1
|
Jin Y, Connors T, Bouyer J, Fischer I. Regulation of Tau Expression in Superior Cervical Ganglion (SCG) Neurons In Vivo and In Vitro. Cells 2023; 12:cells12020226. [PMID: 36672160 PMCID: PMC9856632 DOI: 10.3390/cells12020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The superior cervical ganglion (SCG) is part of the autonomic nervous system providing sympathetic innervation to the head and neck, and has been regularly used to prepare postnatal neuronal cultures for cell biological studies. We found that during development these neurons change tau expression from the low molecular weight (LMW) isoforms to Big tau, with the potential to affect functions associated with tau such as microtubule dynamic and axonal transport. Big tau contains the large 4a exon that transforms tau from LMW isoforms of 45-60 kDa to 110 kDa. We describe tau expression during postnatal development reporting that the transition from LMW tau to Big tau which started at late embryonic stages is completed by about 4-5 weeks postnatally. We confirmed the presence of Big tau in dissociated postnatal SCG neurons making them an ideal system to study the function of Big tau in neurons. We used SCG explants to examine the response of SCG neurons to lesion and found that Big tau expression returned gradually along the regrowing neurites suggesting that it does not drives regeneration, but facilitates the structure/function of mature SCG neurons. The structural/functional roles of Big tau remain unknown, but it is intriguing that neurons that express Big tau appear less vulnerable to tauopathies.
Collapse
|
2
|
Ademi M, Yang X, Coleman MP, Gilley J. Natural variants of human SARM1 cause both intrinsic and dominant loss-of-function influencing axon survival. Sci Rep 2022; 12:13846. [PMID: 35974060 PMCID: PMC9381744 DOI: 10.1038/s41598-022-18052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
SARM1 is a central executioner of programmed axon death, and this role requires intrinsic NAD(P)ase or related enzyme activity. A complete absence of SARM1 robustly blocks axon degeneration in mice, but even a partial depletion confers meaningful protection. Since axon loss contributes substantially to the onset and progression of multiple neurodegenerative disorders, lower inherent SARM1 activity is expected to reduce disease susceptibility in some situations. We, therefore, investigated whether there are naturally occurring SARM1 alleles within the human population that encode SARM1 variants with loss-of-function. Out of the 18 natural SARM1 coding variants we selected as candidates, we found that 10 display loss-of-function in three complimentary assays: they fail to robustly deplete NAD in transfected HEK 293T cells; they lack constitutive and NMN-induced NADase activity; and they fail to promote axon degeneration in primary neuronal cultures. Two of these variants are also able to block axon degeneration in primary culture neurons in the presence of endogenous, wild-type SARM1, indicative of dominant loss-of-function. These results demonstrate that SARM1 loss-of-function variants occur naturally in the human population, and we propose that carriers of these alleles will have different degrees of reduced susceptibility to various neurological conditions.
Collapse
Affiliation(s)
- Mirlinda Ademi
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Xiuna Yang
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Michael P Coleman
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Jonathan Gilley
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
3
|
Loreto A, Angeletti C, Gu W, Osborne A, Nieuwenhuis B, Gilley J, Merlini E, Arthur-Farraj P, Amici A, Luo Z, Hartley-Tassell L, Ve T, Desrochers LM, Wang Q, Kobe B, Orsomando G, Coleman MP. Neurotoxin-mediated potent activation of the axon degeneration regulator SARM1. eLife 2021; 10:72823. [PMID: 34870595 PMCID: PMC8758145 DOI: 10.7554/elife.72823] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/05/2021] [Indexed: 11/13/2022] Open
Abstract
Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Angeletti
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Andrew Osborne
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Arthur-Farraj
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adolfo Amici
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | | | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Laura M Desrochers
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R and D, AstraZeneca, Waltham, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Giuseppe Orsomando
- Department of Clinical Sciences (DISCO), Section of Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, Queen Square Genomics, Ravits J, Rouleau GA, Schüle R, Xu J, Züchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP. Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders. eLife 2021; 10:e70905. [PMID: 34796871 PMCID: PMC8735862 DOI: 10.7554/elife.70905] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.
Collapse
Affiliation(s)
- Jonathan Gilley
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Oscar Jackson
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Menelaos Pipis
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Neurology, King's College Hospital, King’s College LondonLondonUnited Kingdom
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Kristel R van Eijk
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Stephen A Goutman
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Matthew B Harms
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust and King's College LondonLondonUnited Kingdom
| | - Julia Kaye
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
| | - Leandro Lima
- Center for Systems and Therapeutics, Gladstone InstitutesSan FranciscoUnited States
- Gladstone Institute of Data Science and Biotechnology, Gladstone InstitutesSan FranciscoUnited States
| | - Queen Square Genomics
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - John Ravits
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Guy A Rouleau
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Jishu Xu
- Center for Neurology and Hertie Institute für Clinical Brain Research, University of Tübingen, German Center for Neurodegenerative DiseasesTübingenGermany
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of MedicineMiamiUnited States
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of SheffieldSheffieldUnited Kingdom
| | - Ziv Gan-Or
- Department of Human Genetics, McGill UniversityMontrealCanada
- The Neuro (Montreal Neurological Institute-Hospital), McGill UniversityMontrealCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for NeurologyLondonUnited Kingdom
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|