1
|
Li Z, Luo J, Zhao K, Xu J, Xia L. M2 tumor-associated macrophage promoted DNA methylation in lung cancer metastasis via intensifying EZH2. Anticancer Drugs 2024; 35:22-35. [PMID: 37615534 DOI: 10.1097/cad.0000000000001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
This study aimed to explore the interaction between the tumor-associated macrophage (TAM) and enhancer of zeste homolog 2 (EZH2) in tumor microenvironment of lung cancer are obscure. M2 type of TAM was induced by interleukin-4 (IL-4) and interleukin-13 (IL-13) in RAW264.7 cells. Subsequently, the co-culture system of the M2 RAW264.7 treating LLC-1 cells were constructed to evaluate the cell proliferation, migration and invasion abilities. On top of that, the M2 RAW264.7 was injected into the LLC-1 cells-bearing mice. Tumor growth and the number of metastatic nodes were observed. Moreover, DNA methylation, EZH2 expression, target genes of EZH2 and the M2 type TAM-related markers were detected in vivo and in vitro . Further experiments of EZH2 function in lung cancer were carried out by the addition of EZH2 inhibitor (GSK126) and si-EZH2. M2 type of TAM was induced with IL-4 and IL-13 with increased expression of CD206, CD68, CD163 and Arg1. Following co-culture with M2 type TAM, the proliferative, invasive, migrative abilities, tumor growth and metastasis, and the DNA methylation, EZH2 level were strengthened whereas the target genes of EZH2, including p21, CDKN2A, CDKN2B were reduced in LLC-1 cells and LLC-1 cell-bearing mice. Of note, GSK126 and si-EZH2 offset the M2 type TAM's effects, and inhibited the LLC-1 cell metastasis, DNA methylation and tumor growth. M2 type TAM promoted DNA methylation in LLC-1 cells and LLC-1 cell-bearing mice, which is related to the intensified EZH2.
Collapse
Affiliation(s)
- Zheming Li
- College of Pharmacy, Zhejiang Chinese Medical University
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Kaixiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Jingjing Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
2
|
Li H, Lu S, Zhou Z, Zhu X, Shao Y. Role of Circulating Tumor DNA in Colorectal Cancer. Methods Mol Biol 2023; 2695:227-236. [PMID: 37450122 DOI: 10.1007/978-1-0716-3346-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is a very common gastrointestinal tumor, ranking second in the global cause of cancer death. Because of the invasive nature of biopsy and cannot reflect the heterogeneity of tumor or monitor the dynamic progress of tumor, it is necessary to induce a novel noninvasive method to improve the current treatment strategies of colorectal cancer. Among all the components of liquid biopsy, circulating tumor DNA (ctDNA) may have the best future. CtDNA maintains the same genomic characteristics as those in matched tumor tissues, so it allows quantitative evaluation and analysis of mutation load in body fluid. Furthermore, because the half-life of ctDNA is from 16 min to several hours in circulation, the circulating ctDNA can be measured repeatedly within a certain period to monitor the response of CRC to treatment, the occurrence of drug resistance, and the diagnosis of recurrence.
Collapse
Affiliation(s)
- Haotian Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sheng Lu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zidong Zhou
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaocheng Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong Shao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
4
|
Xue F, Niu X, Hu C, He X. Second Primary Lung Adenocarcinoma After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma. Front Oncol 2022; 12:801090. [PMID: 35280823 PMCID: PMC8907561 DOI: 10.3389/fonc.2022.801090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The improvement of the efficacy of intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer (NPC) has prolonged the survival of patients, and the incidence of the second tumor has gradually increased. Among them, second primary lung adenocarcinoma (SPLAC) attributes the highest incidence. This study aimed to determine the long-term risk of SPLAC in NPC patients after IMRT. Methods From May 2005 to May 2018, a total of 1,102 non-metastatic NPC patients who received IMRT in our hospital were enrolled, and the incidence and efficacy of SPLAC were followed up in the long term. Results Over a median follow-up period of 66 months, a total of 22 cases of SPLAC were observed, with an incidence of 2.0%. The 1-, 2-, 3-, 4-, and 5-year cumulative risks of SPLAC were 0.4%, 0.7%, 0.8%, 1.1%, and 1.7%, respectively. During follow-up, 90.9% (20/22) of the SPLAC detected was in early stage, and the recurrence rate of surgery alone was 5.3% (1/19). Conclusion In NPC patients, the proportion of SPLAC after IMRT was similar to that of the normal population, and most of them were found in early stage during follow-up, with good surgical efficacy.
Collapse
Affiliation(s)
- Fen Xue
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoshuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiayun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
5
|
Yang P, Cao Y, Jian H, Chen H. Identification of Hub mRNAs and lncRNAs in Atrial Fibrillation Using Weighted Co-expression Network Analysis With RNA-Seq Data. Front Cell Dev Biol 2021; 9:722671. [PMID: 34671599 PMCID: PMC8520999 DOI: 10.3389/fcell.2021.722671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023] Open
Abstract
Atrial fibrillation (AF)/paroxysmal AF (PAF) is the main cause of cardiogenic embolism. In recent years, the progression from paroxysmal AF to persistent AF has attracted more and more attention. However, the molecular mechanism of the progression of AF is unclear. In this study, we performed RNA sequencing for normal samples, paroxysmal AF and persistent AF samples to identify differentially expressed gene (DEG) and explore the roles of these DEGs in AF. Totally, 272 differently expressed mRNAs (DEmRNAs) and 286 differentially expressed lncRNAs (DElncRNAs) were identified in paroxysmal AF compared to normal samples; 324 DEmRNAs and 258 DElncRNAs were found in persistent atrial fibrillation compared with normal samples; and 520 DEmRNAs and 414 DElncRNAs were identified in persistent AF compared to paroxysmal AF samples. Interestingly, among the DEGs, approximately 50% were coding genes and around 50% were non-coding RNAs, suggesting that lncRNAs may also have a crucial role in the progression of AF. Bioinformatics analysis demonstrated that these DEGs were significantly related to regulating multiple AF associated pathways, such as the regulation of vascular endothelial growth factor production and binding to the CXCR chemokine receptor. Furthermore, weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub RNAs and lncRNAs to determine their potential associations with AF. Five hub modules were identified in the progression of AF, including blue, brown, gray, turquoise and yellow modules. Interestingly, blue module and turquoise module were significantly negatively and positively correlated to the progression of AF respectively, indicating that they may have a more important role in the AF. Moreover, the hub protein-protein interaction (PPI) networks and lncRNA-mRNA regulatory network were constructed. Bioinformatics analysis on the hub PPI network in turquoise was involved in regulating immune response related signaling, such as leukocyte chemotaxis, macrophage activation, and positive regulation of α-β T cell activation. Our findings could clarify the underlying molecular changes associated fibrillation, and provide a useful resource for identifying AF marker.
Collapse
Affiliation(s)
- Pan Yang
- Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujing Cao
- Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Huagang Jian
- Emergency Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Chen
- Department of Cardiovascular Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
6
|
Jin H, Wu Z, Tan B, Liu Z, Zhang B. CircITGA7 Suppresses Gastric Cancer Progression Through miR-1471/MTDH Axis. Front Cell Dev Biol 2021; 9:688970. [PMID: 34504842 PMCID: PMC8423148 DOI: 10.3389/fcell.2021.688970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, there have been reports about the involvement of circular RNAs (circRNAs) in the pathogenesis of gastric cancer (GC), but the molecular mechanism in cell proliferation, invasion, and migration is still unclear. Based on The Cancer Genome Atlas (TCGA) database, we analyzed differentially expressed circRNAs between GC and non-tumor tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to clarify the functional role in GC. Here, we showed that circITGA7 was lowly expressed in GC tissues based on the TCGA database. In vitro, silencing the expression of circITGA7 increased cell proliferation and metastasis, whereas overexpression did the opposite. Mechanistically, miR-1471 has circITGA7 as a sponge, and miR-1471 has metadherin (MTDH) as a target gene. Consequently, functional analysis showed that the tumor suppressor effect of circITGA7 was the result of regulating the miR-1471/MTDH axis. Overall, the circITGA7/miR-1471/MTDH signaling pathway may play a crucial role in GC, providing a new potential mechanism involved in GC progression.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, China
| | - Zheng Wu
- Department of Immuno-Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhen Liu
- Department of Gastroenterology, The 980th Hospital of the PLA Joint Logistics Support Force (Primary Bethune International Peace Hospital of PLA), Shijiazhuang, China
| | - Binqian Zhang
- Department of Clinical Medicine, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
7
|
Wang A, Guo H, Long Z. Integrative Analysis of Differently Expressed Genes Reveals a 17-Gene Prognosis Signature for Endometrial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4804694. [PMID: 34337010 PMCID: PMC8298166 DOI: 10.1155/2021/4804694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022]
Abstract
Endometrial carcinoma (EC) is the fifth widely occurring malignant neoplasm among women all over the world. However, there is still lacking efficacy indicators for EC's prognosis. Here, we analyzed two databases including an RNA-sequencing-based TCGA dataset and a microarray-based GSE106191. After normalizing the raw data, we identified 114 common genes with upregulation and 308 common genes with downregulation in both the TCGA and GSE106191 databases. Bioinformatics analysis showed that the differently expressed genes in EC were related to the IL17 signaling pathway, PI3K-Akt signaling pathway, and cGMP-PKG signaling pathway. Furthermore, we performed the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and generated a signature featuring 17 prognosis-related genes (MAL2, ANKRD22, METTL7B, IL32, ERFE, OAS1, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2) and found that it could predict OS in EC patients. The further analysis showed that OAS1, MAL2, ANKRD22, METTL7B, and IL32 were significantly upregulated in EC samples after comparison with normal samples. However, TRPC1, SRPX, RAPGEF4, PSD3, SIMC1, TRPC6, WFS1, PGR, PAMR1, KCNK6, and FAM189A2 were significantly downregulated in EC samples in comparison with normal samples. And correlation analysis showed that our results showed that the expressions of 17 prognosis-related hub genes were significantly correlated based on Pearson correlation. We here offer a newly genetic biomarker for the prediction of EC patients' prognosis.
Collapse
Affiliation(s)
- Anna Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| | - Hongyan Guo
- Department of Information Engineering, Shenyang Polytechnic College, Liaoning, China
| | - Zaiqiu Long
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Liaoning, China
| |
Collapse
|
8
|
Qi L, Wang W, Zhao G, Jiang H, Zhang Y, Zhao D, Jin H, Xu H, Yu H. Circular RNA circCCDC66 promotes glioma proliferation by acting as a ceRNA for miR-320a to regulate FOXM1 expression. Aging (Albany NY) 2021; 13:17673-17689. [PMID: 34252882 PMCID: PMC8312454 DOI: 10.18632/aging.203258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/11/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND In this study, we determine the potential roles and uncover the regulatory mechanisms of circCCDC66 in regulating cell growth and cell metastasis of glioma. METHODS qRT-PCR was used to detect the expressions of circCCDC66 in gliomas and tissues. The biological function of circCCDC66 in glioma cell lines was elucidated by functional experiments. Cell counting kit-8 and transwell were used to detect the effect of circCCDC66 on the proliferation, migration and invasion of glioma cells. Bioinformatics analysis was applied to reveal the targets of circCCDC66. RESULTS The results showed circCCDC66 was overexpressed in glioma and acted as an oncogene. CircCCDC66 knockdown suppressed the proliferation, migration, and invasion of glioma cells. We constructed a circCCDC66 regulating miRNA network and revealed miR-320a was a potential target of circCCDC66, which was down-regulated in high-grade gliomas compared to low-grade gliomas. Bioinformatics analysis showed circCCDC66-miR-320a/b axis was involved in regulating multiple cancer-related pathways. Furthermore, we identified FOXM1 as a key target of circCCDC66, which was involved in regulating DNA damage response pathways. In mechanism study, circCCDC66 could sponge miR-320a, thereby increasing the expression of FOXM1. CONCLUSIONS CircCCDC66 could facilitate glioma cells proliferation, invasion and migration by down-regulating miR-320a and up-regulating FOXM1.
Collapse
Affiliation(s)
- Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
- Department of Pathophysiology, Jilin Medical University, Jilin 132013, Jilin, China
| | - Weiyao Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
- Department of Pathophysiology, Jilin Medical University, Jilin 132013, Jilin, China
| | - Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
- Department of Pathology, Jilin Medical University, Jilin 132013, Jilin, China
| | - Hong Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yu Zhang
- Department of Neurovascular, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Donghai Zhao
- Department of Pathology, Jilin Medical University, Jilin 132013, Jilin, China
| | - Hong Jin
- Department of Pathology, Jilin Medical University, Jilin 132013, Jilin, China
| | - Haiyang Xu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
9
|
Liu B, Zhang Y, Suo J. Increased Expression of PDK4 Was Displayed in Gastric Cancer and Exhibited an Association With Glucose Metabolism. Front Genet 2021; 12:689585. [PMID: 34220962 PMCID: PMC8248380 DOI: 10.3389/fgene.2021.689585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies reported that pyruvate dehydrogenase kinase 4 (PDK4) is closely related to diabetes, heart disease, and carcinomas. Nevertheless, the role of PDK4 in gastric cancer (GC) occurrence and development is yet poorly understood. Our experiments were taken to evaluate PDK4's function in GC. The Cancer Genome Atlas tumor genome map database was employed to validate the levels of PDK family in different grades and stages of GC. The survival ratio of PDK families in GC was detected by the Kaplan-Meier plotter database. The links existing in the expression of PDK family and the level of tumor-infiltrating immune cells were investigated by tumor immunity assessment resource (TIMER). PDK4-associated signal pathways in GC were analyzed by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. PDK4 mRNA level in the GC cells was measured by qRT-PCR. Cell counting kit-8 and Transwell assays were separately carried out to evaluate PDK4-induced influence on GC cell proliferation, migration, and invasion. Our data suggested that GC cells highly expressed PDK4, and PDK4 expression presented a significant relation with the staging, grade, and survival rate of GC. PDK4 expression presented a positive correlation with the types of different infiltrating immune cells, comprising B cells, CD4+ T cells, and dendritic cells. Meanwhile, PDK4 expression exhibited a strong association with macrophages. Survival analysis revealed that the expression of PDK4 displayed a relationship with the prognosis of patients. Therefore, PDK4 was liable to be a biomarker for prognosis. Our results further displayed that PDK4 might modulate the glycolysis level in GC cells, and its expression was associated with GC cell proliferation, migration, and invasion. These data may provide insights into designing a new treatment strategy for GC.
Collapse
Affiliation(s)
| | | | - Jian Suo
- Department of Gastrocolorectal Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Chen G, Mo S, Yuan D. Upregulation Mitochondrial Carrier 1 (MTCH1) Is Associated with Cell Proliferation, Invasion, and Migration of Liver Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9911784. [PMID: 34195286 PMCID: PMC8203356 DOI: 10.1155/2021/9911784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Among the primary causes of cancer-associated death in the world, liver hepatocellular carcinoma (LIHC) ranks the third. LIHC is defined as the sixth most frequently diagnosed carcinoma. The gene mitochondrial carrier 1 (MTCH1) is a protein-coding gene. Recent research suggests that MTCH1 may be associated with some diseases. Here, our study attempts to explore the role and implication of MTCH1 in LIHC. Kaplan Meier Plotter and GEPIA (Gene Expression Profiling Interactive Analysis) databases were employed to determine the expression of MTCH1 and its correlation with prognostic status in LIHC patients. For the first time, our results suggested that MTCH1 was aberrantly expressed in human pan-cancer and highly expressed in LIHC. Its high expression was closely associated with metastasis of tumor, stage of cancer, and poor survival of patients. Then, through enrichment analysis, MTCH1 was found to be closely related to RNA splicing in LIHC. Subsequently, we conducted a series of functional experiments. PCR data showed that LIHC cell lines and samples are highly expressed MTCH1. CCK-8 (Cell Counting Kit-8) assays and Transwell assays indicated that silencing MTCH1 certainly suppressed cell proliferation, migration, and invasion. These findings shed the clue that MTCH1 could be regarded as the potential prognosis biomarker of LIHC and a promising therapeutic target for LIHC.
Collapse
Affiliation(s)
- Guolin Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Mo
- Pharmacy Department of Heilongjiang Sailors General Hospital, Harbin, China
| | - Di Yuan
- Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Liu D, Zhang P, Zhao J, Yang L, Wang W. Identification of Molecular Characteristics and New Prognostic Targets for Thymoma by Multiomics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5587441. [PMID: 34104648 PMCID: PMC8159640 DOI: 10.1155/2021/5587441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Thymoma is a heterogeneous tumor originated from thymic epithelial cells. The molecular mechanism of thymoma remains unclear. METHODS The expression profile, methylation, and mutation data of thymoma were obtained from TCGA database. The coexpression network was constructed using the variance of gene expression through WGCNA. Enrichment analysis using clusterProfiler R package and overall survival (OS) analysis by Kaplan-Meier method were carried out for the intersection of differential expression genes (DEGs) screened by limma R package and important module genes. PPI network was constructed based on STRING database for genes with significant impact on survival. The impact of key genes on the prognosis of thymoma was evaluated by ROC curve and Cox regression model. Finally, the immune cell infiltration, methylation modification, and gene mutation were calculated. RESULTS We obtained eleven coexpression modules, and three of them were higher positively correlated with thymoma. DEGs in these three modules mainly involved in MAPK cascade and PPAR pathway. LIPE, MYH6, ACTG2, KLF4, SULT4A1, and TF were identified as key genes through the PPI network. AUC values of LIPE were the highest. Cox regression analysis showed that low expression of LIPE was a prognostic risk factor for thymoma. In addition, there was a high correlation between LIPE and T cells. Importantly, the expression of LIPE was modified by methylation. Among all the mutated genes, GTF2I had the highest mutation frequency. CONCLUSION These results suggested that the molecular mechanism of thymoma may be related to immune inflammation. LIPE may be the key genes affecting prognosis of thymoma. Our findings will help to elucidate the pathogenesis and therapeutic targets of thymoma.
Collapse
Affiliation(s)
- Dazhong Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiaying Zhao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lei Yang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wei Wang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
12
|
Gu C, Chen J, Dang X, Chen C, Huang Z, Shen W, Shi X, Dai C, Chen C. Hippo Pathway Core Genes Based Prognostic Signature and Immune Infiltration Patterns in Lung Squamous Cell Carcinoma. Front Oncol 2021; 11:680918. [PMID: 33996611 PMCID: PMC8117235 DOI: 10.3389/fonc.2021.680918] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We investigated the prognostic effects and their patterns of immune infiltration of hippo pathway core genes in lung squamous cell carcinoma, in order to find some clues for underlying mechanisms of LUSC tumorigenesis and help developing new therapeutic methods. METHODS The mutational data, transcriptome data and corresponding clinical medical information of LUSC patients were extracted from The Cancer Genome Atlas (TCGA) database. Differential expression genes (DEGs) and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were explored. Survival analysis for the hippo core genes and the prognostic model were performed. Immune infiltration was estimated by CIBERSORT algorithm and some immune checkpoints-related genes were further investigated. RESULTS Overall, 551 LUSC samples were included in our study, consisting of 502 LUSC tumor samples and 49 adjacent normal samples, respectively. There were 1910 up-regulated DEGs and 2253 down-regulated DEGs were finally identified. The top five mutational hippo pathway core genes were LATS1 (4%), WWC1 (2%), TAOK1 (2%), TAOK3 (2%), and TAOK2 (2%), respectively. the mutation of LATS2 was highly associated with co-mutational NF2 (P <0.05) and TAOK1 (P <0.05). In survival analyses, we found only WWC1 (log-rank p = 0.046, HR = 1.32, 95% CI = 1-1.73) and LATS2 (log-rank p = 0.013, HR = 1.41, 95%CI = 1.08-1.86) had significant prognostic roles. After getting the three subgroups according to the subtyping results, we demonstrated that T cell gamma delta (p = 5.78e-6), B cell memory (p = 4.61e-4) and T cell CD4+ memory resting (p = 2.65e-5) had significant differences among the three groups. SIGLEC15 (P <0.01) and CD274 (P <0.05) also had statistical differences among the three subgroups. CONCLUSIONS Our study verified the prognostic roles of WWC1 and LATS2 in LUSC patients. Immune checkpoints-related genes SIGLEC15 and CD274 had statistical differences among the three subgroups, which may provide new perceptions on the molecular mechanisms in LUSC and maybe helpful for precisely selecting specific LUSC patients with potential immunotherapy benefits.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuening Dang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Weidong Shen
- Division of Functional Immunology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, Japan
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lian R, Zhang G, Yan S, Sun L, Zhang G. Identification of Molecular Regulatory Features and Markers for Acute Type A Aortic Dissection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6697848. [PMID: 33953793 PMCID: PMC8057891 DOI: 10.1155/2021/6697848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Acute type A aortic dissection (ATAAD) is one of the most lethal cardiovascular diseases, and its molecular mechanism remains unclear. METHODS Differentially expressed genes (DEGs) between ATAAD and control were detected by limma R package in GSE52093, GSE153434, GSE98770, and GSE84827, respectively. The coexpression network of DEGs was identified by the WGCNA package. Enrichment analysis was performed for module genes that were positively correlated with ATAAD using clusterProfiler R package. In addition, differentially methylated markers between aortic dissection and control were identified by ChAMP package. After comparing with ATAAD-related genes, a protein-protein interaction (PPI) network was established based on the STRING database. The genes with the highest connectivity were identified as hub genes. Finally, differential immune cell infiltration between ATAAD and control was identified by ssGSEA. RESULTS From GSE52093 and GSE153434, 268 module genes were obtained with consistent direction of differential expression and high correlation with ATAAD. They were significantly enriched in T cell activation, HIF-1 signaling pathway, and cell cycle. In addition, 2060 differentially methylated markers were obtained from GSE84827. Among them, 77 methylation markers were ATAAD-related DEGs. Using the PPI network, we identified MYC, ITGA2, RND3, BCL2, and PHLPP2 as hub genes. Finally, we identified significantly differentially infiltrated immune cells in ATAAD. CONCLUSION The hub genes we identified may be regulated by methylation and participate in the development of ATAAD through immune inflammation and oxidative stress response. The findings may provide new insights into the molecular mechanisms and therapeutic targets for ATAAD.
Collapse
Affiliation(s)
- Rui Lian
- Graduate School of Peking Union Medical College, Beijing, China
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Guochao Zhang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Shengtao Yan
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Lichao Sun
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Guoqiang Zhang
- Graduate School of Peking Union Medical College, Beijing, China
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Gu C, Shi X, Qiu W, Huang Z, Yu Y, Shen F, Chen Y, Pan X. Comprehensive Analysis of the Prognostic Role and Mutational Characteristics of m6A-Related Genes in Lung Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:661792. [PMID: 33842487 PMCID: PMC8027321 DOI: 10.3389/fcell.2021.661792] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There have been limited treatment therapies for lung squamous cell carcinoma (LUSC). M6A-related genes may be the next therapeutic targets for LUSC. In this study, we explored the prognostic role and mutational characteristics of m6A-related genes in LUSC. METHODS LUSC gene expression data, mutational data, and corresponding clinical information were extracted from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) were identified, and the mutation characteristics of LUSC patients were explored. Then, m6A-related genes were extracted and the correlations among the genes were detected. Finally, the prognostic roles of the genes were investigated and the nomogram model was developed. Besides, the protein-protein interaction (PPI) network was used to explore the potential interactions among the genes. RESULTS In total, there are 551 LUSC samples enrolled in our study, containing 502 LUSC tumor samples and 49 adjacent normal LUSC samples, respectively. There were 2970 upregulated DEGs and 1806 downregulated DEGs were further explored. IGF2BP1 and RBM15 had significant co-occurrence frequency (p < 0.05). Besides, METTL14 and ZC3H13 or YTHDF3 also had significant co-occurrence frequency (p < 0.05). All the m6A-related genes represent the positive correlation. WTAP was identified as a prognostic gene in the TCGA database while YTHDC1 and YTHDF1 were identified as prognostic genes. In multivariate Cox analysis, YTHDF1, age, pN stage, pTNM stage, and smoking were all identified as significant prognostic factors for OS. CONCLUSION We investigated the expression patterns and mutational characteristics of LUSC patients and identified three potential independent prognostic m6A-related genes (WTAP, YTHDC1, and YTHDF1) for OS in LUSC patients.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenli Qiu
- Department of Lab Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yumei Chen
- Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Zhang L, Yang Y, Geng D, Wu Y. Identification of Potential Therapeutic Targets and Molecular Regulatory Mechanisms for Osteoporosis by Bioinformatics Methods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851421. [PMID: 33778083 PMCID: PMC7969088 DOI: 10.1155/2021/8851421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture. New and more suitable therapeutic targets need to be discovered. METHODS We collected osteoporosis-related datasets (GSE56815, GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to predict the regulators of key methylation markers. RESULTS A total of 2351 differentially expressed genes and 5246 differentially methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed hsa-miR-3130-5p. CONCLUSION Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to better treat osteoporosis in the future.
Collapse
Affiliation(s)
- Li Zhang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Yunlong Yang
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of orthopedics, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yonghua Wu
- Department of Geriatrics, The Municipal Hospital of Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Zhao Y, Gao Y, Xu X, Zhou J, Wang H. Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma. BMC Cancer 2021; 21:257. [PMID: 33750346 PMCID: PMC7942004 DOI: 10.1186/s12885-021-07888-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most frequently diagnosed histological subtype of lung cancer. Our purpose was to explore molecular subtypes and core genes for LUAD using multi-omics analysis. Methods Methylation, transcriptome, copy number variation (CNV), mutations and clinical feature information concerning LUAD were retrieved from The Cancer Genome Atlas Database (TCGA). Molecular subtypes were conducted via the “iClusterPlus” package in R, followed by Kaplan-Meier survival analysis. Correlation between iCluster subtypes and immune cells was analyzed. Core genes were screened out by integration of methylation, CNV and gene expression, which were externally validated by independent datasets. Results Two iCluster subtypes were conducted for LUAD. Patients in imprinting centre 1 (iC1) subtype had a poorer prognosis than those in iC2 subtype. Furthermore, iC2 subtype had a higher level of B cell infiltration than iC1 subtype. Two core genes including CNTN4 and RFTN1 were screened out, both of which had higher expression levels in iC2 subtype than iC1 subtype. There were distinct differences in CNV and methylation of them between two subtypes. After validation, low expression of CNTN4 and RFTN1 predicted poorer clinical outcomes for LUAD patients. Conclusion Our findings comprehensively analyzed genomics, epigenomics, and transcriptomics of LUAD, offering novel underlying molecular mechanisms for LUAD. Two multi-omics-based core genes (CNTN4 and RFTN1) could become potential therapeutic targets for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07888-4.
Collapse
Affiliation(s)
- Yue Zhao
- Department II of Radiotherapy, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061110, Hebei, China.
| | - Yakun Gao
- Department of Ultrasound, Cangzhou Central Hospital, Cangzhou, 061110, Hebei, China
| | - Xiaodong Xu
- School of Clinical Medicine, Cangzhou Medical College, Cangzhou, 061001, Hebei, China
| | - Jiwu Zhou
- Department II of Radiotherapy, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, 061110, Hebei, China
| | - He Wang
- Office of Educational Administration, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
17
|
Gu C, Shi X, Dai C, Shen F, Rocco G, Chen J, Huang Z, Chen C, He C, Huang T, Chen C. RNA m 6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation (N Y) 2020; 1:100066. [PMID: 34557726 PMCID: PMC8454620 DOI: 10.1016/j.xinn.2020.100066] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
N6-Methyladenosine (m6A) RNA modification brings a new dawn for RNA modification researches in recent years. This posttranscriptional RNA modification is dynamic and reversible, and is regulated by methylases ("writers"), demethylases ("erasers"), and proteins that preferentially recognize m6A modifications ("readers"). The change of RNA m6A modification regulates RNA metabolism in eucaryon, including translation, splicing, exporting, decay, and processing. Thereby the dysregulation of m6A may lead to tumorigenesis and progression. Given the tumorigenic role of abnormal m6A expression, m6A regulators may function as potential clinical therapeutic targets for cancers. In this review, we emphasize on the underlying mechanisms of m6A modifications in tumorigenesis and further introduce the potential m6A regulators-associated therapeutic targets for tumor therapy.
Collapse
Affiliation(s)
- Chang Gu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chenyang Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhengyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chunji Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|