1
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Ali MF, Styler B, Almasaud RA, Harkey AF, Reid RW, Loraine AE, Smith SE, Muday GK, Pease JB, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit production in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606234. [PMID: 39149357 PMCID: PMC11326152 DOI: 10.1101/2024.08.01.606234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on development of sufficient numbers of pollen grains and on their ability to generate a cellular extension, the pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. These critical phases of the life cycle are sensitive to temperature and limit productivity under high temperature (HT). Previous studies have investigated the effects of HT on pollen development, but little is known about how HT applied during the pollen tube growth phase affects fertility. Here, we used tomato as a model fruit crop to determine how HT affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to HT solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under HT. Analysis of the pollen tube transcriptome's response to HT allowed us to develop hypotheses for the molecular basis of cellular thermotolerance in the pollen tube and we define two response modes (enhanced induction of stress responses, and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response identifying enhanced ROS homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under HT conditions.
Collapse
Affiliation(s)
| | | | | | - Emma Jong
- School of Plant Sciences; University of Arizona
| | | | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| | | | | | - Robert W Reid
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Ann E Loraine
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Steven E Smith
- School of Natural Resources and the Environment; University of Arizona
| | | | - James B Pease
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University
| | | | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| |
Collapse
|
2
|
Noble JA, Bielski NV, Liu MCJ, DeFalco TA, Stegmann M, Nelson ADL, McNamara K, Sullivan B, Dinh KK, Khuu N, Hancock S, Shiu SH, Zipfel C, Cheung AY, Beilstein MA, Palanivelu R. Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. PLANT PHYSIOLOGY 2022; 190:2539-2556. [PMID: 36156105 PMCID: PMC9706458 DOI: 10.1093/plphys/kiac444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.
Collapse
Affiliation(s)
- Jennifer A Noble
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Nicholas V Bielski
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Stegmann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Kara McNamara
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Brooke Sullivan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Khanhlinh K Dinh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Nicholas Khuu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Sarah Hancock
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cell Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
3
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|