1
|
Liang F, Sun M, Xie L, Zhao X, Liu D, Zhao K, Zhang G. Recent advances and challenges in protein complex model accuracy estimation. Comput Struct Biotechnol J 2024; 23:1824-1832. [PMID: 38707538 PMCID: PMC11066466 DOI: 10.1016/j.csbj.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Estimation of model accuracy plays a crucial role in protein structure prediction, aiming to evaluate the quality of predicted protein structure models accurately and objectively. This process is not only key to screening candidate models that are close to the real structure, but also provides guidance for further optimization of protein structures. With the significant advancements made by AlphaFold2 in monomer structure, the problem of single-domain protein structure prediction has been widely solved. Correspondingly, the importance of assessing the quality of single-domain protein models decreased, and the research focus has shifted to estimation of model accuracy of protein complexes. In this review, our goal is to provide a comprehensive overview of the reference and statistical metrics, as well as representative methods, and the current challenges within four distinct facets (Topology Global Score, Interface Total Score, Interface Residue-Wise Score, and Tertiary Residue-Wise Score) in the field of complex EMA.
Collapse
Affiliation(s)
| | | | - Lei Xie
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xuanfeng Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Morehead A, Liu J, Cheng J. Protein structure accuracy estimation using geometry-complete perceptron networks. Protein Sci 2024; 33:e4932. [PMID: 38380738 PMCID: PMC10880424 DOI: 10.1002/pro.4932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Estimating the accuracy of protein structural models is a critical task in protein bioinformatics. The need for robust methods in the estimation of protein model accuracy (EMA) is prevalent in the field of protein structure prediction, where computationally-predicted structures need to be screened rapidly for the reliability of the positions predicted for each of their amino acid residues and their overall quality. Current methods proposed for EMA are either coupled tightly to existing protein structure prediction methods or evaluate protein structures without sufficiently leveraging the rich, geometric information available in such structures to guide accuracy estimation. In this work, we propose a geometric message passing neural network referred to as the geometry-complete perceptron network for protein structure EMA (GCPNet-EMA), where we demonstrate through rigorous computational benchmarks that GCPNet-EMA's accuracy estimations are 47% faster and more than 10% (6%) more correlated with ground-truth measures of per-residue (per-target) structural accuracy compared to baseline state-of-the-art methods for tertiary (multimer) structure EMA including AlphaFold 2. The source code and data for GCPNet-EMA are available on GitHub, and a public web server implementation is freely available.
Collapse
Affiliation(s)
- Alex Morehead
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Jian Liu
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
3
|
Roy S, Ben-Hur A. Protein quality assessment with a loss function designed for high-quality decoys. FRONTIERS IN BIOINFORMATICS 2023; 3:1198218. [PMID: 37915563 PMCID: PMC10616882 DOI: 10.3389/fbinf.2023.1198218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Motivation: The prediction of a protein 3D structure is essential for understanding protein function, drug discovery, and disease mechanisms; with the advent of methods like AlphaFold that are capable of producing very high-quality decoys, ensuring the quality of those decoys can provide further confidence in the accuracy of their predictions. Results: In this work, we describe Qϵ, a graph convolutional network (GCN) that utilizes a minimal set of atom and residue features as inputs to predict the global distance test total score (GDTTS) and local distance difference test (lDDT) score of a decoy. To improve the model's performance, we introduce a novel loss function based on the ϵ-insensitive loss function used for SVM regression. This loss function is specifically designed for evaluating the characteristics of the quality assessment problem and provides predictions with improved accuracy over standard loss functions used for this task. Despite using only a minimal set of features, it matches the performance of recent state-of-the-art methods like DeepUMQA. Availability: The code for Qϵ is available at https://github.com/soumyadip1997/qepsilon.
Collapse
Affiliation(s)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
4
|
He G, Liu J, Liu D, Zhang G. GraphGPSM: a global scoring model for protein structure using graph neural networks. Brief Bioinform 2023:bbad219. [PMID: 37317619 DOI: 10.1093/bib/bbad219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023] Open
Abstract
The scoring models used for protein structure modeling and ranking are mainly divided into unified field and protein-specific scoring functions. Although protein structure prediction has made tremendous progress since CASP14, the modeling accuracy still cannot meet the requirements to a certain extent. Especially, accurate modeling of multi-domain and orphan proteins remains a challenge. Therefore, an accurate and efficient protein scoring model should be developed urgently to guide the protein structure folding or ranking through deep learning. In this work, we propose a protein structure global scoring model based on equivariant graph neural network (EGNN), named GraphGPSM, to guide protein structure modeling and ranking. We construct an EGNN architecture, and a message passing mechanism is designed to update and transmit information between nodes and edges of the graph. Finally, the global score of the protein model is output through a multilayer perceptron. Residue-level ultrafast shape recognition is used to describe the relationship between residues and the overall structure topology, and distance and direction encoded by Gaussian radial basis functions are designed to represent the overall topology of the protein backbone. These two features are combined with Rosetta energy terms, backbone dihedral angles and inter-residue distance and orientations to represent the protein model and embedded into the nodes and edges of the graph neural network. The experimental results on the CASP13, CASP14 and CAMEO test sets show that the scores of our developed GraphGPSM have a strong correlation with the TM-score of the models, which are significantly better than those of the unified field score function REF2015 and the state-of-the-art local lDDT-based scoring models ModFOLD8, ProQ3D and DeepAccNet, etc. The modeling experimental results on 484 test proteins demonstrate that GraphGPSM can greatly improve the modeling accuracy. GraphGPSM is further used to model 35 orphan proteins and 57 multi-domain proteins. The results show that the average TM-score of the models predicted by GraphGPSM is 13.2 and 7.1% higher than that of the models predicted by AlphaFold2. GraphGPSM also participates in CASP15 and achieves competitive performance in global accuracy estimation.
Collapse
Affiliation(s)
- Guangxing He
- College of Information Engineering, Zhejiang University of Technology
| | - Jun Liu
- College of Information Engineering, Zhejiang University of Technology
| | - Dong Liu
- College of Information Engineering, Zhejiang University of Technology
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology
| |
Collapse
|
5
|
Zhang P, Xia C, Shen HB. High-accuracy protein model quality assessment using attention graph neural networks. Brief Bioinform 2023; 24:7025462. [PMID: 36736352 DOI: 10.1093/bib/bbac614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
Great improvement has been brought to protein tertiary structure prediction through deep learning. It is important but very challenging to accurately rank and score decoy structures predicted by different models. CASP14 results show that existing quality assessment (QA) approaches lag behind the development of protein structure prediction methods, where almost all existing QA models degrade in accuracy when the target is a decoy of high quality. How to give an accurate assessment to high-accuracy decoys is particularly useful with the available of accurate structure prediction methods. Here we propose a fast and effective single-model QA method, QATEN, which can evaluate decoys only by their topological characteristics and atomic types. Our model uses graph neural networks and attention mechanisms to evaluate global and amino acid level scores, and uses specific loss functions to constrain the network to focus more on high-precision decoys and protein domains. On the CASP14 evaluation decoys, QATEN performs better than other QA models under all correlation coefficients when targeting average LDDT. QATEN shows promising performance when considering only high-accuracy decoys. Compared to the embedded evaluation modules of predicted ${C}_{\alpha^{-}} RMSD$ (pRMSD) in RosettaFold and predicted LDDT (pLDDT) in AlphaFold2, QATEN is complementary and capable of achieving better evaluation on some decoy structures generated by AlphaFold2 and RosettaFold. These results suggest that the new QATEN approach can be used as a reliable independent assessment algorithm for high-accuracy protein structure decoys.
Collapse
Affiliation(s)
- Peidong Zhang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Chunqiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| |
Collapse
|
6
|
Abstract
Protein structure modeling is one of the most advanced and complex processes in computational biology. One of the major problems for the protein structure prediction field has been how to estimate the accuracy of the predicted 3D models, on both a local and global level, in the absence of known structures. We must be able to accurately measure the confidence that we have in the quality predicted 3D models of proteins for them to become widely adopted by the general bioscience community. To address this major issue, it was necessary to develop new model quality assessment (MQA) methods and integrate them into our pipelines for building 3D protein models. Our MQA method, called ModFOLD, has been ranked as one of the most accurate MQA tools in independent blind evaluations. This chapter discusses model quality assessment in the protein modeling field, demonstrating both its strengths and limitations. We also present some of the best methods according to independent benchmarking data, which has been gathered in recent years.
Collapse
Affiliation(s)
- Ali H A Maghrabi
- College of Applied Sciences, Umm Al Qura University, Mecca, Saudi Arabia
| | | | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
7
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
8
|
Guo SS, Liu J, Zhou XG, Zhang GJ. DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning. Bioinformatics 2022; 38:1895-1903. [PMID: 35134108 DOI: 10.1093/bioinformatics/btac056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/26/2021] [Accepted: 01/27/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Protein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information. Design features that can further reflect residue-level topology when combined with deep learning methods are therefore crucial to improve the performance of model quality assessment. RESULTS We developed a deep-learning method, DeepUMQA, based on Ultrafast Shape Recognition (USR) for the residue-level single-model quality assessment. In the framework of the deep residual neural network, the residue-level USR feature was introduced to describe the topological relationship between the residue and overall structure by calculating the first moment of a set of residue distance sets and then combined with 1D, 2D and voxelization features to assess the quality of the model. Experimental results on the CASP13, CASP14 test datasets and CAMEO blind test show that USR could supplement the voxelization features to comprehensively characterize residue structure information and significantly improve model assessment accuracy. The performance of DeepUMQA ranks among the top during the state-of-the-art single-model quality assessment methods, including ProQ2, ProQ3, ProQ3D, Ornate, VoroMQA, ProteinGCN, ResNetQA, QDeep, GraphQA, ModFOLD6, ModFOLD7, ModFOLD8, QMEAN3, QMEANDisCo3 and DeepAccNet. AVAILABILITY AND IMPLEMENTATION The DeepUMQA server is freely available at http://zhanglab-bioinf.com/DeepUMQA/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sai-Sai Guo
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Liu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao-Gen Zhou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
9
|
Adiyaman R, McGuffin LJ. ReFOLD3: refinement of 3D protein models with gradual restraints based on predicted local quality and residue contacts. Nucleic Acids Res 2021; 49:W589-W596. [PMID: 34009387 PMCID: PMC8218204 DOI: 10.1093/nar/gkab300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
ReFOLD3 is unique in its application of gradual restraints, calculated from local model quality estimates and contact predictions, which are used to guide the refinement of theoretical 3D protein models towards the native structures. ReFOLD3 achieves improved performance by using an iterative refinement protocol to fix incorrect residue contacts and local errors, including unusual bonds and angles, which are identified in the submitted models by our leading ModFOLD8 model quality assessment method. Following refinement, the likely resulting improvements to the submitted models are recognized by ModFOLD8, which produces both global and local quality estimates. During the CASP14 prediction season (May-Aug 2020), we used the ReFOLD3 protocol to refine hundreds of 3D models, for both the refinement and the main tertiary structure prediction categories. Our group improved the global and local quality scores for numerous starting models in the refinement category, where we ranked in the top 10 according to the official assessment. The ReFOLD3 protocol was also used for the refinement of the SARS-CoV-2 targets as a part of the CASP Commons COVID-19 initiative, and we provided a significant number of the top 10 models. The ReFOLD3 web server is freely available at https://www.reading.ac.uk/bioinf/ReFOLD/.
Collapse
Affiliation(s)
- Recep Adiyaman
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Liam J McGuffin
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| |
Collapse
|
10
|
McGuffin LJ, Aldowsari FMF, Alharbi SMA, Adiyaman R. ModFOLD8: accurate global and local quality estimates for 3D protein models. Nucleic Acids Res 2021; 49:W425-W430. [PMID: 33963867 PMCID: PMC8218196 DOI: 10.1093/nar/gkab321] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022] Open
Abstract
Methods for estimating the quality of 3D models of proteins are vital tools for driving the acceptance and utility of predicted tertiary structures by the wider bioscience community. Here we describe the significant major updates to ModFOLD, which has maintained its position as a leading server for the prediction of global and local quality of 3D protein models, over the past decade (>20 000 unique external users). ModFOLD8 is the latest version of the server, which combines the strengths of multiple pure-single and quasi-single model methods. Improvements have been made to the web server interface and there has been successive increases in prediction accuracy, which were achieved through integration of newly developed scoring methods and advanced deep learning-based residue contact predictions. Each version of the ModFOLD server has been independently blind tested in the biennial CASP experiments, as well as being continuously evaluated via the CAMEO project. In CASP13 and CASP14, the ModFOLD7 and ModFOLD8 variants ranked among the top 10 quality estimation methods according to almost every official analysis. Prior to CASP14, ModFOLD8 was also applied for the evaluation of SARS-CoV-2 protein models as part of CASP Commons 2020 initiative. The ModFOLD8 server is freely available at: https://www.reading.ac.uk/bioinf/ModFOLD/.
Collapse
Affiliation(s)
- Liam J McGuffin
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Fahd M F Aldowsari
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Shuaa M A Alharbi
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Recep Adiyaman
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| |
Collapse
|
11
|
Hiranuma N, Park H, Baek M, Anishchenko I, Dauparas J, Baker D. Improved protein structure refinement guided by deep learning based accuracy estimation. Nat Commun 2021; 12:1340. [PMID: 33637700 PMCID: PMC7910447 DOI: 10.1038/s41467-021-21511-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/18/2021] [Indexed: 11/22/2022] Open
Abstract
We develop a deep learning framework (DeepAccNet) that estimates per-residue accuracy and residue-residue distance signed error in protein models and uses these predictions to guide Rosetta protein structure refinement. The network uses 3D convolutions to evaluate local atomic environments followed by 2D convolutions to provide their global contexts and outperforms other methods that similarly predict the accuracy of protein structure models. Overall accuracy predictions for X-ray and cryoEM structures in the PDB correlate with their resolution, and the network should be broadly useful for assessing the accuracy of both predicted structure models and experimentally determined structures and identifying specific regions likely to be in error. Incorporation of the accuracy predictions at multiple stages in the Rosetta refinement protocol considerably increased the accuracy of the resulting protein structure models, illustrating how deep learning can improve search for global energy minima of biomolecules.
Collapse
Affiliation(s)
- Naozumi Hiranuma
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Washington, WA, USA
| | - Hahnbeom Park
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA
| | - Minkyung Baek
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA
| | - Ivan Anishchenko
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA
| | - Justas Dauparas
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Washington, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Washington, WA, USA.
| |
Collapse
|
12
|
Sedova M, Jaroszewski L, Iyer M, Li Z, Godzik A. ModFlex: Towards Function Focused Protein Modeling. J Mol Biol 2021; 433:166828. [PMID: 33972023 DOI: 10.1016/j.jmb.2021.166828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/19/2022]
Abstract
There is a wide, and continuously widening, gap between the number of proteins known only by their amino acid sequence versus those structurally characterized by direct experiment. To close this gap, we mostly rely on homology-based inference and modeling to reason about the structures of the uncharacterized proteins by using structures of homologous proteins as templates. With the rapidly growing size of the Protein Data Bank, there are often multiple choices of templates, including multiple sets of coordinates from the same protein. The substantial conformational differences observed between different experimental structures of the same protein often reflect function related structural flexibility. Thus, depending on the questions being asked, using distant homologs, or coordinate sets with lower resolution but solved in the appropriate functional form, as templates may be more informative. The ModFlex server (https://modflex.org/) addresses this seldom mentioned gap in the standard homology modeling approach by providing the user with an interface with multiple options and tools to select the most relevant template and explore the range of structural diversity in the available templates. ModFlex is closely integrated with a range of other programs and servers developed in our group for the analysis and visualization of protein structural flexibility and divergence.
Collapse
Affiliation(s)
- Mayya Sedova
- University of California Riverside School of Medicine, Biosciences Division, Riverside, CA, United States
| | - Lukasz Jaroszewski
- University of California Riverside School of Medicine, Biosciences Division, Riverside, CA, United States
| | - Mallika Iyer
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Zhanwen Li
- University of California Riverside School of Medicine, Biosciences Division, Riverside, CA, United States
| | - Adam Godzik
- University of California Riverside School of Medicine, Biosciences Division, Riverside, CA, United States.
| |
Collapse
|