S. Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells 2021; 10:849. [PMID: 33918094 PMCID: PMC8070179 DOI: 10.3390/cells10040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Collapse
Affiliation(s)
- Tamara L. Paget
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Emma J. Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Paul J. Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Madhuriben H. Panchal
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Grielof Koster
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Marten F. Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Anthony D. Postle
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Janna L. Morrison
- Early Origins Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Jésus Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| |
Collapse
|
6
|
Broomfield AA, Padidela R, Wilkinson S. Pulmonary Manifestations of Endocrine and Metabolic Diseases in Children. Pediatr Clin North Am 2021; 68:81-102. [PMID: 33228944 DOI: 10.1016/j.pcl.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advances in technology, methodology, and deep phenotyping are increasingly driving the understanding of the pathologic basis of disease. Improvements in patient identification and treatment are impacting survival. This is true in endocrinology and inborn errors of metabolism, where disease-modifying therapies are developing. Inherent to this evolution is the increasing awareness of the respiratory manifestations of these rare diseases. This review updates clinicians, stratifying diseases spirometerically; pulmonary hypertension and diseases with a predisposition to recurrent pulmonary infection are discussed. This division is artificial; many diseases have multiple pathologic effects on respiration. This review does not cover the impact of obesity.
Collapse
Affiliation(s)
- Alexander A Broomfield
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Wilkinson
- Respiratory Department Royal Manchester Children's Hospital, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Respiratory complications of metabolic disease in the paediatric population: A review of presentation, diagnosis and therapeutic options. Paediatr Respir Rev 2019; 32:55-65. [PMID: 31101546 DOI: 10.1016/j.prrv.2019.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Inborn errors of metabolism (IEMs) whilst individually rare, as a group constitute a field which is increasingly demands on pulmonologists. With the advent of new therapies such as enzyme replacement and gene therapy, early diagnosis and treatment of these conditions can impact on long term outcome, making their timely recognition and appropriate investigation increasingly important. Conversely, with improved treatment, survival of these patients is increasing, with the emergence of previously unknown respiratory phenotypes. It is thus important that pulmonologists are aware of and appropriately monitor and manage these complications. This review aims to highlight the respiratory manifestations which can occur. It isdivided into conditions resulting primarily in obstructive airway and lung disease, restrictive lung disease such as interstitial lung disease or pulmonary alveolar proteinosis and pulmonary hypertension, whilst acknowledging that some diseases have the potential to cause all three. The review focuses on general phenotypes of IEMs, their known respiratory complications and the basic metabolic investigations which should be performed where an IEM is suspected.
Collapse
|