1
|
Wimbush R, Addison P, Bekker F, Karsten M, Powell M, Marais G, Moerat A, Bierman A, Terblanche JS. Preliminary Analysis of Quantum Dots as a Marking Technique for Ceratitis capitata. INSECTS 2025; 16:270. [PMID: 40266776 PMCID: PMC11942647 DOI: 10.3390/insects16030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 04/25/2025]
Abstract
This study evaluates the potential of quantum dots (QDs) as a marking method for Mediterranean fruit flies (Ceratitis capitata) (Medfly) in comparison to traditional fluorescent powder. As a highly destructive pest impacting a wide variety of fruit crops, an effective marking technique is essential for improving the biological understanding and management of Medflies, including control strategies like the Sterile Insect Technique (SIT). Through multiple controlled experiments, we examined the effects of QDs and fluorescent powder markers on Medfly flight ability, marker retention rates, and marker durability and stability under diverse storage conditions. Fluorescent powder demonstrated consistently high reliability across all parameters, whereas QDs showed reduced retention, particularly when applied to pupae, and had a more pronounced negative effect on flight ability. This was illustrated by the field trials, which did not recapture any of the QD-marked flies, highlighting the current limitations in QD application methods. Additionally, fluorescent powders outperformed QDs in both long-term storage conditions and short-term stability tests. These findings indicate that while QDs possess potential as marking agents, further refinement of application techniques is required to achieve comparable efficacy to fluorescent powders in pest management contexts.
Collapse
Affiliation(s)
- Richard Wimbush
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Pia Addison
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Francois Bekker
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Melissa Powell
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - George Marais
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Aaisha Moerat
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - Anandie Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch 7600, South Africa; (R.W.); (P.A.); (F.B.); (M.K.); (M.P.); (G.M.); (A.M.); (A.B.)
| | - John S. Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Le N, Kim K. Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges. Int J Mol Sci 2023; 24:12682. [PMID: 37628860 PMCID: PMC10454335 DOI: 10.3390/ijms241612682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Quantum dots (QDs) are a type of nanoparticle with exceptional photobleaching-resistant fluorescence. They are highly sought after for their potential use in various optical-based biomedical applications. However, there are still concerns regarding the use of quantum dots. As such, much effort has been invested into understanding the mechanisms behind the behaviors of QDs, so as to develop safer and more biocompatible quantum dots. In this mini-review, we provide an update on the recent advancements regarding the use of QDs in various biomedical applications. In addition, we also discuss# the current challenges and limitations in the use of QDs and propose a few areas of interest for future research.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
4
|
Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. ADVANCED PHOTONICS RESEARCH 2022; 3:2200098. [PMID: 36686152 PMCID: PMC9858112 DOI: 10.1002/adpr.202200098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioimaging enables the spatiotemporal visualization of biological processes at various scales empowered by a range of different imaging modalities and contrast agents. Upconversion nanoparticles (UCNPs) represent a distinct type of such contrast agents with the potential to transform bioimaging due to their unique optical properties and functional design flexibilities. This review explores and discusses the opportunities, challenges, and limitations that UCNPs exhibit as bioimaging probes and highlights applications with spatial dimensions ranging from the single nanoparticle level to cellular, tissue, and whole animal imaging. We further summarized recent advancements in bioimaging applications enabled by UCNPs, including super-resolution techniques and multimodal imaging methods, and provide a perspective on the future potential of UCNP-based technologies in bioimaging research and clinical translation. This review may provide a valuable resource for researchers interested in exploring and applying UCNP-based bioimaging technologies.
Collapse
Affiliation(s)
- Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
5
|
Le N, Zhang M, Kim K. Quantum Dots and Their Interaction with Biological Systems. Int J Mol Sci 2022; 23:ijms231810763. [PMID: 36142693 PMCID: PMC9501347 DOI: 10.3390/ijms231810763] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs’ toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots’ impacts, as well as QDs’ interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs’ cellular uptake and trafficking, and QDs’ general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Min Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
6
|
Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes. J Am Chem Soc 2022; 144:12229-12246. [PMID: 35772053 DOI: 10.1021/jacs.2c03235] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI2 are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li0 and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.
Collapse
Affiliation(s)
- Jonas K Widness
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | - Daniel G Enny
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| | | | - Mahilet T Miedenbauer
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Daniel J Weix
- Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|