1
|
García Sánchez N, Ugarte Carro E, Prieto-Santamaría L, Rodríguez-González A. Protein sequence analysis in the context of drug repurposing. BMC Med Inform Decis Mak 2024; 24:122. [PMID: 38741115 DOI: 10.1186/s12911-024-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
MOTIVATION Drug repurposing speeds up the development of new treatments, being less costly, risky, and time consuming than de novo drug discovery. There are numerous biological elements that contribute to the development of diseases and, as a result, to the repurposing of drugs. METHODS In this article, we analysed the potential role of protein sequences in drug repurposing scenarios. For this purpose, we embedded the protein sequences by performing four state of the art methods and validated their capacity to encapsulate essential biological information through visualization. Then, we compared the differences in sequence distance between protein-drug target pairs of drug repurposing and non - drug repurposing data. Thus, we were able to uncover patterns that define protein sequences in repurposing cases. RESULTS We found statistically significant sequence distance differences between protein pairs in the repurposing data and the rest of protein pairs in non-repurposing data. In this manner, we verified the potential of using numerical representations of sequences to generate repurposing hypotheses in the future.
Collapse
Affiliation(s)
- Natalia García Sánchez
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Esther Ugarte Carro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Lucía Prieto-Santamaría
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
- ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, 28660, Spain
| | - Alejandro Rodríguez-González
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain.
- ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, 28660, Spain.
| |
Collapse
|
2
|
Neuronal genetic rescue normalizes brain network dynamics in a lysosomal storage disorder despite persistent storage accumulation. Mol Ther 2022; 30:2464-2473. [PMID: 35395398 PMCID: PMC9263320 DOI: 10.1016/j.ymthe.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
Although neurologic symptoms occur in two-thirds of lysosomal storage disorders (LSDs), for most we do not understand the mechanisms underlying brain dysfunction. A major unanswered question is if the pathogenic hallmark of LSDs, storage accumulation, induces functional defects directly or is a disease bystander. Also, for most LSDs we do not know the impact of loss-of-function in individual cell types. Understanding these critical questions are essential to therapy development. Here, we determined the impact of genetic rescue in distinct cell types on neural circuit dysfunction in CLN3 disease, the most common pediatric dementia and a paradigmatic neurodegenerative LSD. We restored Cln3 expression via AAV-mediated gene delivery and conditional genetic rescue in a CLN3 disease mouse model. Surprisingly, we found that low-level rescue of Cln3 expression in neurons alone normalized clinically-relevant electrophysiologic markers of network dysfunction, despite the presence of substantial residual histopathology, in contrast to restoring expression in astrocytes. Thus, loss of CLN3 function in neurons, not storage accumulation, underlies neurologic dysfunction in CLN3 disease, implying that storage clearance may be an inappropriate target for therapy development and an ineffectual biomarker.
Collapse
|
3
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
4
|
Dang Do AN, Thurm AE, Farmer CA, Soldatos AG, Chlebowski CE, O'Reilly JK, Porter FD. Use of the Vineland-3, a measure of adaptive functioning, in CLN3. Am J Med Genet A 2021; 188:1056-1064. [PMID: 34913584 DOI: 10.1002/ajmg.a.62607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022]
Abstract
Progressive vision loss and neurocognitive impairment are early and frequent presentations in CLN3 disease. This highlights neurodevelopmental functioning as critical to the disease, but limits the neuropsychological test repertoire. We evaluated the convergent validity of the Vineland Adaptive Behavior Scales as a potential outcome measure. In a prospective observational study of 22 individuals (female:male 11:11; 6-20 years-old) with a molecular diagnosis of CLN3, we used generalized linear models and Spearman correlations to quantify the relationship of the adaptive behavior composite (ABC) standard score with established outcomes of verbal IQ (VIQ) and disease severity (Unified Batten Disease Rating Scale, UBDRS) scores. We analyzed ABC changes in 1-year follow-up data in a subset of the same cohort (n = 17). The ABC and VIQ, both standard scores, exhibited a strong positive correlation in cross-sectional data (r = 0.81). ABC and UBDRS scores were strongly and positively correlated in cross-sectional data (rrange = 0.87-0.93). Participants' ABC scores decreased slightly over the 1-year follow-up period (mean change, 95% CI: -5.23, -2.16). The convergent validity of the Vineland-3 for use in CLN3 is supported by its relationships with the established outcomes of VIQ and UBDRS. Future longitudinal research, including replication in other cohorts and evaluation of sensitivity to change, will be important to establish utility of the Vineland-3 for monitoring change in CLN3.
Collapse
Affiliation(s)
- An N Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Audrey E Thurm
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Cristan A Farmer
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Ariane G Soldatos
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | | | - Julie K O'Reilly
- National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Morsy A, Carmona AV, Trippier PC. Patient-Derived Induced Pluripotent Stem Cell Models for Phenotypic Screening in the Neuronal Ceroid Lipofuscinoses. Molecules 2021; 26:molecules26206235. [PMID: 34684815 PMCID: PMC8538546 DOI: 10.3390/molecules26206235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Batten disease or neuronal ceroid lipofuscinosis (NCL) is a group of rare, fatal, inherited neurodegenerative lysosomal storage disorders. Numerous genes (CLN1–CLN8, CLN10–CLN14) were identified in which mutations can lead to NCL; however, the underlying pathophysiology remains elusive. Despite this, the NCLs share some of the same features and symptoms but vary in respect to severity and onset of symptoms by age. Some common symptoms include the progressive loss of vision, mental and motor deterioration, epileptic seizures, premature death, and in the rare adult-onset, dementia. Currently, all forms of NCL are fatal, and no curative treatments are available. Induced pluripotent stem cells (iPSCs) can differentiate into any cell type of the human body. Cells reprogrammed from a patient have the advantage of acquiring disease pathogenesis along with recapitulation of disease-associated phenotypes. They serve as practical model systems to shed new light on disease mechanisms and provide a phenotypic screening platform to enable drug discovery. Herein, we provide an overview of available iPSC models for a number of different NCLs. More specifically, we highlight findings in these models that may spur target identification and drug development.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Angelica V. Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA; (A.M.); (A.V.C.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Correspondence:
| |
Collapse
|
6
|
On the cusp of cures: Breakthroughs in Batten disease research. Curr Opin Neurobiol 2021; 72:48-54. [PMID: 34571324 DOI: 10.1016/j.conb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022]
Abstract
Batten disease is a family of rare, lysosomal disorders caused by mutations in one of at least 13 genes, which encode a diverse set of lysosomal and extralysosomal proteins. Despite decades of research, the development of effective therapies has remained intractable. But now, the field is experiencing rapid, unprecedented progress on multiple fronts. New tools are providing insights into previously unsolvable problems, with molecular functions now known for nine Batten disease proteins. Protein interactome data are uncovering potential functional overlap between several Batten disease proteins, providing long-sought links between seemingly disparate proteins. Understanding of cellular etiology is elucidating contributions from and interactions between various CNS cell types. Collectively, this explosion in insight is hastening an unparalleled period of therapeutic breakthroughs, with multiple therapies showing great promise in preclinical and clinical studies. The coming years will provide a continuation of this rapid progress, with the promise of effective treatments giving patients hope.
Collapse
|
7
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
8
|
Behnke V, Langmann T. [Neuroinflammation in neuronal ceroid lipofuscinosis]. Ophthalmologe 2021; 118:98-105. [PMID: 33411040 DOI: 10.1007/s00347-020-01301-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Retinal degeneration and neuroinflammation are often early hallmarks of different subtypes of neuronal ceroid lipofuscinosis (NCL) in patients and genetic animal models. OBJECTIVE This article gives a summary of recently published research articles and novel concepts in the field of NCL-related neuroinflammation. MATERIAL AND METHODS A search was carried out in PubMed for relevant publications and the results as well as own NCL-related research are discussed. RESULTS Microglia and other glial cells are chronically activated and show various dysfunctions in the central nervous system (CNS) and retina of NCL patients and animal models. This is accompanied by significant changes in the transcriptome and proteome. In NCL there is also involvement of the adaptive immune response, as demonstrated by the influx of autoantibodies and activated T cells. CONCLUSION A deeper understanding of the molecular processes that contribute to neuroinflammation and ultimately lead to neuronal cell death is an important basis for the discovery of possible biomarkers and the development of immunotherapies in NCL.
Collapse
Affiliation(s)
- V Behnke
- Lehrstuhl für Experimentelle Immunologie des Auges, Zentrum für Augenheilkunde, Medizinische Fakultät und Uniklinik Köln, Joseph-Stelzmann-Str. 9, 50931, Köln, Deutschland
| | - T Langmann
- Lehrstuhl für Experimentelle Immunologie des Auges, Zentrum für Augenheilkunde, Medizinische Fakultät und Uniklinik Köln, Joseph-Stelzmann-Str. 9, 50931, Köln, Deutschland. .,Zentrum für Molekulare Medizin, Köln, Deutschland.
| |
Collapse
|
9
|
Dulz S, Atiskova Y, Wibbeler E, Wildner J, Wagenfeld L, Schwering C, Nickel M, Bartsch U, Spitzer MS, Schulz A. An Ophthalmic Rating Scale to Assess Ocular Involvement in Juvenile CLN3 Disease. Am J Ophthalmol 2020; 220:64-71. [PMID: 32707205 DOI: 10.1016/j.ajo.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Juvenile CLN3 disease, the most prevalent form of Batten disease, is a progressive neurodegenerative disorder resulting from mutations in the CLN3 gene. The objective of this study was to design an ophthalmic rating scale for CLN3 disease in order to quantify disease progression. DESIGN Retrospective, cross-sectional study. METHODS Patients underwent ophthalmic evaluations including visual testing, optical coherence tomography and fundus imaging. Patients were also assessed using the Hamburg Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) scoring system. Ophthalmic findings were divided into grades of severity ranging from 0 to 3, and the association between the extent of ocular disease and neurological function and age was assessed. RESULTS Forty-two eyes of 21 patients were included. The mean age at the time of examination was 13.2 years (range, 5.3-21.9 years). The mean ophthalmic severity grade was 2.4 (range, 0-3). The mean neurological severity score was 9.9 (range, 4-14). Ophthalmic manifestations increased in severity with increasing age of the patients (r = -0.84; P < .001), and a strong correlation was found between the CLN3 ophthalmic rating scale score and the Hamburg JNCL score (r = 0.83; P < .001). CONCLUSIONS Ophthalmic manifestations of CLN3 disease correlate closely with the severity of neurological symptoms and age of the patient. The newly established Hamburg CLN3 ophthalmic rating scale may serve as an objective marker of ocular disease severity and progression and may be valuable tool for the evaluation of novel therapeutic strategies for CLN3 disease.
Collapse
Affiliation(s)
- Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Wibbeler
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Wildner
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Wagenfeld
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schwering
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
12
|
Muthaffar OY. Treating epilepsy with options other than antiepileptic medications. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2020; 25:253-261. [PMID: 33130805 PMCID: PMC8015608 DOI: 10.17712/nsj.2020.4.20200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epilepsy is a common health burden worldwide. Epilepsy is linked to variety of factors, including infectious, vascular, immune, structural, genetic, and metabolic etiologies. Despite the existence of multiple antiepileptic drugs (AEDs), many patients are diagnosed with intractable epilepsy. Many nonpharmacological options are available for epilepsy. Some types of epilepsy respond to cofactors. Other patients may be candidates for a ketogenic diet. Inflammatory mediators, such as intravenous immunoglobulins (IVIgs) and steroids, are other options for epilepsy. Recently, cannabinoids have been approved for epilepsy treatment. Refractory epilepsy can be treated with surgical interventions. Focal resections, hemispherectomies, and corpus callosotomies are some common epilepsy surgery approaches. Neuromodulation techniques are another option. Thermal ablation is a minimally invasive approach for epilepsy treatment. Epilepsy outcomes are improving, and treatment modalities are expanding. Trials of nonpharmacological options for epilepsy patients are recommended. This article summarizes available nonpharmacological options other than AEDs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Osama Y Muthaffar
- Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
13
|
Masten MC, Mink JW, Augustine EF. Batten disease: an expert update on agents in preclinical and clinical trials. Expert Opin Investig Drugs 2020; 29:1317-1322. [PMID: 33135495 DOI: 10.1080/13543784.2020.1837110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Margaux C Masten
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| | - Jonathan W Mink
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| | - Erika F Augustine
- University of Rochester Division of Child Neurology, Box 631, University of Rochester Medical Center , Rochester, NY, USA
| |
Collapse
|
14
|
Shematorova EK, Shpakovski GV. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int J Mol Sci 2020; 21:ijms21218055. [PMID: 33137890 PMCID: PMC7663513 DOI: 10.3390/ijms21218055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) collectively constitute one of the most common forms of inherited childhood-onset neurodegenerative disorders. They form a heterogeneous group of incurable lysosomal storage diseases that lead to blindness, motor deterioration, epilepsy, and dementia. Traditionally the NCL diseases were classified according to the age of disease onset (infantile, late-infantile, juvenile, and adult forms), with at least 13 different NCL varieties having been described at present. The current review focuses on classic juvenile NCL (JNCL) or the so-called Batten (Batten-Spielmeyer-Vogt; Spielmeyer-Sjogren) disease, which represents the most common and the most studied form of NCL, and is caused by mutations in the CLN3 gene located on human chromosome 16. Most JNCL patients carry the same 1.02-kb deletion in this gene, encoding an unusual transmembrane protein, CLN3, or battenin. Accordingly, the names CLN3-related neuronal ceroid lipofuscinosis or CLN3-disease sometimes have been used for this malady. Despite excessive in vitro and in vivo studies, the precise functions of the CLN3 protein and the JNCL disease mechanisms remain elusive and are the main subject of this review. Although the CLN3 gene is highly conserved in evolution of all mammalian species, detailed analysis of recent genomic and transcriptomic data indicates the presence of human-specific features of its expression, which are also under discussion. The main recorded to date changes in cell metabolism, to some extent contributing to the emergence and progression of JNCL disease, and human-specific molecular features of CLN3 gene expression are summarized and critically discussed with an emphasis on the possible molecular mechanisms of the malady appearance and progression.
Collapse
Affiliation(s)
- Elena K. Shematorova
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
| | - George V. Shpakovski
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-330-4953; Fax: +7-(495)-335-7103
| |
Collapse
|
15
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
16
|
Masten MC, Williams JD, Vermilion J, Adams HR, Vierhile A, Collins A, Marshall FJ, Augustine EF, Mink JW. The CLN3 Disease Staging System: A new tool for clinical research in Batten disease. Neurology 2020; 94:e2436-e2440. [PMID: 32300063 DOI: 10.1212/wnl.0000000000009454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To develop a disease-specific staging system for CLN3 disease and to test the hypothesis that salient and discrete clinical features of CLN3 disease may be used to define disease stages by analyzed data from an 18-year-long natural history study. METHODS A proposed staging system, the CLN3 Staging System (CLN3SS), was based on salient and clinically meaningful endpoints. The relationships between stage and age, stage and Unified Batten Disease Rating Scale (UBDRS) physical severity score, and stage and UBDRS capability impairment subscale scores were determined. We used t tests to determine whether the stages were significantly different from each other on the basis of age and scores. RESULTS Data were analyzed from 322 evaluations in 108 individuals. There were significant differences among the stages based on age and severity scores. For individuals with longitudinal data, no individual reverted to a less severe stage over time. CONCLUSION The CLN3SS is a disease-specific staging system that can be used to classify individuals into specific strata based on age and disease severity. The CLN3SS has potential applications in clinical trials for cohort stratification.
Collapse
Affiliation(s)
- Margaux C Masten
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY.
| | - Justin D Williams
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Jennifer Vermilion
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Heather R Adams
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Amy Vierhile
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Alyssa Collins
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Frederick J Marshall
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Erika F Augustine
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| | - Jonathan W Mink
- From the Departments of Neurology (M.C.M., J.D.W., J.V., H.R.A., A.V., A.C., F.J.M., E.F.A., J.W.M.), Neuroscience (J.W.M.), and Pediatrics (J.V., H.R.A., E.F.A., J.W.M.) and Center for Health and Technology (E.F.A.), University of Rochester School of Medicine and Dentistry; and University of Rochester School of Nursing (A.V.), NY
| |
Collapse
|
17
|
The current state of drug repurposing and rare diseases: an interview with Paul Trippier. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Paul Tripper is an Associate Professor of Medicinal Chemistry at the University of Nebraska Medical Center (UNMC, NE, USA) and an Editorial Board member of Future Drug Discovery. Here, he speaks to Managing Editor Francesca Lake about drug repurposing, focusing on the key challenges, its application to rare diseases and what we can look forward to in the future.
Collapse
|
18
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
19
|
Kauss V, Dambrova M, Medina DL. Pharmacological approaches to tackle NCLs. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165553. [PMID: 31521819 DOI: 10.1016/j.bbadis.2019.165553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Neuronal ceroid lipofuscinoses, also collectively known as Batten disease, are a group of rare monogenic disorders caused by mutations in at least 13 different genes. They are characterized by the accumulation of lysosomal storage material and progressive neurological deterioration with dementia, epilepsy, retinopathy, motor disturbances, and early death [1]. Although the identification of disease-causing genes provides an important step for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, compared to other diseases, obstacles to the development of therapies for these rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Current therapeutic strategies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. In this review, we will focus in the emerging therapies based in the identification of small-molecules. Recent advances in high- throughput and high-content screening (HTS and HCS) using relevant cell-based assays and applying automation and imaging analysis algorithms, will allow the screening of a large number of compounds in lesser time. These approaches are particularly useful for drug repurposing for Batten disease, that takes the advantage to search for compounds that have already been tested in humans, thereby reducing significantly the resources needed for translation to clinics.
Collapse
Affiliation(s)
- Valerjans Kauss
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
20
|
Tarczyluk-Wells MA, Salzlechner C, Najafi AR, Lim MJ, Smith D, Platt FM, Williams BP, Cooper JD. Combined Anti-inflammatory and Neuroprotective Treatments Have the Potential to Impact Disease Phenotypes in Cln3 -/- Mice. Front Neurol 2019; 10:963. [PMID: 31572287 PMCID: PMC6749847 DOI: 10.3389/fneur.2019.00963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Batten disease, or juvenile NCL, is a fatal neurodegenerative disorder that occurs due to mutations in the CLN3 gene. Because the function of CLN3 remains unclear, experimental therapies for JNCL have largely concentrated upon the targeting of downstream pathomechanisms. Neuron loss is preceded by localized glial activation, and in this proof-of-concept study we have investigated whether targeting this innate immune response with ibuprofen in combination with the neuroprotective agent lamotrigine improves the previously documented beneficial effects of immunosuppressants alone. Drugs were administered daily to symptomatic Cln3 -/- mice over a 3 month period, starting at 6 months of age, and their impact was assessed using both behavioral and neuropathological outcome measures. During the treatment period, the combination of ibuprofen and lamotrigine significantly improved the performance of Cln3 -/- mice on the vertical pole test, slowing the disease-associated decline, but had less of an impact upon their rotarod performance. There were also moderate and regionally dependent effects upon astrocyte activation that were most pronounced for ibuprofen alone, but there was no overt effect upon microglial activation. Administering such treatments for longer periods will enable testing for any impact upon the neuron loss that occurs later in disease progression. Given the partial efficacy of these treatments, it will be important to test further drugs of this type in order to find more effective combinations.
Collapse
Affiliation(s)
- Marta A. Tarczyluk-Wells
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Christoph Salzlechner
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Allison R. Najafi
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Ming J. Lim
- Guy's and St. Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, Evelina London Children's Hospital, London, United Kingdom
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Brenda P. Williams
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Adams HR, Defendorf S, Vierhile A, Mink JW, Marshall FJ, Augustine EF. A novel, hybrid, single- and multi-site clinical trial design for CLN3 disease, an ultra-rare lysosomal storage disorder. Clin Trials 2019; 16:555-560. [PMID: 31184505 DOI: 10.1177/1740774519855715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Travel burden often substantially limits the ability of individuals to participate in clinical trials. Wide geographic dispersion of individuals with rare diseases poses an additional key challenge in the conduct of clinical trials for rare diseases. Novel technologies and methods can improve access to research by connecting participants in their homes and local communities to a distant research site. For clinical trials, however, understanding of factors important for transition from traditional multi-center trial models to local participation models is limited. We sought to test a novel, hybrid, single- and multi-site clinical trial design in the context of a trial for Juvenile Neuronal Ceroid Lipofuscinosis (CLN3 disease), a very rare pediatric neurodegenerative disorder. METHODS We created a "hub and spoke" model for implementing a 22-week crossover clinical trial of mycophenolate compared with placebo, with two 8-week study arms. A single central site, the "hub," conducted screening, consent, drug dispensing, and tolerability and efficacy assessments. Each participant identified a clinician to serve as a collaborating "spoke" site to perform local safety monitoring. Study participants traveled to the hub at the beginning and end of each study arm, and to their individual spoke site in the intervening weeks. RESULTS A total of 18 spoke sites were established for 19 enrolled study participants. One potential participant was unable to identify a collaborating local site and was thus unable to participate. Study start-up required a median 6.7 months (interquartile range = 4.6-9.2 months). Only 33.3% (n = 6 of 18) of spoke site investigators had prior clinical trial experience, thus close collaboration with respect to study startup, training, and oversight was an important requirement. All but one participant completed all study visits; no study visits were missed due to travel requirements. CONCLUSIONS This study represents a step toward local trial participation for patients with rare diseases. Even in the context of close oversight, local participation models may be best suited for studies of compounds with well-understood side-effect profiles, for those with straightforward modes of administration, or for studies requiring extended follow-up periods.
Collapse
Affiliation(s)
- Heather R Adams
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Sara Defendorf
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Amy Vierhile
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan W Mink
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Frederick J Marshall
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erika F Augustine
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA.,Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
23
|
Poppens MJ, Cain JT, Johnson TB, White KA, Davis SS, Laufmann R, Kloth AD, Weimer JM. Tracking sex-dependent differences in a mouse model of CLN6-Batten disease. Orphanet J Rare Dis 2019; 14:19. [PMID: 30665444 PMCID: PMC6341540 DOI: 10.1186/s13023-019-0994-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background CLN6-Batten disease is a rare neurodevelopmental disorder characterized pathologically by the accumulation of lysosomal storage material, glial activation and neurodegeneration, and phenotypically by loss of vision, motor coordination, and cognitive ability, with premature death occurring in the second decade of life. In this study, we investigate whether sex differences in a mouse model of CLN6-Batten disease impact disease onset and progression. Results A number of noteworthy differences were observed including elevated accumulation of mitochondrial ATP synthase subunit C in the thalamus and cortex of female Cln6 mutant mice at 2 months of age. Moreover, female mutant mice showed more severe behavioral deficits. Beginning at 9 months of age, female mice demonstrated learning and memory deficits and suffered a more severe decline in motor coordination. Further, compared to their male counterparts, female animals succumbed to the disease at a slightly younger age, indicating an accelerated disease progression. Conversely, males showed a marked increase in microglial activation at 6 months of age in the cortex relative to females. Conclusions Thus, as female Cln6 mutant mice exhibit cellular and behavioral deficits that precede similar pathologies in male mutant mice, our findings suggest the need for consideration of sex-based differences in CLN6 disease progression during development of preclinical and clinical studies. Electronic supplementary material The online version of this article (10.1186/s13023-019-0994-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- McKayla J Poppens
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Samantha S Davis
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Rachel Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
24
|
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs 2019; 33:315-325. [PMID: 30877620 PMCID: PMC6440934 DOI: 10.1007/s40263-019-00620-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Angela Schulz
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Udo Bartsch
- 0000 0001 2180 3484grid.13648.38Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan Storch
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, Section Biochemistry, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Mole SE, Anderson G, Band HA, Berkovic SF, Cooper JD, Kleine Holthaus SM, McKay TR, Medina DL, Rahim AA, Schulz A, Smith AJ. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol 2019; 18:107-116. [PMID: 30470609 DOI: 10.1016/s1474-4422(18)30368-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/24/2022]
Abstract
Treatment of the neuronal ceroid lipofuscinoses, also known as Batten disease, is at the start of a new era because of diagnostic and therapeutic advances relevant to this group of inherited neurodegenerative and life-limiting disorders that affect children. Diagnosis has improved with the use of comprehensive DNA-based tests that simultaneously screen for many genes. The identification of disease-causing mutations in 13 genes provides a basis for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, and for the development of targeted therapies. These targeted therapies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. Such therapeutic developments have the potential to enable earlier diagnosis and better targeted therapeutic management. The first approved treatment is an intracerebroventricularly administered enzyme for neuronal ceroid lipofuscinosis type 2 disease that delays symptom progression. Efforts are underway to make similar progress for other forms of the disorder.
Collapse
Affiliation(s)
- Sara E Mole
- Medical Research Council Laboratory for Molecular Cell Biology and UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital, London, UK
| | | | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health & Northern Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan D Cooper
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | | | - Tristan R McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander J Smith
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|