1
|
Treindl AD, Stapley J, Croll D, Leuchtmann A. Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations. Mol Ecol 2024; 33:e17242. [PMID: 38084851 DOI: 10.1111/mec.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Heck DW, Hay F, Pethybridge SJ. Enabling Population Biology Studies of Stemphylium vesicarium from Onion with Microsatellites. PLANT DISEASE 2023; 107:3886-3895. [PMID: 37330630 DOI: 10.1094/pdis-04-23-0706-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is dominant within the foliar disease complex affecting onion production in New York (NY). The disease causes premature defoliation and significant reductions in bulb weight and quality. Foliar diseases of onion are usually managed by an intensive fungicide program, but SLB management is complicated by resistance to multiple single-site modes of action. The design of integrated disease management strategies is limited by incomplete knowledge surrounding the dominant sources of S. vesicarium inoculum. To facilitate genomic-based studies of S. vesicarium populations, nine microsatellite markers were developed. The markers were multiplexed into two PCR assays containing four and five fluorescently labeled microsatellite markers. Initial testing of the S. vesicarium isolates found the markers were highly polymorphic and reproducible with an average of 8.2 alleles per locus. The markers were used to characterize 54 S. vesicarium isolates from major NY onion production regions in 2016 (n = 27) and 2018 (n = 27). Fifty-two multilocus genotypes (MLGs) were identified between these populations. Genotypic and allelic diversities were high in both the 2016 and 2018 populations. A greater degree of genetic variation was observed within populations than between years. No distinct pattern of MLGs according to population was identified and some MLGs were closely related between 2016 and 2018. The lack of evidence for linkage among loci also was strongly suggestive of clonal populations with only minor differences between the two populations. These microsatellite markers will be a foundational resource for the testing of hypotheses surrounding the population biology of S. vesicarium and therefore informing disease management.
Collapse
Affiliation(s)
- Daniel W Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Frank Hay
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456
| |
Collapse
|
3
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
4
|
Achilonu CC, Gryzenhout M, Marais GJ, Ghosh S. Differential Detection of Alternaria alternata Haplotypes Isolated from Carya illinoinensis Using PCR-RFLP Analysis of Alt a1 Gene Region. Genes (Basel) 2023; 14:genes14051115. [PMID: 37239475 DOI: 10.3390/genes14051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Alternaria black spot disease on pecan is caused by the opportunistic pathogen Alternaria alternata and poses a serious threat to the local South African and global pecan industry. Several diagnostic molecular marker applications have been established and used in the screening of various fungal diseases worldwide. The present study investigated the potential for polymorphism within samples of A. alternata isolates obtained from eight different geographical locations in South Africa. Pecan (Carya illinoinensis) leaves, shoots, and nuts-in-shuck with Alternaria black spot disease were sampled, and 222 A. alternata isolates were retrieved. For rapid screening to identify Alternaria black spot pathogens, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the Alternaria major allergen (Alt a1) gene region was used, followed by the digestion of the amplicons with HaeIII and HinfI endonucleases. The assay resulted in five (HaeIII) and two (HinfI) band patterns. Unique banding patterns from the two endonucleases showed the best profile and isolates were grouped into six clusters using a UPGMA (unweighted pair group method with arithmetic averages) distance matrix (Euclidean) dendrogram method on R-Studio. The analysis confirmed that the genetic diversity of A. alternata does not depend on host tissues or the pecan cultivation region. The grouping of selected isolates was confirmed by DNA sequence analysis. The Alt a1 phylogeny corroborated no speciation within the dendrogram groups and showed 98-100% bootstrap similarity. This study reports the first documented rapid and reliable technique for routine screening identification of pathogens causing Alternaria black spot in South Africa.
Collapse
Affiliation(s)
- Conrad Chibunna Achilonu
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Gert Johannes Marais
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
5
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Guo Y, Betzen B, Salcedo A, He F, Bowden RL, Fellers JP, Jordan KW, Akhunova A, Rouse MN, Szabo LJ, Akhunov E. Population genomics of Puccinia graminis f.sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat Commun 2022; 13:6287. [PMID: 36271077 PMCID: PMC9587050 DOI: 10.1038/s41467-022-34050-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Puccinia graminis f.sp. tritici (Pgt) causes stem rust disease in wheat that can result in severe yield losses. The factors driving the evolution of its virulence and adaptation remain poorly characterized. We utilize long-read sequencing to develop a haplotype-resolved genome assembly of a U.S. isolate of Pgt. Using Pgt haplotypes as a reference, we characterize the structural variants (SVs) and single nucleotide polymorphisms in a diverse panel of isolates. SVs impact the repertoire of predicted effectors, secreted proteins involved in host-pathogen interaction, and show evidence of purifying selection. By analyzing global and local genomic ancestry we demonstrate that the origin of 8 out of 12 Pgt clades is linked with either somatic hybridization or sexual recombination between the diverged donor populations. Our study shows that SVs and admixture events appear to play an important role in broadening Pgt virulence and the origin of highly virulent races, creating a resource for studying the evolution of Pgt virulence and preventing future epidemic outbreaks.
Collapse
Affiliation(s)
- Yuanwen Guo
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Bliss Betzen
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Present Address: USDA-APHIS-PPQ Field Operations, Kansas State University, Manhattan, KS USA
| | - Andres Salcedo
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.40803.3f0000 0001 2173 6074Present Address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Fei He
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.9227.e0000000119573309Present Address: State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Robert L. Bowden
- grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - John P. Fellers
- grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - Katherine W. Jordan
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.512831.cUSDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS USA
| | - Alina Akhunova
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Integrated Genomics Facility, Kansas State University, Manhattan, KS USA
| | - Mathew N. Rouse
- grid.512864.c0000 0000 8881 3436Department of Plant Pathology, University of Minnesota & USDA-ARS, Cereal Disease Lab, St. Paul, MN USA
| | - Les J. Szabo
- grid.512864.c0000 0000 8881 3436Department of Plant Pathology, University of Minnesota & USDA-ARS, Cereal Disease Lab, St. Paul, MN USA
| | - Eduard Akhunov
- grid.36567.310000 0001 0737 1259Department of Plant Pathology, Kansas State University, Manhattan, KS USA ,grid.36567.310000 0001 0737 1259Wheat Genetics Resource Center, Kansas State University, Manhattan, KS USA
| |
Collapse
|
7
|
Molecular diversity, haplotype distribution and genetic variation flow of Bipolaris sorokiniana fungus causing spot blotch disease in different wheat-growing zones. J Appl Genet 2022; 63:793-803. [PMID: 35931929 DOI: 10.1007/s13353-022-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Bipolaris sorokiniana (BS) is an economically important fungal pathogen causing spot blotch of wheat (Trtiticum aestivum) and found in all wheat-growing zones of India. Very scanty and fragmentary information is available on its genetic diversity. The current research is the first detailed report on the geographic distribution and evolution of BS population in five geographically distinct wheat-growing zones (North Western Plain Zone (NWPZ), North Eastern Plain zone (NEPZ), North Hill Zone (NHZ), Southern Hill Zone (SHZ) and Peninsular Zone (PZ)) of India, studied by performing nucleotide sequence comparison of internal transcribed spacer region of 528 isolates. A moderate to low levels of haplotypic diversity was noticed in different wheat-growing zones. Phylogenetic analysis suggests that B. sorokiniana exist in two distinct lineages as all isolates under study were grouped in two different clades and found analogous to the findings of haplotypic and TCS network analysis. The genetic parameters revealed the existence of 40 haplotypes with three major haplotypes (H-1, H-2 and H-3) which showed star-like structure network surrounded by several single haplotypes, revealing high frequency of the mutations (Eta = 2 - 158) in total analyzed population. H-1 was observed as a predominant haplotype and prevalent in all the five zones. Moderate level of genetic differentiation was found between NHZ and other zones like NWPZ (Fst = 0.332) and SHZ (Fst = 0.382) and PZ (Fst = 0.299), whereas it was low between NEPZ and PZ (Fst = 0.034). Higher transfer rate of genetic variation was noticed between NEPZ and PZ (Nm = 7.06), while it was found minimum between NHZ and SHZ (Nm = 0.40). Moreover, negative score of neutrality statistics (Tajima's D and Fu's FS test) for NWPZ population suggested recent population expansion. However, positive score for both the neutrality tests observed in NEPZ indicated the dominance of balancing selection in structuring their population. Recombination events were observed in the NWPZ and NHZ population, while it was absent in SHZ, NEPZ and PZ population. Thus, the lack of any specific genetic population structure in all the zones indicates for the expansion history only from one common source population, i.e. NWPZ, a mega zone of wheat production in India. Overall, it seems that the predominance of individual haplotypes with a moderate level of genetic variation and human-mediated movement of contaminated seed and dispersal of inoculum, mutations and recombination as prime evolutionary processes play essential role in defining the genetic structure of BS population.
Collapse
|
8
|
Everhart S, Gambhir N, Stam R. Population Genomics of Filamentous Plant Pathogens-A Brief Overview of Research Questions, Approaches, and Pitfalls. PHYTOPATHOLOGY 2021; 111:12-22. [PMID: 33337245 DOI: 10.1094/phyto-11-20-0527-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With ever-decreasing sequencing costs, research on the population biology of plant pathogens is transitioning from population genetics-using dozens of genetic markers or polymorphism data of several genes-to population genomics-using several hundred to tens of thousands of markers or whole-genome sequence data. The field of population genomics is characterized by rapid theoretical and methodological advances and by numerous steps and pitfalls in its technical and analytical workflow. In this article, we aim to provide a brief overview of topics relevant to the study of population genomics of filamentous plant pathogens and direct readers to more extensive reviews for in-depth understanding. We briefly discuss different types of population genomics-inspired research questions and give insights into the sampling strategies that can be used to answer such questions. We then consider different sequencing strategies, the various options available for data processing, and some of the currently available tools for population genomic data analysis. We conclude by highlighting some of the hurdles along the population genomic workflow, providing cautionary warnings relative to assumptions and technical challenges, and presenting our own future perspectives of the field of population genomics for filamentous plant pathogens.
Collapse
Affiliation(s)
- Sydney Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Remco Stam
- Phytopathology, School of Life Sciences Weihenstephan, Technical University Munich, Germany
| |
Collapse
|
9
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
10
|
Ghosh PN, Brookes LM, Edwards HM, Fisher MC, Jervis P, Kappel D, Sewell TR, Shelton JM, Skelly E, Rhodes JL. Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life (Basel) 2020; 10:E315. [PMID: 33260763 PMCID: PMC7761180 DOI: 10.3390/life10120315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Lola M. Brookes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Hannah M. Edwards
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Phillip Jervis
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Dana Kappel
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Jennifer M.G. Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Emily Skelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Johanna L. Rhodes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| |
Collapse
|