1
|
Campey A, Łapińska U, Chait R, Tsaneva-Atanasova K, Pagliara S. Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024; 15:e0237524. [PMID: 39565111 PMCID: PMC11633386 DOI: 10.1128/mbio.02375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses. IMPORTANCE The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
Collapse
Affiliation(s)
- Adrian Campey
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Remy Chait
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
2
|
Hira J, Singh B, Halder T, Mahmutovic A, Ajayi C, Sekh AA, Hegstad K, Johannessen M, Lentz CS. Single-cell phenotypic profiling and backtracing exposes and predicts clinically relevant subpopulations in isogenic Staphylococcus aureus communities. Commun Biol 2024; 7:1228. [PMID: 39354092 PMCID: PMC11445386 DOI: 10.1038/s42003-024-06894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Isogenic bacterial cell populations are phenotypically heterogenous and may include subpopulations of antibiotic tolerant or heteroresistant cells. The reversibility of these phenotypes and lack of biomarkers to differentiate functionally different, but morphologically identical cells is a challenge for research and clinical detection. To overcome this, we present ´Cellular Phenotypic Profiling and backTracing (CPPT)´, a fluorescence-activated cell sorting platform that uses fluorescent probes to visualize and quantify cellular traits and connects this phenotypic profile with a cell´s experimentally determined fate in single cell-derived growth and antibiotic susceptibility analysis. By applying CPPT on Staphylococcus aureus we phenotypically characterized dormant cells, exposed bimodal growth patterns in colony-derived cells and revealed different culturability of single cells on solid compared to liquid media. We demonstrate that a fluorescent vancomycin conjugate marks cellular subpopulations of vancomycin-intermediate S. aureus with increased likelihood to survive antibiotic exposure, showcasing the value of CPPT for discovery of clinically relevant biomarkers.
Collapse
Affiliation(s)
- Jonathan Hira
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Bhupender Singh
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tirthankar Halder
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Anel Mahmutovic
- Early Biometrics & Statistical Innovation Data Science & AI AstraZeneca, Biopharmaceuticals RD AstraZeneca, Mölndal, Sweden
| | - Clement Ajayi
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Kristin Hegstad
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Mona Johannessen
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christian S Lentz
- Centre for New Antibacterial Strategies (CANS) and Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT - The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
3
|
Kraus S, Fletcher ML, Łapińska U, Chawla K, Baker E, Attrill EL, O'Neill P, Farbos A, Jeffries A, Galyov EE, Korbsrisate S, Barnes KB, Harding SV, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Phage-induced efflux down-regulation boosts antibiotic efficacy. PLoS Pathog 2024; 20:e1012361. [PMID: 38941361 PMCID: PMC11239113 DOI: 10.1371/journal.ppat.1012361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/11/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the efficacy of three major antibiotic classes, the quinolones, the beta-lactams and the tetracyclines, but antagonizes tetrahydrofolate synthesis inhibitors. We discovered that enhanced antibiotic efficacy is facilitated by reduced antibiotic efflux in the presence of phage. This new phage-antibiotic therapy allows for eradication of stationary phase bacteria, whilst requiring reduced antibiotic concentrations, which is crucial for treating infections in sites where it is difficult to achieve high antibiotic concentrations.
Collapse
Affiliation(s)
- Samuel Kraus
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Megan L Fletcher
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krina Chawla
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Evan Baker
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Erin L Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Paul O'Neill
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Aaron Jeffries
- Biosciences, University of Exeter, Exeter, Devon, EX4 4QD, United Kingdom
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Thailand
| | - Kay B Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Sarah V Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
4
|
Wang C, Jin L. Microbial persisters and host: recent advances and future perspectives. Crit Rev Microbiol 2023; 49:658-670. [PMID: 36165023 DOI: 10.1080/1040841x.2022.2125286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
Microbial persisters are defined as the tiny sub-population of microorganisms that develop intrinsic strategies for survival with high tolerance to various antimicrobials. Currently, persister research remains in its infancy, and it is indeed a great challenge to precisely distinguish persister cells from other drug tolerant ones. Notably, the existence of persisters crucially contributes to prolonged antibiotic exposure time and treatment failure, yet there is the formation of antibiotic-resistant mutants. Further understanding on persisters is of profound importance for effective prevention and control of chronic infections/inflammation. The past two decades have witnessed rapid advances on the science, technologies and methodologies for persister investigations, along with deep knowledge about persisters and numerous anti-persister approaches developed. Whereas, various critical issues remain unsolved, such as what are the potential interaction profiles of persisters and host cells, and how to apply what we know about persisters to translational studies and clinical practice. Importantly, it is highly essential to better understand the multifaceted and complex cross-talk of microbial persisters with the host to develop novel tackling strategies for precision healthcare in the near future.
Collapse
Affiliation(s)
- Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
5
|
Zhang Y, Kepiro I, Ryadnov MG, Pagliara S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol Spectr 2023; 11:e0366722. [PMID: 36651776 PMCID: PMC9927147 DOI: 10.1128/spectrum.03667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yuewen Zhang
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Ibolya Kepiro
- National Physical Laboratory, Teddington, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
7
|
Łapińska U, Voliotis M, Lee KK, Campey A, Stone MRL, Tuck B, Phetsang W, Zhang B, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 2022; 11:e74062. [PMID: 35670099 PMCID: PMC9173744 DOI: 10.7554/elife.74062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.
Collapse
Affiliation(s)
- Urszula Łapińska
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Margaritis Voliotis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
| | - Ka Kiu Lee
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Adrian Campey
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New JerseyPiscatawayUnited States
| | - Brandon Tuck
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of ExeterExeterUnited Kingdom
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mark AT Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Stefano Pagliara
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
8
|
Cama J, Al Nahas K, Fletcher M, Hammond K, Ryadnov MG, Keyser UF, Pagliara S. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 2022; 12:4005. [PMID: 35256720 PMCID: PMC8901753 DOI: 10.1038/s41598-022-07973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Kareem Al Nahas
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marcus Fletcher
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
9
|
Al Nahas K, Keyser UF. Standardizing characterization of membrane active peptides with microfluidics. BIOMICROFLUIDICS 2021; 15:041301. [PMID: 34257793 PMCID: PMC8266397 DOI: 10.1063/5.0048906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial peptides (AMPs) are emerging as important players in the fight against antibiotic resistance. In parallel, the field of microfluidics has matured and its benefits are being exploited in applications of biomimetics and standardized testing. Membrane models are essential tools extensively utilized in studying the activity and modes of action of AMPs. Here, we describe how the utilization of microfluidic platforms in characterizing membrane active peptides can develop a reliable colorful image that classical techniques have rendered black and white.
Collapse
Affiliation(s)
- Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB30HE, United Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB30HE, United Kingdom
| |
Collapse
|